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Abstract In this article, we consider the classical Jacobi theta functions
θi(z), i = 1, 2, 3, 4 and show that the ideal of all polynomial relations among
them with coefficients in K := Q(θ2(0|τ), θ3(0|τ), θ4(0|τ)) is generated by
just two polynomials, that correspond to well known identities among Jacobi
theta functions.

1 Introduction

Let θj(z|τ) (j = 1, . . . , 4, z ∈ C, τ ∈ H) denote the four classical Jacobi
theta functions where H denotes the upper complex half plane. In this article
we show that if p ∈ K[T1, T2, T3, T4] is a polynomial with coefficients in
K := Q(θ2(0|τ), θ3(0|τ), θ4(0|τ)) such that for every z ∈ C and every τ ∈ H

p(θ1(z|τ), θ2(z|τ), θ3(z|τ), θ4(z|τ)) = 0, (1)

then p = p1b1 + p2b2 for some p1, p2 ∈ K[T1, T2, T3, T4] where

b1 := θ2(0|τ)2 T 2
2 − θ3(0|τ)2 T 2

3 + θ4(0|τ)2 T 2
4 , (2)

b2 := θ2(0|τ)2 T 2
1 + θ4(0|τ)2 T 2

3 − θ3(0|τ)2 T 2
4 . (3)

Note that b1 and b2 correspond to [4, Eq. 20.7.1] and [4, Eq. 20.7.2], re-
spectively.

Research Institute for Symbolic Computation, Johannes Kepler University, Altenberger-
straße 69, A-4040 Linz, Austria,
e-mail: hemmecke@risc.jku.at, e-mail: sradu@risc.jku.at, e-mail: lye@risc.jku.at

The second author is supported by the Austrian Science Fund (FWF): grant SFB F50-06.
The third author is supported by the Austrian Science Fund (FWF): grant SFB F50-06,

and partially supported by FWF: grant number W1214-N15, project DK6.

1

hemmecke@risc.jku.at
sradu@risc.jku.at
lye@risc.jku.at


2 Ralf Hemmecke, Cristian-Silviu Radu, Liangjie Ye

The polynomials b1 and b2 form a Gröbner basis of the ideal of all such
relations. Thus, one can check whether a relation of the form (1) holds by
simply reducing p by b1 and b2. The result of the reduction is zero if and only
if the identity holds.

After introducing some notation, we give the precise formulation of our
problem in Section 2. In Section 3, we reduce the problem of finding relations
among theta functions to finding relations among quotients of theta functions
that, additionally are elliptic. In Section 4, we then show that the ideal of
relations among elliptic theta quotients is generated by two elements. These
two elements are then used to setup the generators for the ideal of polynomial
relations among Jacobi theta functions in Section 5. To actually, compute
the Gröbner basis of this ideal, we show computability of K in Section 6.
Eventually, we show the steps to compute the polynomials b1 and b2 in the
computer algebra system FriCAS.

2 Notation and Problem Formulation

The classical Jacobi theta functions θj(z|τ) (j = 1, . . . , 4) are defined as
follows.

Definition 1. (cf. [4, Eq. 20.2(i)]) Let τ ∈ H := {z ∈ C | =(z) > 0} and
q := eπiτ , then

θ1(z, q) := θ1(z|τ) := 2

∞∑
n=0

(−1)nq(n+
1
2 )

2

sin((2n+ 1)z),

θ2(z, q) := θ2(z|τ) := 2

∞∑
n=0

q(n+
1
2 )

2

cos((2n+ 1)z),

θ3(z, q) := θ3(z|τ) := 1 + 2

∞∑
n=1

qn
2

cos(2nz),

θ4(z, q) := θ4(z|τ) := 1 + 2

∞∑
n=1

(−1)nqn
2

cos(2nz).

