
Séminaire Lotharingien de Combinatoire 82B (2019) Proceedings of the 31st Conference on Formal Power
Article #101, 8 pp. Series and Algebraic Combinatorics (Ljubljana)

DD-finite functions in Sage

Antonio Jiménez-Pastor∗

Doctoral Program Computational Mathematics, JKU, Linz

Abstract. We present here a Sage implementation for DD-finite functions, which are a
natural extension of the class of holonomic or D-finite functions. The package, focused
on a functional approach, provides natural commands for executing closure proper-
ties among DD-finite functions, a general framework for extracting their coefficient
sequences and allows the user to compute the composition (as power series) of the
functions treated in the package.

Keywords: holonomic, D-finite, generating functions, closure properties, formal power
series

1 Introduction

A formal power series f (x) = ∑n≥0 anxn is called D-finite, if it satisfies a linear differ-
ential equation with polynomial coefficients [8, 13, 14]. Many generating functions of
combinatorial sequences are of this type as well as the most commonly used special
functions [1, 3, 11]. These objects can be represented in finite terms using a defining
differential equation and sufficiently many initial values.

We recently extended this class to a wider set of formal power series that satisfy lin-
ear differential equations with D-finite coefficients, and call them DD-finite [4]. In the
same way as D-finite functions satisfy several closure properties that have been imple-
mented in several computer algebra systems [12, 10, 2, 9, 7], we present here a Sage
implementation for the closure properties and other operations on DD-finite functions.

The finiteness of the representation for D-finite functions allows to finitely represent
DD-finite functions, with a defining differential equation and initial conditions. A differ-
ence between our packages and other implementations is that our focus is on the whole
function, not only its annihilating differential operator. This leads to two different steps
while manipulating DD-finite functions: computing the final differential equation and
computing the initial data required for the specific object. More details on the structure
we used can be found in Section 2.

Kauer’s et al. package ore_algebra [7] has implemented several operations for D-
finite functions. On this base level, the package presented here uses these structures by

∗antonio.jimenez-pastor@dk-compmath.jku.at.This author was funded by the Austrian Science Fund
(FWF): W1214-N15, project DK15.

mailto:antonio.jimenez-pastor@dk-compmath.jku.at


2 A. Jiménez-Pastor

default.If the user desires to avoid that package, or ore_algebra is not installed, a dif-
ferent implementation [5] is provided. That is used by default with DD-finite functions.

At the time of writing, the package described in this document is still under con-
struction and has not been added to the official Sage distribution. Readers who want to
try it are invited to download the current version from

https://www.dk-compmath.jku.at/Members/antonio/sage-package-dd_functions

and are encouraged to send bug reports, feature requests or other comments.
Once downloaded and unpacked the file, the user should add the path to the ob-

tained folder into the package folders in the Sage installation or just run Sage within the
directory diff_defined_functions. Then the package is ready to be used using the following
command:
sage: from ajpastor.dd_functions import *

All the features of the package (creating the appropriate objects, arithmetically ma-
nipulating them, getting some examples, etc.) can be used without further configuration.
sage: C = Catalan (); # Getting Catalan gen. function
sage: F = Fibonacci (); # Getting Fibonacci gen. function
sage: C*(1+x^2*C^2*F(x*C)) == F(x*C) # Check identity

True
sage: T = Tan(x) # Getting the tangent function
sage: T.derivative () == T^2+1 # Derivative identity for the tangent

True

The user can check that the package is ready to be used by running the included tests
on the code. Running these tests will produce a text output that shows the timestamps
of the tests that are been executed. The code to run those tests is the following:
sage: from ajpastor.tests import dd_functions
sage: dd_function.run()

More details on how to build the structures and the examples available can be found
in Sections 2 and 3.

2 The basic structures

Although the main motivation behind our package is manipulating DD-finite functions,
the theory involved can be described in a more general way. We recall the main definition
and the basic closure properties. For details, see [4].

Definition 1. Let R be a non-trivial differential subring of K[[x]] and R[∂] the ring of linear
differential operators over R. We call f ∈ K[[x]] differentially definable over R if there is a
non-zero operator A ∈ R[∂] that annihilates f , i.e., A · f = 0. By D(R) we denote the set of all
f ∈ K[[x]] that are differentially definable over R.

