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Abstract

The main results of this paper is divided into two parts. In the first part we show some
interesting results on Galois-like theory for commutative reduced Baer rings and give some
interesting facts about the so-called splitting rings and their group of automorphisms. In the
second part we concentrate on Artin-Schreier Theorem and we show a generalized form of this
theorem for commutative reduced Baer normal rings. To show the results we recall important,
but rather less known, results and definitions by Raphael: namely generalized algebraic exten-
sions and algebraic closures for reduced rings (which is equivalent to the classical definition
for fields). We give examples and show why essential extension plays an important role when
considering algebraic extensions. This allows us to define a splitting ring of a polynomial over
a Baer reduced ring and show that, like in fields, such rings are finitely generated modules
over this Baer ring. We show, however, that these rings (unlike in fields) will not necessarily
induce a finite group of automorphism and these group may not even be finitely generated.
Nevertheless, we still show that, like in fields, this group will be a torsion group with finite ex-
ponent. Moving to generalized Artin-Schreier Theorem, we show that if the algebraic closure
of a Baer reduced normal real ring is a finitely generated module (over the given Baer ring)
then adjoining the real Baer ring with an imaginary element

√
−1 will give us the algebraic

closure of the Baer ring. We show, by an example, why it is important to require that the
base ring is Baer.
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1 Introduction

In this section, we give some introductory material about commutative unitary reduced rings.
Note that some of the results or definitions can be generalized to other categories (e.g. rings that
are not reduced, modules etc.). If σ is any endomorphism (between the same object in a given
category) and if k ∈ N, then by σk we mean the endomorphism created by composing σ with itself
k-times.

For a commutative ring A, T (A) denotes the total quotient ring of A. Unless otherwise stated,
all rings in this papers are commutative unitary and reduced. All ring homomorphisms are such
that 1 is mapped to 1. Let A be a ring, then SpecA is the set of prime ideals of A endowed with
the Zariski topology and MinA is the set of minimal prime ideals of A considered as a subspace
of SpecA. For a ring A and a ∈ A the the set DA(a) ⊂ SpecA is the basic open set

DA(a) = {p ∈ SpecA : a ̸∈ B}

and VA(a) is the basic closed set

VA(a) = {p ∈ SpecA : a ∈ B}

Here are some results and more definitions
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Generalizing some Results in Field Theory for Rings

• Let A be a subring of a ring B, then B is an essential extension of A (in the category of
commutative rings) if for all b ∈ B\{0} there exists a c ∈ B such that bc ∈ A\{0}. There
is a generalized definition for essential extensions in any category C. Let C be a category,
then a monomorphism f : a → b is said to be an essential monomorphism (or extension)
provided that for all morphism/arrow g : b→ c such that the composition g ◦ f : a→ c is a
monomorphism, it follows that g is a monomorphism. Some authors (e.g. Hochster in [12])
also use tight extension to mean essential extension.

• Let A be a subring of a reduced ring B, then B is said to be a rational extension of A if for all
b ∈ B\{0} there exists an a ∈ A such that ab ∈ A\{0}. This definition can be generalized for
non-reduced rings but we will confine ourselves to reduced commutative unitary rings. The
study of such ring extensions became quite popular in the 50’s (notably by Utumi, Lambek,
Findlay and Johnson).

• It is known (see [11]) that if A is reduced, commutative and unitary then there is a maximum
rational extension Q(A), i.e. a rational extension Q(A) of A such that any other rational
extension of A is A-isomorphic (i.e. isomorphism fixing A) to a subring of Q(A). Q(A)
is called the rational completion or the complete ring of quotients of A. If Q(A) is ring-
isomorphic to A, then A is said to be rationally complete.

• As used by Raphael (see [9], [17] and [18]), we shall call an essential and integral extension
of a commutative ring the algebraic extension of this ring. This definition coincides with the
classical definition of algebraic extension when working with the category fields. It has been
shown (see [3], [10] and [12]) that a commutative reduced unitary ring A have a maximum
algebraic extension Ā, in the sense that any algebraic extension of Ā is A-isomorphic to
Ā, which we shall call the algebraic closure of the ring A. When dealing with fields, this
definition of algebraic closure also coincides with the classical definition of algebraic closure.
Most authors also call the algebraic closure the total integral closure of the ring and in this
paper we may sometimes use this name.