For simplicity, we write θj(z) := θj(z|τ).
Throughout the paper, we use multi-index notation, i.e., for n ∈ N, α ∈ Zn

and objects x1, . . . , xn we simply write xα instead of xα1
1 . . . xαn

n . We mostly
use n = 3 or n = 4. In particular, if α ∈ Z4,

θ(z)α := θ1(z)α1θ2(z)α2θ3(z)α3θ4(z)α4 . (4)

If L is a ring and S is a subset of an L-module, we denote by 〈S〉L the
set of L-linear combinations of elements of S. If L is a field, then 〈S〉L is a
vector space. If S ⊂ L, then 〈S〉L is an ideal of L.
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We define the field K := Q(θ2(0), θ3(0), θ4(0)) and set

θ := {θi(z) | i = 1, 2, 3, 4} ,
T := {T1, T2, T3, T4} ,
φ : K[T ]→ K[θ], Ti 7→ θi(z), i = 1, 2, 3, 4.

The problem we are dealing with in this article is to determine (algorith-
mically) the set kerφ ⊂ K[T ]. Note that kerφ is an ideal of K[T ] and, thus,
by Hilbert’s basis theorem, finitely generated.

In order to describe kerφ, we first consider the map

Φ : K[T, T−1]→ K[θ, θ−1], Ti 7→ θi(z), i = 1, 2, 3, 4.

Note that φ = Φ|K[T ] and kerφ = kerΦ ∩K[T ]. Define L := K[T, T−1]. For

p ∈ L, we sometimes write p(θ) instead of Φ(p).

3 Reduction to elliptic theta quotients

Definition 2. A meromorphic function f on C is called elliptic, if there are
two non-complex numbers ω1 and ω2 with ω1

ω2
/∈ R such that f(z+ω1) = f(z)

and f(z + ω2) = f(z) for all z ∈ C.

In [9], an algorithm was given to decide whether f = 0 for f ∈ K[θ] by
reducing the problem to such f that are additionally, “quasi-elliptic” func-
tions. More precisely, for our problem it is enough to find all relations among
quotients of theta functions that are elliptic.

In view of the following lemma, we can connect theta functions with ellip-
tic functions. Note that whenever we say elliptic function, we mean elliptic
function with respect to the argument z.

Lemma 1. (cf. [8, p. 465]) Let N := e−πiτ−2iz. For j ∈ {1, 2, 3, 4} we have
θj(z + πτ |τ) = ε1(j)θj(z|τ) and θj(z + π|τ) = ε2(j)θj(z|τ) where ε1(j) and
ε2(j) are defined in the following table.

j 1 2 3 4

ε1(j) −N N N −N
ε2(j) −1 −1 1 1

Definition 3. (cf. [9, Def. 2.2]) Given α, β ∈ Z4, we say that α and β are
similar, denoted by α ∼ β, if α1 + α2 + α3 + α4 = β1 + β2 + β3 + β4,
α1 + α2 ≡ β1 + β2 (mod 2), and α1 + α4 ≡ β1 + β4 (mod 2).

It is easy to prove that ∼ is a congruence relation on the Z-module Z4.
The conditions in Definition 3 have been chosen according to the table in

Lemma 1, so that θ(z)α is elliptic if α ∼ 0, cf. Lemma 3.1 in [9]. Similar to
Definition 4.1 in [9] we define R∗ :=

{
α ∈ Z4

∣∣α ∼ 0
}

.
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Theorem 2.7 from [9] can be formulated as follows.

Theorem 1. Let M be a finite subset of Z4, M/∼ = {M1, . . . ,Mn}. For
i ∈ {1, . . . , n} let pi =

∑
α∈Mi

cαT
α with cα ∈ K and let p =

∑n
i=1 pi. Then

p(θ) = 0 if and only if pi(θ) = 0 for all i ∈ {1, . . . , n}.

With the same notation as in Theorem 1 we can write

p =

n∑
i=1

pi =

n∑
i=1

T βi
pi
T βi

=

n∑
i=1

T βi

∑
α∈Mi

cαT
α−βi

for some βi ∈Mi. Note that if α ∈Mi, then α− βi ∈ R∗.
Let L∗ be the set of K-linear combinations of monomials Tα ∈ L with

α ∈ R∗. Theorem 1 says that kerΦ = 〈L∗ ∩ kerΦ〉L.