Theorem 2. Let R be a non-trivial differential subring of K[[x]] and f (x), g(x) ∈ D(R). Then:

https://www.dk-compmath.jku.at/Members/antonio/sage-package-dd_functions


DDFunctions 3

1. f ′(x) ∈ D(R).

2. Any antiderivative of f (x) is in D(R).

3. f (x) + g(x) ∈ D(R).

4. f (x)g(x) ∈ D(R).

5. If r(0) 6= 0, then its multiplicative inverse 1/r(x) in K[[x]] is in D(R).

In particular, D(R) is a differential subring of K[[x]].

2.1 DDRing

The structure DDRing describes the rings of differentially definable functions, D(R).
Thus, they are built from any ring structure R in Sage. Following the Parent-Element
model of Sage, DDRing is a parent class that will include as element any differentially
definable function over R.

To create a DDRing, the user has to provide the base ring R for the coefficients of the
differential operators. There are several optional inputs that allow more flexibility and a
wider use of the structure. For more information, the user can type DDRing? in Sage to
obtain all the information about it.

The use of a DDRing in Sage is restricted to creating elements within itself (see the
description of the method element in the Section 2.2) and to get information about the
ring R over the DDRing is based on.

Two DDRings are defined by default in the system when the package is loaded: the
object DFinite that is the ring of D-finite functions, and DDFinite which represents the
ring of DD-finite functions.
sage: DDFinite

DD -Ring over (DD-Ring over (Univariate Polynomial Ring in x over
Rational Field ))

sage: Qi.<i> = NumberField(x^2+1)
sage: S = DDRing(Qi[x])
sage: S

(DD -Ring over (Univariate Polynomial Ring in x over Number Field
in i with defining polynomial x^2 + 1))

2.2 DDFunction

The class DDFunction represents differentially definable functions over any ring. It is
composed of a linear differential operator and some initial conditions. Moreover, it is
the Element class of a DDRing, so every DDFunction must be included in a particular
DDRing.



4 A. Jiménez-Pastor

To create a DDFunction, the user must use the method element of the DDRing where
the function belongs. A function f (x) satisfying a linear differential equation with coef-
ficients ri and initial values ai is created from two lists [r0, . . . , rd] and [a0, . . . , an], i.e.,

([r0, . . . , rd], [a0, . . . , an]) 7→
{

rd f (d)(x) + · · ·+ r0 f (x) = 0,
f (0) = a0, . . . , f (n)(0) = an.

The method element also checks that the coefficients ri are in the appropriate ring
of coefficients R and that the initial conditions ai are elements of the field where the
function f (x) is considered.
sage: f = R.element([-i,1] ,[1]) # f == exp(i*x)
sage: g = R.element ([i,1] ,[1]) # g == exp(-i*x)
sage: (f+g)/2 == Cos(x)

True

3 Selected methods and main features

3.1 The structure of DDFunction

The package provide several methods to extract information from a DDFunction

• equation: the differential operator that defines the function.

• getInitialValue: the value of the nth derivative of the function at x = 0.

• getSequenceElement: the value of the nth coefficient of the power series.

• getOrder: the order of the differential operator defining the function.

• min_coefficient: the first non-zero coefficient of the power series

• zero_extraction: the order of the power series and the DDFunction defined after
factoring the maximal power of x possible.

sage: f = DFinite.element ([1,0,1],[0,1]) # f == sin(x)
sage: f.equation

Wrapped_OreOperator(D^2 + 1)
sage: [f.getInitialValue(n) for n in range (5)]

[0, 1, 0, -1, 0]
sage: [f.getSequenceElement(n) for n in range (5)]

[0, 1, 0, -1/6, 0]
sage: f.getOrder(), f.min_coefficient ()

(2, 1)
sage: n, g = f.zero_extraction
sage: n

1
sage: print g



DDFunctions 5

(2:2:4)DD-Function in (DD-Ring over (Univariate Polynomial Ring
in x over Rational Field )):
-------------------------------------------------

-- Equation (self = f):
f * (x)
+ D(f) * (2)
+ D^2(f) * (x)
= 0

-- Initial values:
[1, 0, -1/3]

-------------------------------------------------
sage: x*g == f

True

3.2 Closure properties

All the arithmetic operations are implemented using Python magic methods. This en-
ables to use also Sage coercion system for a more user friendly use of the package. For
more details on the algorithms, see [5]