• A commutative ring A is said to be real iff for all n ∈ N the following holds

a21 + · · ·+ a2n = 0 ⇔ a1, . . . , an = 0 ∀a1, . . . , an ∈ A

Clearly, every real ring is reduced and the total quotient of a real ring is real as well (specif-
ically, the quotient field of a real domain is real). A real ring A is said to be real closed iff
there is no strict algebraic extension of A that is also real. By Zorn’s lemma every real ring
has an algebraic extension that is real closed. Real closed rings (using this definition) were
first introduced by Sankaran and Varadarajan in [19]. It was then more extensively studied
in the PhD thesis of Capco (who defined this originally as real closed ∗ to distinguish with
other definition with similar name). Real closed rings are also Baer rings (see [5] Remark
28). Integral domains are real closed iff they are integrally closed in their quotient fields
and their quotient fields are real closed fields (see [19] Proposition 2). Commutative von
Neumann regular rings are real closed iff it is Baer and all the residue fields are real closed
(see [5] Theorem 34).

The proposition below illustrates that one is able to arbitrarily strictly extend any reduced ring
integrally (the proposition uses a field but this can be generalized). Thus, as discussed by Raphael
[17], Borho [3], Enochs [10] and Hochster [12], it is necessary to involve essential extensions when
defining algebraic extensions and algebraic closures of commutative reduced rings.

Proposition 1. Let K be a field and L be an algebraic extension of K then for any n ∈ N the
ring Ln (componentwise addition and multiplication) is an integral extension of K.

Proof. There is a natural monomorphism from K to Ln (diagonal homomorphism) that brings
each k ∈ K to (k, k, . . . , k) ∈ Ln. In this way we identify K as a subring of Ln, but to avoid
confusion we write k̄ (instead of k ∈ K) to denote (k, k, . . . , k). Furthermore, there is a canonical
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ring homomorphismK[x] → Ln[x], between polynomial rings, that maps each
∑m

i=1 aix
i ∈ K[x] to∑m

i=1 āix
i ∈ Ln[x]. We abuse notation and denote the image of f ∈ K[x] (by this homomorphism)

by f̄ ∈ Ln[x]. Consider now bi ∈ L for i = 1, . . . , n (i.e. an arbitrary (b1, b2, . . . , bn) ∈ Ln). There
exists non-constant monic polynomials f1, f2, . . . , fn ∈ L such that bi is a zero of fi for i = 1, . . . , n.
So if we consider the polynomial f :=

∏n
i=1 fi ∈ K[x], then the canonical image f̄ in Ln[x] has a

zero (b1, b2, . . . , bn). Thus, L
n is an integral extension of K.

Observe that we have made several use of the overline symbol. We will continue to make
occasional use of this symbol (with its various meaning) where they are needed and whenever this
will not cause confusion. To summarize: For a reduced commutative unitary ring A, by Ā we
mean the algebraic closure (or sometimes called total integral closure) of the ring. For an element
a ∈ A if there is a canonical diagonal monomorphism (as in the above proof) of A into product
of rings (or fields) then the canonical image of a is denoted by ā and in this way we identify A
as a subring of this product of rings (this should be clear as long as the domain and codomain
are clear to the reader). Similarly, there is a canonical map (as in the above proof) that brings
a polynomial f ∈ A[x] into a polynomial f̄ over product of rings (again, we use this only if the
domain and codomain of this monomorphism is clear to the reader). With this, we hope that we
have avoided unnecessary symbolic clutter in this paper without sacrificing clarity.

Notation. Let A be a subring of a ring B then the group Aut(B/A) is the set of ring automorphisms
of B fixing A, i.e. the group of A-automorphisms of B.

Notation. Let A be a commutative ring and f ∈ A[x] be a polynomial. Suppose that f is written
as follows

f(x) :=

n∑
i=0

aix
i

then for any ideal I E A, we abuse notation and denote f mod I (or f(x)mod I) as the polynomial

f mod I :=
n∑

i=0

(ai mod I)xi ∈ (A/I)[x]

2 Splitting Rings

Let A be a reduced commutative unitary ring with algebraic closure B and suppose that f ∈ A[x]
is monic. Then for S := {b ∈ B : f(b) = 0}, we want to study the ring extension A ↪→ A[S].
We start with a Theorem that claims that if A is Baer than we can at least conclude that B is a
finitely generated A-module . . .