Lemma 2. (cf. [9, Lemma 4.2]) The set R∗ forms an (additive) Z-module
that is generated by the vectors ι1 = (−2, 2, 0, 0), ι2 = (−2, 0, 2, 0), ι3 =
(−3, 1, 1, 1), i.e., R∗ = 〈ι1, ι2, ι3〉Z.

Proof. Clearly, 〈ι1, ι2, ι3〉Z ⊆ R∗. For R∗ ⊆ 〈ι1, ι2, ι3〉Z note that if α ∈ R∗,
then

α = ι1
α2 − α4

2
+ ι2

α3 − α4

2
+ ι3α4.

4 The ideal of relations among elliptic theta quotients

From Lemma 2 follows L∗ = K[T ι1 , T ι2 , T ι3 ], i.e.,

kerΦ = 〈K[T ι1 , T ι2 , T ι3 ] ∩ kerΦ〉L .

In other words, any relation among theta functions can be expressed as a
L-linear combination of polynomials in T ι1 , T ι2 , T ι3 whose coefficients are in
K. We would like to find polynomials p in T ι1 , T ι2 , T ι3 such that Φ(p) = 0.

Let us define the elliptic functions corresponding to the above generators.

j1(z) := Φ(T ι1) = θ(z)ι1 =
θ2(z)2

θ1(z)2
,

j2(z) := Φ(T ι1) = θ(z)ι2 =
θ3(z)2

θ1(z)2
,

j3(z) := Φ(T ι1) = θ(z)ι2 =
θ2(z)θ3(z)θ4(z)

θ1(z)3
.

Let J = {J1, J2, J3} be a new set of indeterminates. As an intermediate
step to solve our original problem, we consider the map Ψ : K[J, J−1] →
K[θ, θ−1], which is defined by Ψ = Φ ◦ σ for the ring homomorphism
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σ : K[J, J−1] → L∗, Ji 7→ T ιi , i = 1, 2, 3. Note that because L∗ =
K[T ι1 , T ι2 , T ι3 ], σ is surjective, i.e., p ∈ K[T ι1 , T ι2 , T ι3 ] ∩ kerΦ, there exists
f ∈ K[J, J−1] such that σ(f) = p. Therefore, σ(kerΨ) = K[T ι1 , T ι2 , T ι3 ] ∩
kerΦ.

Clearly, Ψ maps Ji to ji(z), i = 1, 2, 3. In the following we are going to show
that kerΨ is an ideal in K[J, J−1] that is generated by the two polynomial

h1 := J2 − c3J1 − c4, (5)

h2 := J2
3 − J1J2(c4J1 + c3) (6)

where c3 = θ3(0)
2

θ2(0)2
, c4 = θ4(0)

2

θ2(0)2
.

Let IΨ := 〈h1, h2〉K[J,J−1]. One can verify by Algorithm 6.6 from [9] that

Ψ(h1) = 0, and Ψ(h2) = 0. Hence IΨ ⊆ kerΨ . In order to prove kerΨ ⊆ IΨ ,
assume that f ∈ kerΨ . Because h1 ∈ IΨ , we have

f(J1, J2, J3) + IΨ = f(J1, c3J1 + c4, J3) + IΨ = Jα1
1 Jα3

3 f̃(J1, J3) + IΨ

for some α1, α3 ∈ Z and f̃ ∈ K[J1, J3].
Clearly, we can split f̃ with respect to even and odd powers of J3 in such

a way that for some polynomials f̃1 and f̃2 we have the representation

f̃(J1, J3) = f̃1(J1, J
2
3 ) + J3f̃2(J1, J

2
3 ).

Since h1, h2 ∈ IΨ , we can replace J2
3 by J1(c3J1 + c4)(c4J1 + c3) ∈ K[J1] and

obtain

f̃(J1, J3) + IΨ = f1(J1) + J3f2(J1) + IΨ

for some f1, f2 ∈ K[J1]. Hence,

f(J1, J2, J3) + IΨ = Jα1
1 Jα3

3 (f1(J1) + J3f2(J1)) + IΨ

From f ∈ kerΨ and IΨ ⊆ kerΨ , we conclude

jα1
1 jα3

3 (f1(j1) + j3f2(j1)) = 0.