• Addition: add or simply +

• Multiplication: mult or simply *

• Difference: sub or simply -

• Exponentiation: pow or simply ˆ

• Multiplicative Inverse: inverse returns a DDFunction representing the multiplica-
tive inverse of the function.

sage: sin = DFinite.element ([1,0,1],[0,1])
sage: cos = DFinite.element ([1,0,1],[1,0])
sage: sin^2 + cos^2 == 1

True
sage: sec = cos.inverse
sage: print sec

(1:1:5)DD-Function in (DD-Ring over (DD-Ring over (Univariate
Polynomial Ring in x over Rational Field ))):
-------------------------------------------------

-- Equation (self = f):
(2:2:2) f * (DD -Function in (DD -Ring over (Univariate Polynomial
Ring in x over Rational Field )))
(2:2:2) + D(f) * (DD-Function in (DD-Ring over (Univariate
Polynomial Ring in x over Rational Field )))

= 0
-- Initial values:
[1, 0]

-------------------------------------------------
sage: cos*sec

1
sage: sin*sec == Tan(x)

True



6 A. Jiménez-Pastor

The user can also perform differential operations over a DDFunction, like computing
the derivative ( f ′(x)) or computing the indefinite integral (

∫
f ).

• derivative: returns a DDFunction with the derivative.

• integrate: returns a DDFunction with an indefinite integral. The value at x = 0
can be specified. By default, it is 0.

sage: f = DDFinite.element ([Cos(x)^3, Sin(x), Cos(x)], [0 ,1])
sage: df = f.derivative ()
sage: f.integrate (). derivative () == f

True
sage: df.integrate (0) == f

True
sage: all(f.getInitialValue(n+1) == df.getInitialValue(n) for n
....: in range (10))

True

As recently proven [6], the composition of differentially definable functions is again
differentially definable and the implementation described in that report is included into
the package. The method compose or the magic method __call__ do the job.
sage: f = DDFinite.element ([Cos(x)^3, Sin(x), Cos(x)], [0 ,1])
sage: sin = DFinite.element ([1,0,1],[0,1])
sage: g = sin(f)
sage: print g

(2:2:95)DD -Function in (DD -Ring over (DD -Ring over (DD-Ring over
(Univariate Polynomial Ring in x over Rational Field )))):
-------------------------------------------------

-- Equation (self = f):
(4:4:37) f * (((sin(sin(x)))’)^3)
(2:2:37) - D(f) * ((sin(sin(x)))’’)
(2:2:19) + D^2(f) * ((sin(sin(x)))’)

= 0
-- Initial values:
[0, 1, 0]

-------------------------------------------------
sage: sin(sin) == f

True

3.3 Algebraic and Differentially Algebraic properties

Functions that are algebraic over a differential field F are also differentially definable
over F [8, 6]. Given the polynomial defining an algebraic function, the user can get a
DDFunction associated with such function using the method DAlgebraic.
sage: Q.<x,y> = QQ[];
sage: p = x*y^2 - y + 1 # Minimal polynomial for Catalan gen. func.
sage: f = DAlgebraic(p, [1,1])
sage: print f

(2:2:5)DD-Function in (DD-Ring over (Univariate Polynomial Ring
in x over Rational Field )):
-------------------------------------------------



DDFunctions 7

-- Equation (self = f):
f * (2)

+ D(f) * (10*x - 2)
+ D^2(f) * (4*x^2 - x)
= 0

-- Initial values:
[1, 1, 4]

-------------------------------------------------
sage: [f.getSequenceElement(n) for n in range (10)] # Catalan numbers

[1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862]

We also proved in [6] that DD-finite functions are differentially algebraic. Using
the method diff_to_diffalg, the user can compute from a DDFunction an associated
differentially algebraic equation with polynomial coefficients.
sage: cos = DFinite.element ([1,0,1],[1,0])
sage: diff_to_diffalg(cos)

y_2 + y_0
sage: f = DDFinite.element([-Exp(x), 1], [1]) # f == exp(exp(x)-1)
sage: diff_to_diffalg(f)

y_1^2 - y_2*y_0 + y_1*y_0

3.4 Built-in functions of the package

Aiming for a more user friendly interface, we provide a set of examples of D-finite
and DD-finite functions that can be easily called and built from Sage once the pack-
age is loaded. Some of these functions are elementary as the exponential function or
trigonometric functions; some are special functions as the hypergeometric pFq functions,
solutions to the Riccati equation, the Mathieu functions or some generating functions for
combinatorial sequences.