Theorem 2. (Splitting Ring) Let A be a commutative reduced Baer ring. Suppose B = Ā and
that f ∈ A[x] is a non-constant monic polynomial with coefficients in A. Consider the set

S := {b ∈ B : f(b) = 0}

then A[S] is a finitely generated module. More specifically, there are b1, . . . , bn ∈ B (where
n ≤ deg(f)) such that

A[S] = A[b1, . . . , bn]

Proof. Define K :=
∏

p∈MinB

Quot(B/p), we have the following diagram (with all canonical maps)

A B

K

K/I......................................................................................................... .......................
.......
......

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

................
.......

............................................................................................................
.....
.......
.....

............................................................................................................

........
..
.......
........
..

π

.................................................................................................... .......................
.......
......
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where I is an ideal maximal (Zorn’s Lemma) with the property that I ∩A = ⟨0⟩. This allows the
lower right ring monomorphism in the diagram to be an essential extension. Let n := deg(f) ∈ N
and for each p ∈ SpecB arbitrarily arrange all n (not necessarily distinct) zeros of f mod p in
Quot(B/p) (which is a algebraically closed field, see [12] Corollary 1) as ki,p for i = 1, . . . , n.
Suppose that πp : K � Quot(B/p) is the canonical projection for every p ∈ SpecB. We define
ki ∈ K, for i = 1, . . . , n, by setting the projection of ki for each p to be πp(ki) := ki,p. By
the construction we get f(π(ki)) = 0 for all i = 1, . . . , n. Thus, since B is totally integrally
closed, π(ki) ∈ B for all i = 1, . . . , n. We define bi := π(ki) for i = 1, . . . , n and claim that
A[S] = A[b1, . . . , bn] (and because b1, . . . , bn are integral elements of A, A[S] is a finitely generated
A-module). Let b ∈ S, then define ei ∈ K for i = 1, . . . , n by

πp(ei) :=

{
1 b ≡ ki,p mod p
0 otherwise

Note that the ei’s are well-defined because bmod p is a zero of f mod p and the ki,p’s are all the
zeros of f mod p.

Observe now that, in the ring K, b =
∑n

i=1 eiki and by taking the image of this with respect
to π we get b =

∑n
i=1 π(ei)bi in the ring K/I. Now ei is an idempotent in K so the projection

π(ei) is an idempotent in K/I. Since B is integrally closed in K/I (this is by the definition of
total integral closure, see also [5] Theorem 29.) we also have bi, π(ei) ∈ B (all idempotents satisfy
the equation x2 − x = 0) for all i = 1, . . . , n. Since A is Baer, it contains all the idempotents of
its total integral closure and hence π(ei) ∈ A (see [17] Lemma 1.6). We thus have shown that
b ∈ A[b1, . . . , bn] for all b ∈ S, hence A[S] = A[b1, . . . , bn].

We shall call the ring A[S], in the theorem above, the splitting ring1 of f ∈ A[x] (over A). The
above result, however, does not gaurantee us an A-automorphism group that is finitely generated.
We give an example of such a group that is not finitely generated and for that we use this very
easy Lemma (whose proof we leave to the reader) . . .

Lemma 3. Suppose A is a Baer reduced ring, B is a splitting ring of a monic non-constant
polynomial f ∈ A[x] and b ∈ B is a zero of f then for any σ ∈ Aut(B/A), σ(b) is a zero of f .

Example. In this example, we show a splitting ring B of some f ∈ A[x] (where A is a Baer
reduced ring) that provides a group of A-automorphisms of B, Aut(B/A), that is not finitely
generated. Let A = QN (this is a Baer reduced ring!) and consider f(x) := x2 − 2̄ ∈ A[x]. Note
that the algebraic closure of A is A-isomorphic to the integral closure of A in Q̄N (hints for this can
be found in the proof of Theorem 38 [5]). So the ring B := Q(

√
2)N is, in fact, the splitting ring

of f (observe that B = A+
√
2A). We first claim that the group G := Aut(B/A) has exponent 2