Since jα1
1 jα3

3 is a nonzero meromorphic function, it follows that

f1(j1) + j3f2(j1) = 0. (7)

Note that expanding j1(z) and j3(z) as Laurent series in z with coefficients
in K, we observe that

j1(z) = z−2 + higher order terms

and
j3(z) = z−3 + higher order terms.
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If we assume that f1, f2 6= 0 and deg(f1) = d1 and deg(f2) = d2 for d1, d2 ∈ N
then

f1(j1(z)) = c1z
−2d1 + higher order terms

and
j3(z)f2(j1(z)) = c2z

−2d2−3 + higher order terms

for some c1, c2 ∈ K \ {0}.
Since −2d1 is even and −2d2 − 3 is odd, the leading terms cannot cancel

and, therefore, f1(j1(z)) + j3(z)f2(j1(z)) 6= 0. Thus, either f1 = 0 or f2 = 0.
However, if one of these polynomials is zero, the other must also be zero,
since otherwise the respective leading term of the Laurent series expansion
cannot be made to vanish as required by (7).

In summary, for f ∈ kerΨ we have shown

f(J1, J2, J3) + IΨ = Jα1
1 Jα3

3 f̃(J1, J3) + IΨ

= Jα1
1 Jα3

3 (f1(J1) + J3f2(J1)) + IΨ

= Jα1
1 Jα3

3 (0 + J3 · 0) + IΨ

= 0 + IΨ .

Therefore f ∈ IΨ and kerΨ = IΨ = 〈h1, h2〉K[J,J−1].

5 The ideal of relations among theta functions

From the previous section we have σ(kerΨ) = K[T ι1 , T ι2 , T ι3 ] ∩ kerΦ and,
therefore, kerΦ = 〈σ(IΨ )〉L. Let HL :=

{
hL1 , h

L
2

}
for hL1 := σ(h1), hL2 :=

σ(h2).
We are left with the problem of computing

〈
HL
〉
L
∩K[T ] = kerφ.

A solution of this problem is well-known in the computer algebra com-
munity. Let us denote by P = K[S, T ] the polynomial ring in the in-
determinates S = {S1, S2, S3, S4} and T = {T1, T2, T3, T4}. Let U =
{1− SiTi | i ∈ {1, 2, 3, 4}} and I = 〈U〉P be the ideal generated by the el-
ements of U . By [7, Proposition 7.1], kerχ = I for the surjective homomor-
phism χ : P → L with χ(Si) = T−1i and χ(Ti) = Ti for i ∈ {1, 2, 3, 4}, i.e.,
P/I ∼= L.

Let χ′ : L→ P be such that χ′(Ti) = Ti, χ
′(T−1i ) = Si, i.e., χ(χ′(p)) = p

for every p ∈ L. Then kerφ = kerΦ ∩K[T ] =
〈
χ′(HL) ∪ U

〉
P
∩K[T ]. Note

that

χ′(hL1 ) := S2
1T

2
3 − c3S2

1T
2
2 − c4,

χ′(hL2 ) := (S3
1T1T2T3)2 − (S2

1T
2
2 )(S2

1T
2
3 )(c4S

2
1T

2
2 + c3).



The Generators of all Polynomial Relations among Jacobi Theta Functions 7

A generating set for the latter intersection can be computed by Buch-
berger’s algorithm (cf. [3] or [1]) applied to χ′(HL) ∪ U with respect to a
term ordering such that monomials with indeterminates exclusively from the
set T are smaller than any monomial involving indeterminates from S. Then
by [1, Cor. 5.51] the polynomials g1, . . . , gt in this Gröbner basis that only
involve indeterminates from the set T form a Gröbner basis G of all the
relations among the theta functions θ1, θ2, θ3, θ3 with coefficients in K.

6 Computability of K

Up to now the field of coefficients has not played an essential role in the
derivation. However, in order to actually compute the Gröbner basis from
the previous section, we must find a good representation of the elements of
K. Note that θ2(0), θ3(0), and θ4(0), and therefore, also c3 and c4 are actually
Puiseux series in q.