All implemented functions can be checked in Sage by typing ddExamples?. This
command displays the documentation for the ddExamples file where all these built-in
functions are explained.

4 Conclusions

The Sage package ajpastor.dd_functions provides a functional-focused implementa-
tion of differentially definable functions for arbitrary differential rings. In particular, it
can be used for working with regular D-finite functions and DD-finite functions.

This package can be used to prove symbolically identities between DD-finite func-
tions and to obtain combinatorial sequences that are out of the D-finite scope.

Closure properties, such as addition, multiplication and exponentiation can be per-
formed by the package, as well as other operations such as composition or division. It
also provides several methods to convert algebraic functions to DDFunction manipulat-
ing a defining polynomial to obtain a differential equation, and to compute a non-linear
equation with polynomial coefficients for any differentially definable function.



8 A. Jiménez-Pastor

References

[1] G. E. Andrews, R. Askey, and R. Roy. Special Functions. Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 1999.

[2] F. Chyzak. “Gröbner bases, symbolic summation and symbolic integration”. Gröbner Bases
and Applications (Linz, 1998). London Math. Soc. Lecture Note Ser. 251. Cambridge Univ.
Press, Cambridge, 1998, pp. 32–60.

[3] “NIST Digital Library of Mathematical Functions”. http://dlmf.nist.gov/, Release 1.0.16 of
2017-09-18. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller and B. V. Saunders, eds.

[4] A. Jiménez-Pastor and V. Pillwein. “A computable extension for holonomic functions: DD-
finite functions”. J. Symbolic Comput. 94 (2018), pp. 90–104. Link.

[5] A. Jiménez-Pastor and V. Pillwein. “Algorithmic Arithmetics with DD-Finite Functions”.
Proceedings of the 2018 ACM on International Symposium on Symbolic and Algebraic Computa-
tion. Ed. by A. Carlos. ACM, New York, NY, USA, 2018, pp. 231–237. Link.

[6] A. Jiménez-Pastor, V. Pillwein, and M. F. Singer. “Some structural results on Dn-finite
functions”. Doctoral Program Computational Mathematics. 2019. Link.

[7] M. Kauers, M. Jaroschek, and F. Johansson. “Ore Polynomials in Sage”. Computer Algebra
and Polynomials. Ed. by J. Gutierrez, J. Schicho, and M. Weimann. Lecture Notes in Com-
puter Science. 2014, pp. 105–125. Link.

[8] M. Kauers and P. Paule. The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Gen-
erating Functions, Asymptotic Estimates. 1st ed. Springer, 2011.

[9] C. Koutschan. “Advanced Applications of the Holonomic Systems Approach”. PhD thesis.
RISC-Linz, Johannes Kepler University, 2009. Link.

[10] C. Mallinger. “Algorithmic Manipulations and Transformations of Univariate Holonomic
Functions and Sequences”. MA thesis. RISC, J. Kepler University, 1996.

[11] E. D. Rainville. Special Functions. 1st ed. Bronx, N.Y.: Chelsea Publishing Co., 1971.

[12] B. Salvy and P. Zimmermann. “Gfun: a Maple package for the manipulation of generating
and holonomic functions in one variable”. ACM Transactions on Mathematical Software 20.2
(1994), pp. 163–177. Link.

[13] R. P. Stanley. “Differentiably Finite Power Series”. European J. Combin. 1.2 (1980), pp. 175–
188. Link.

[14] R. P. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge University Press, Cambridge,
1999.

http://dlmf.nist.gov/
http://dx.doi.org/10.1016/j.jsc.2018.07.002
http://dx.doi.org/10.1145/3208976.3209009
https://www.dk-compmath.jku.at/publications/dk-reports/2019-02-26/at_download/file
http://dx.doi.org/10.1007/978-3-319-15081-9_6
http://www.risc.uni-linz.ac.at/research/combinat/software/HolonomicFunctions/
http://dx.doi.org/10.1145/178365.178368
http://dx.doi.org/10.1016/S0195-6698(80)80051-5

	Introduction
	The basic structures
	DDRing
	DDFunction

	Selected methods and main features
	The structure of DDFunction
	Closure properties
	Algebraic and Differentially Algebraic properties
	Built-in functions of the package

	Conclusions