(thus a torsion group).
Let, for each j ∈ N, πj : B → Q(

√
2) be the canonical projection on the j-th coor-

dinate. Let σ ∈ G, then, one checks that, this induces a well-defined field automorphism

σj ∈ Aut(Q(
√
2)/Q) for each j ∈ N that maps each a + b

√
2 (a, b ∈ Q) to a + bπj(σ(

√
2))

(by Lemma 3, πj(σ(
√
2)) ∈ {

√
2,−

√
2}). But σ ◦ σ ∈ G induces (in the same manner) the auto-

morphism σj ◦ σj ∈ Aut(Q(
√
2)/Q), for all j ∈ N, and this can only be the identity map. Thus,

the group G has a finite exponent 2 and so it is a torsion group (σ was arbitrary and the field
automorphism σj , for a j ∈ N, is not necessarily an identity map).

Now suppose that G is finitely generated. Because it is a torsion group with exponent 2, this
becomes a trivial Burnside problem (see [21]) and it is known that for this case G must necessarily
be finite (and even commutative). This gives us a contradiction because we know that G is an
infinite group: Consider, for every i ∈ N, the element σ ∈ G that induces

σj :=

{
id j ̸= i
τ otherwise

j ∈ N

1this definition is also in accordance to [10], where it probably first appeared
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where τ ∈ Aut(Q(
√
2)/Q) is the Q-automorphism of Q(

√
2) such that τ(

√
2) = −

√
2 and

id : Q(
√
2) → Q(

√
2) is the identity map. This gives us countably but infinitely many number of

automorphisms in G.

The above example gave us an automorphism group Aut(B/A) for which the exponent is finite.
In general, this is true for any Baer commutative reduced ring A and splitting ring B. To prove
this we first show a few nice results about the total quotients T (A) and T (B).

Theorem 4. Let A be a reduced commutative unitary ring. Suppose that A has the property
that for any a ∈ A, there exists an idempotent e ∈ A such that

Ann(aA) = eA

then T (A) is von Neumann regular.

Proof. Let a ∈ A and suppose that e ∈ A be an idempotent such that Ann(aA) = eA. We claim
tha a+ e is a regular element of A. Pick a b ∈ A such that (a+ e)b = 0. Then after multiplying
by a we get a2b = 0. Since A is reduced, we know that b ∈ Ann(aA). Thus, there is a c ∈ A with
ce = b. This gives us

0 = ce(a+ e) = ce2

So ce = 0 and this leads us to conclude that ce = b = 0. So the annihilator of (a + e)A is 0. In
other words, a+ e is a regular element.

We now know that a+ e is invertible in T (A). So we clearly have

a+ e = (a+ e)2(a+ e)−1 = (a2 + e)(a+ e)−1 ⇒ a2(a+ e)−1 = a+ e− e(a+ e)−1

But
e = e((a+ e)(a+ e)−1) = (e(a+ e))(a+ e)−1 = e2(a+ e)−1 = e(a+ e)−1

So
a2(a+ e)−1 = a+ e− e = a

We can therefore conclude that every element of A has a ”quasi-inverse” in T (A).
Now let a

b ∈ T (A), with a ∈ A and b a regular element of A. Also set a′ to be the quasi-inverse
of a in T (A). Then (a

b

)2

ba′ =
1

b
a2a′ =

1

b
a =

a

b

Thus, any element of T (A) has also a quasi-inverse in T (A). In other words, T (A) is a von
Neumann regular ring.

Corollary 5. Let A be a reduced commutative unitary Baer ring then T (A) is Baer, von Neumann
regular and SpecT (A) is canonically homeomorphic to the MinA.

Proof. The ring A satisfies (because it is Baer) the condition in Theorem 4, so T (A) is von
Neumann regular ring. Now, the smallest von Neumann regular intermediate ring of A and Q(A)
has a prime spectrum that is canonically isomorphic to MinA (see [16] Theorem 4.4). And the
result follows since any two essential extension of a Baer von Neumann regular ring that are von
Neumann regular will have homeomorphic prime spectra (see [17] Remark 1.17).