In the following, we employ results from [6] in order to show that the well
known Jacobi identity

θ2(0|τ)4 − θ3(0|τ)4 + θ4(0|τ)4 = 0

is a “factor” of any other identity among θ2(0), θ3(0), and θ4(0) and then use
it to model K in a finitary way.

Let

η : H→ C, τ 7→ exp

(
πiτ

12

) ∞∏
n=1

(1− e2πin)

be the Dedekind eta function and denote for δ = 1, 2, 4 by ηδ : H → C the
function ηδ(τ) := η(δτ).

By simple rewriting of formulas for theta functions in Section 21.42 of [8] or
rewriting of q-series expansions from Entry 22 together with formulas (0.12)
and (0.13) of Chapter 20 of [2], we can express the Jacobi theta functions in
terms of in Dedekind η functions:

θ2(0|τ) =
2η(2τ)2

η(τ)
, θ3(0|τ) =

η(τ)5

η( 1
2τ)2η(2τ)2

, θ4(0|τ) =
η( 1

2τ)2

η(τ)
. (8)

The relations among the theta functions are given by the kernel of the
following map.

ξ : Q[t2, t3, t4]→ Q[θ2(0), θ3(0), θ4(0)],

tj 7→ θj(0), j = 2, 3, 4,
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where t2, t3, t4 are indeterminates. In order to find ker ξ, we extend this map
to

Ξ : Q[Y,E, t]→ Q[η−1, η, θ],

Yδ 7→ ηδ(τ/2)−1, Eδ 7→ ηδ(τ/2), δ = 1, 2, 4, tj 7→ θj(0|τ), j = 2, 3, 4.

Define r := E24
2 −E16

1 E8
4−16E8

1E416 and the ideal I = 〈W1 ∪W2 ∪W3〉Q[Y,E,t]

in Q[Y,E, t] where

W1 :=
{
t2 − 2Y2E

2
4 , t3 − Y 2

1 Y
2
4 E

5
2 , t4 − Y2E2

1

}
,

W2 := {YδEδ − 1 | δ = 1, 2, 4} ,
W2 := {r} .

W1 encodes the relations (8) and W2 just says that Yδ models the inverse of
Eδ.

Computing the relations among eta functions of level 4 as described in [6]
leads to an ideal that is generated by only one polynomial, namely r, i.e.,

ker(Ξ|Q[E]) = 〈r〉Q[E] (9)

where Ξ|Q[E] denotes the restriction of the map Ξ to Q[E].
Clearly, I ⊆ kerΞ. To prove kerΞ ⊆ I, consider f ∈ kerΞ. By W1 we can

find a polynomial f1 ∈ Q[Y,E] with f + I = f1 + I. Note that by W2 we have
YδEδ + I = 1 + I. Thus, similar to “clearing a common denominator”, by
multiplication of each term of f1 with an appropriate power of YδEδ, we can
find a polynomial f2 ∈ Q[E] and a vector α ∈ N3 such that f+I = Y αf2 +I.
Since Ξ(Y α) 6= 0, it follows Ξ(f2) = 0 and, thus, f2 ∈ ker(Ξ|Q[E]). From (9)

we conclude that there is p̃ ∈ Q[E] such that f2 = p̃ · r. Therefore, f ∈ I =
kerΞ.

Since we are actually interested in ker ξ = kerΞ ∩ Q[t], we can simply
compute a Gröbner basis of I and intersect with Q[t]. We find I ∩ Q[t] =〈
t42 − t43 + t44

〉
Q[t]

. This polynomial corresponds to [4, Eq. 20.7.5]. In partic-

ular, that result says that there is no polynomial p ∈ Q[t2, t4] such that
p(θ2(0), θ4(0)) = 0. Hence, F := Q(t2, t4) is isomorphic to Q(θ2(0), θ4(0)).
Since t42 − t43 + t44 is irreducible over F [t3], it follows from the First Isomor-
phism Theorem that

K ∼= F (θ3(0|τ)) ∼= F [t3]/
〈
t42 − t43 + t44

〉
. (10)

7 Computation of the ideal of relations in FriCAS

Having a finite (and computable) representation for the coefficient field K, we
now demonstrate the steps to compute kerφ in the computer algebra system
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FriCAS1. Due to its type system, FriCAS allows to almost naturally enter the
respective data structures in order to compute the Gröbner basis of kerφ.