Remark 6. The Corollary above will give us even more information. If A is a reduced commu-
tative Baer ring and if B is an essential extension of A (then B must necessarily be reduced by
Lemma 1.3 in [17]) then, by Storrer’s Satz (see [20] 10.1), there is a canonical essential exten-
sion Q(A) ↪→ Q(B) and, by [17] Lemma 1.7, Q(A) contains all of the idempotents of Q(B) and
thus, by [15] Proposition 2.5 and Storrer’s Satz, both A and B are Baer. Thus, by the above
Corollary, both T (B) and T (A) are von Neumann regular. Now, there is a canonical essential
extension T (A) ↪→ T (B) and if we use [17] Remark 1.17 we conclude that T (A) and T (B) have
homeomorphic prime spectra which are homeomorphic to both MinA and MinB.

In short: If A is a reduced commutative Baer ring and B is an essential extension of A then
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• B is Baer

• T (A) and T (B) are von Neumann regular

• We have the canonical homeomorphisms

MinA ∼= SpecT (A) ∼= MinB ∼= SpecT (B)

We first only state the theorem that we want to prove:

Theorem 7. Let A be a Baer ring and B be the splitting ring of a non-constant monic polynomial
f ∈ A[x], then the automorphism group Aut(B/A) is a torsion group with finite exponent.

Now, before proving the theorem, we give and prove two lemmas on splitting rings that will
be used in the main proof of the theorem:

Lemma 8. Let A be a domain and B be the splitting ring of a non-constant monic f ∈ A[x] then
the following holds

• B is a domain

• Quot(B) is the splitting field of f over Quot(A)

Proof. Any essential extension of A is a domain and a field containing A is an essential extension
of A. It easily follows that Ā is the integral closure of A in the algebraic closure of Quot(A) (see
also [12] Corollary 1, p.774). Since the splitting ring lies between Ā and A, it must be a domain.

For the second part, let K be the splitting field of f over Quot(A) then one easily sees that

K = Quot(A)(b1, . . . , bn) = Quot(A)[b1, . . . , bn] = Quot(A[b1, . . . , bn])

where bi, for i = 1, . . . , n, are all the zeros of f in the algebraic closure of Quot(A). This proves
the Lemma since B = A[b1, . . . , bn].

Lemma 9. Suppose that B is the splitting ring of a non-constant monic f ∈ A[x] over a Baer
ring A. It follows that for any p ∈ MinB, B/p is the splitting ring of A/(p ∩A).

Proof. In this proof, for simplicity, (because A is Baer) we identify all the minimal prime spectra of
rings between A and Ā with SpecT (A). Let p ∈ MinB, then we have B/p = A[S]/p = (A/p)[S/p]
where

S := {b ∈ B : f(b) = 0}

Clearly any element in S/p is a zero of f mod p, so it suffices to show that S/p contains all the
zeros of f mod p. Let k ∈ Ā/p be a zero of f mod p (observe that Ā/p is integrally closed and
has an algebraically closed quotient field, see e.g. [12] Corollary 1). There is a b ∈ Ā such that
b is canonically mapped to k. Define the disjoint clopen sets (recall that T (A) is von Neumann
regular)

U1 := {q ∈ SpecT (A) : f(b)mod q ≡ 0}
U2 := SpecT (A)\U1

that cover SpecT (A) and from this we can define idempotents in e1 and e2 in T (A) by

ei mod q :=

{
1 q ∈ Ui

0 q ̸∈ Ui
i = 1, 2

This implies that c := be1 + se2 ∈ S for any s ∈ S (since f(c) ≡ 0mod q for all q ∈ SpecT (A)).
Furthermore, cmod p = k and we so are done.

Finally the proof of Theorem 7. . .
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Proof of Theorem 7. Denote G := Aut(B/A) and suppose σ ∈ G. Since σ is an automorphism,
for any minimal prime ideal p ∈ MinB the set σ(p) is also a minimal prime ideal of B. Because A
is Baer and B is an essential extension of A, we know that there is a canonical homeomorphism
from MinB to MinA (see Remark 6) given by

MinB → MinA q 7→ q ∩A

Since p ∩A is a minimal prime ideal of A and σ is an A-automorphism we have

σ(p ∩A) = p ∩A ⊂ σ(p) ∩A ⊂ σ(p)

which would mean, by the above homeomorphism, that σ(p) = p.
Set pA := p ∩A then, since σ(p) = p, σ induces a well-defined A/pA-automorphism