We try to use almost the same identifiers in the following FriCAS session
as we use in the mathematical notation above.

Let us start with setting up the field K and the two coefficients c3 and c4
that are used in the definition of h1 and h2 in (5) and (6).

1 N ==> NonNegativeInteger; Q ==> Fraction Integer

2 D ==> HomogeneousDistributedMultivariatePolynomial ([t2,t4], Q)

3 F ==> Fraction D; R ==> UnivariatePolynomial(’t3, F)

4 r: R := t2^4 -t3^4 + t4^4;

5 K := SimpleAlgebraicExtension(F, R, r)

6 t2: K := ’t2; t3: K := ’t3; t4: K := ’t4::K

7 c3 := (t3/t2)^2; c4 := (t4/t2)^2;

Next, we create the data structure for P = K[S, T ].

8 vars := [S1, S2, S3, S4 , T1 , T2, T3, T4];

9 E ==> SplitHomogeneousDirectProduct (8, 4, N)

10 P ==> GeneralDistributedMultivariatePolynomial(vars , K, E)

Now, we setup the generators of kerΦ and compute a Gröbner basis.

11 U: List(P) := [S1*T1 -1, S2*T2 -1, S3*T3 -1, S4*T4 -1]

12 h1: P := (S1*T3)^2 - c3*(S1*T2)^2 - c4

13 h2: P := (S1^3*T2*T3*T4)^2 - (c4*S1^2*T2^2+c3)*S1^4*T2^2*T3^2

14 B := groebner(concat [U, [h1, h2]])

Eventually, we compute a Gröbner basis of the intersection kerφ = kerΦ ∩
K[T ] and take advantage of the fact that, if B is a Gröbner basis with respect
to a termorder where any term that involves only variables from the set T
is smaller than any term that involves at least one variable from the set S,
then B ∩K[T ] is a Gröbner basis. We have defined the terms E in line 9 in
exactly such a way, i.e., we can simply extract all the polynomials from B
that have a vanishing total degree in the indeterminates S.

15 G := [x for x in B | zero? reduce(_+, degree(x, vars (1..4)))]

16 G := [(t2::K)^2*x for x in G] -- make it denominator -free

The computation returns the polynomials

g1 := t22T
2
1 + t24T

2
3 − t23T 2

4 ,

g2 := t22T
2
2 − t23T 2

3 + t24T
2
4 .

as generators of kerφ, i.e., G := 〈g1, g2〉K[T ]. In view of the isomorphism

given in 10, these are exactly the polynomials b1 and b2 as given by (2) and
(3).

Having a Gröbner basis of the ideal of all polynomial relations among
the classical Jacobi theta functions with coefficients involving θ2(0), θ3(0),
and θ4(0), allows for a simple decision procedure to check whether a given

1 FriCAS 1.3.4 [5]
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polynomial expression p in θ2(0), θ3(0), θ4(0), θ1(z), θ2(z), θ3(z), θ4(z) is zero
or not. One would simply have to translate this expression into a polynomial p
in t2, t3, t4, T1, T2, T3, T4 and then apply the function normalForm in FriCAS.

As an example, take the identity [4, Eq. 20.7.3]. We can enter it into
FriCAS like

17 p: P := t3^2*T1^2 + t4^2*T2^2 - t2^2*T4^2

18 normalForm(p, G)

FriCAS returns 0 if an only if identity p(θ) = 0 holds. In this case 0 is indeed
computed.

One can easily program an extended normalform computation that col-
lects the cofactors during the normalform computation and that leads to a
representation of the form p = p2g1 + p2g2. In the above, we get p1 = c3 and
p2 = c4.

8 Conclusion

We have shown that any polynomial identity in Jacobi theta functions can
be expressed as a K[T ]-linear combination of just two polynomials. More-
over such a linear combination can be computed algorithmically by a simple
reduction process.
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