B/p → B/p bmod p 7→ σ(b)mod p

This in turn canonically induces a Quot(A/pA)-automorphism

Quot(B/p)
∼−→ Quot(B/p)

The minimal prime spectra Min Ā,MinB and MinA are all homeomorphic (see Remark 6)
and they can all be canonically identified. Now suppose p ∈ Min Ā and, for simplicity, write
pA := p ∩ A and pB := p ∩ B. By the Lemmas 8 and 9, B/pB ∼= A[b1, . . . , bn]/p for some bi ∈ B
such that bi mod p (i=1,. . . ,n) are all the roots of f mod p in the algebraic closed field Quot(Ā/p)
and Quot(B/pB) is the splitting field of f mod p over Quot(A/pA).

Now, let us write for short Kp := Quot(A/pA) and Lp := Quot(B/pB). We have already seen
that σ ∈ Aut(A/B) induces a Kp-automorphism σp ∈ Aut(Lp/Kp). Similarly, for any k ∈ N,
σk ∈ Aut(A/B) will induce σk

p ∈ Aut(Lp/Kp). But Lp is the splitting field for f mod p, so if n is

the degree of f , the order of σp will divide n! (e.g. [8] Theorem 3 p.176 discusses this). Thus σn!

induces the identity Lp → Lp. This is true for any p ∈ Min Ā.
In other words, for any p ∈ Min Ā (or pA ∈ MinA) and for any σ ∈ Aut(B/A) we have the

equation
σn!(b) ≡ bmod p ∀b ∈ B

Since B is reduced, σn!(b) = b for all b ∈ B and this means that n! is an exponent of the group
Aut(A/B).

3 Generalized Artin Schreier Theorem

We recall and reformulate Remark 109 in [5]

Remark 10. Let A be a reduced ring and B be an overring of A, then there is a canonical map
SpecB → SpecA. This map has the property that its image contains MinA. For the proof: Let
p ∈ MinA and consider the multiplicative set S = A\p, then from the monomorphism A ↪→ B we
get the following commutative diagram

A S−1A

B S−1B

...................................................................................................................................................... ............

...................................................................................................................................................... ............

...........................................................................
.....
.......
.....

........
................ ...........................................................................

.....
.......
.....

........
................

S−1A is a field (because p is minimal) and its only prime ideal, which is {0}, corresponds to p in
MinA. Hence, the canonical image of

SpecS−1B ∼=
∩
s∈S

DB(s) ⊂ SpecB
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in SpecA is {p}. We see that an arbitrary p ∈ MinA belongs in the image of the canonical map
SpecB → SpecA.

Recall also Theorem 101 in [5]

Theorem 11. Let A be a Baer reduced ring, then A is normal iff for any p ∈ SpecT (A) we have
A/(p ∩A) is integrally closed in T (A)/p.

Proof. See [5] Theorem 101.

We can combine a few results in [5] to arrive to the following Theorem

Theorem 12. Let A be a Baer reduced ring and suppose that T (A) is a subring of a von Neumann
regular real closed B. If, furthermore, A is integrally closed in B then T (A) is a real closed von
Neumann regular ring.

Proof. This follows immediately from Theorem 99(iii) and Theorem 34 in [5].

Corollary 13. A real Baer ring B is real closed iff for every minimal prime ideal p ∈ MinB one
has B/p is a real closed integral domain.

Proof. ”⇒” If B is real closed then it is integrally closed in Q(B) and furthermore Q(B) is real
closed (see [5] Remark 28). Now, by Theorem 12, T (B) is also a real closed von Neumann regular
ring. It follows from [19] Proposition 2 and Theorem 11 that B/p is a real closed integral domain
for any minimal prime ideal p in SpecB (p ∈ MinB is a restriction of a prime ideal in T (B), see
Remark 6).

”⇐” Since B is Baer, T (B) is von Neumann regular. So, by the hypothesis, the residue domains
of B with respect to prime ideals in MinB is integrally closed in their real closed quotient fields
(see [19] Proposition 2), and these quotient fields are the residue fields of T (B). Thus the residue
fields of the Baer von Neumann regular ring T (B) are real closed and so (see [5] Theorem 34)
T (B) is real closed. Finally, Theorem 11 implies that B is normal and so all conditions for [22]
Theorem 3 are satisfied (B is real closed iff Q(B) is real closed and B is integrally closed in Q(B).
Note that Q(B) is also the complete ring of quotient of T (B).) and so B is real closed.

The minimal prime ideals of real rings are actually quite important in real algebra. Here is
one Proposition that gives us an insight on this

Proposition 14. Let A be a real ring and p ∈ MinA then A/p is a real ring (i.e. the prime ideal
p is a real ideal).

Proof. Consider the canonical homorphism A → Ap. If a ̸∈ p then a
1 is invertible and if a ∈ p

then by [13] Corollary 2.2 there exists an b ̸∈ p such that ab = 0 and therefore a
1 ≡ 0 in Ap. Thus,

the kernel of this morphism is p and therefore by [4] Proposition 2.1.1 p is a convex prime ideal
(convexity considered as a subset of the poset A with partial order induced by sum of squares of
A, but this is also valid with respect to any partial ordering of A). So by [2] Proposition 4.3.8, p
is also a real prime ideal.

In the following easy lemma we see the relationship between integral extension of (containing)
domains and their quotient fields and how essential extension plays a role in this relationship. . .

Lemma 15. Let A and B be integral domains and A ⊂ B as rings, then

i. If B is integral over A, then Quot(B) is algebraic over Quot(A).

ii. If B is an essential extension of A and A is integrally closed in B, then Quot(A) is alge-
braically closed in Quot(B).

8
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Proof. i. The set of elements in Quot(B) that is algebraic over Quot(A) form a field, define this
as K. Then B ⊂ K since B is integral over A. Moreover B ⊂ K ⊂ Quot(B) implies that
K = Quot(B). Thus Quot(B) is algebraic over Quot(A).

ii. Let b
c be an element of Quot(B), with b, c ∈ B and c ̸= 0. Because B is essential over A,

without loss of generality we may assume that c ∈ A. Suppose furthermore that b
c is an algebraic

element of Quot(A). Then there is a polynomial

f(T ) = Tn +
n−1∑
i=0

T i ai
x

∈ Quot(A)[T ]

with ai ∈ A and x ∈ A\{0} and such that b
c a zero of f . So

f(b/c) =

(
b

c

)n

+
n−1∑
i=0

biai
xci

= 0

Now multiply f(b/c) by (cx)n (which is not 0, since c and x are non-zero), then

cnxnf(b/c) = (bx)n +

n−1∑
i=0

(bx)icn−ixn−i−1ai = 0

and therefore bx ∈ B is a zero of

Tn +

n−1∑
i=0

biT
i ∈ A[T ]

where bi := cn−ixn−i−1ai ∈ A for i = 0, . . . , n − 1. But A is integrally closed in B, so bx ∈ A.
This implies that

b/c = bx/cx ∈ Quot(A)

Theorem 16. Let A be a normal Baer real ring. If Ā is a finitely generated A-module, then

i) A is a real closed ring

ii) If A is von Neumann regular, then A[
√
−1] = Ā

Proof. i) Let p be a minimal prime ideal of A, then both A/p and Quot(A/p) are real (see
Proposition 14). There is a p̃ ∈ Spec Ā such that p̃ ∩ A = p (see Remark 10). Since Ā/p̃ is a
finite integral extension of A/p, we see that Quot(Ā/p̃) is a finite field extension of Quot(A/p)
(see Lemma 15 or [1] Proposition 2.1.10). We know by [12] Theorem 1 that Quot(Ā/p̃) is an
algebraically closed field and so by the classical Artin-Schreier Theorem (see [14] §1 Theorem in
p.18) Quot(A/p) is a real closed field.

By Theorem 11 and Remark 6, for any p ∈ MinA, A/p is integrally closed in its quotient field.
This quotient field, we have shown, is real closed. Thus, for any p ∈ MinA the integral domain
A/p is real closed ([19] Proposition 2). Employ Corollary 13 to conclude that the ring A is also
real closed.

ii) Let i (or
√
−1) be a zero of T 2 + 1 ∈ A[T ] in the splitting ring of A. Note that A[i] and Ā are

von Neumann regular because an integral extension of a von Neumann regular ring that is reduced
is also von Neumann regular (see [17] Lemma 1.9). A being Baer implies that SpecA,SpecA[i]
and Spec Ā are canonically homeomorphic. We have also previously seen that, for all p ∈ MinA =

9
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SpecA and (unique) p̃ ∈ MinA[i] = Spec Ā[i] lying over p, A/p = Quot(A/p) is real closed and
have algebraic closure

(A/p)[imod p̃] = (A/p)[
√
−1] = A[i]/p̃

Thus, for all p̃ ∈ SpecA[i], A[i]/p̃ is an algebraically closed field and this is a characterization of
algebraically closed von Neumann regular reduced rings (see [12] Proposition 5) and thus A[i] ∼=
Ã

Unfortunately, we do not yet know whether the second part of the theorem above is true for
reduced rings in general. The complication lies on the fact that we used the characterisation
for algebraically closed rings (i.e. for each prime ideal, residue domains are algebraically closed).
We do not know this in general, because normality does not in general hold for non-minimal
prime ideals (Proposition 5 in [12] requires algebraic closedness for all residue domain). For von
Neumann regular rings, we had the convenience that the residue domains where themselves fields.

In the following, we show why we cannot remove the precondition Baer from the theorem
above. . .

Example. Define the X := βN × {0, 1} with {0, 1} having the discrete topology. Define also
Y := X/ ∼ where

(x, 1) ∼ (y, 0) ⇔ x, y ∈ βN\N and x = y

with the usual quotient topology. Then clearly both X and Y are Stone spaces with X being
extremally disconnected. For brevity, we write the image of any (x, i) ∈ X in Y also as (x, i).
And we define ψ : X → Y to be the canonical surjection from X to Y .

Now we state a few facts:

• Y is not extremally disconnected because the closure of the open set

{(x, 0) : x ∈ N} ⊂ Y

is not open in Y .

• Let K be a real closed field and consider the von Neumann regular rings

AY := {f : Y → K : f−1(k) is open for all k ∈ K}

and
AX := {f : X → K : f−1(k) is open for all k ∈ K}

Then both AY and AX are von Neumann regular rings (see [12] p.779) with prime spectra Y
and X respectively. Because of the surjection ψ, we know that the (canonical) map defined
by

ϕ : AY → AX f 7→ f ◦ ψ
is injective. It is clear that ϕ is a ring monomorphism.

• We claim that if f : X → K is in AX then g : X → K defined by

g(x1, x2) :=

{
f(x1, x2) x2 = 0
0 x2 ̸= 0

is in AY .

• Define now e : X → K the following way

e(x1, x2) :=

{
1 x2 = 0
0 x2 ̸= 0

We claim that e ∈ AX . Let k ∈ K, then if k ̸∈ {0, 1} we have f−1(k) = ∅ which is clearly
open in X. For k ∈ {0, 1} we have

f−1(0) = {(x1, x2) : x1 ∈ βN, x2 = 1}

10
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f−1(1) = {(x1, x2) : x1 ∈ βN, x2 = 0}

which are also open in X. Thus e ∈ AX .

• We claim that AY [e] = AX

Let f ∈ AX , then define g1 : X → K by

g1(x1, x2) := f(x1, 0)

and g2 : X → K by
g2(x1, x2) := f(x1, 1)

First we claim that g1 and g2 are in AY , but this is clear since for any

gi(x, 0) = gi(x, 1) ∀x ∈ βN, i = 1, 2

We can then easily check that f = g1e+ g2(1− e) and thus conclude that f ∈ AY [e].

Because X is extremally disconnected and Y is not, we know that AX is Baer and AY is not Baer.
It is also clear that e is a rational element of AY . Now define e′ : X → K the following way

e′(x1, x2) :=

{
1 x1 ∈ N and x2 = 0
0 else

Then e′ ∈ AX because e′(x, 0) = e′(x, 1) for all x ∈ βN\N and for any k ∈ K the set e′−1(k)
is open. Finally we also see that e is a rational element of AY , since e

′ · e ∈ AY \{0}. Since we
are dealing with von Neumann regular rings AX and AY we know that these rings are normal.
Because of the preceding Theorem we also know that AX [

√
−1] is a total integral closure of AY

(since AX is Baer). We also note that e is not in AY [
√
−1] and so the result of the Theorem above

does not hold if we remove the condition that the ring should be Baer.
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