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Abstract

D-finite functions and P-recursive sequences are defined in terms of linear differential and
recurrence equations with polynomial coefficients. In this paper, we introduce a class of
numbers closely related to D-finite functions and P-recursive sequences. It consists of the
limits of convergent P-recursive sequences. Typically, this class contains many well-known
mathematical constants in addition to the algebraic numbers. Our definition of the class of
D-finite numbers depends on two subrings of the field of complex numbers. We investigate
how difference choices of these two subrings affect the class. Moreover, we show that D-
finite numbers over the Gaussian rational field are essentially the same as the values of
D-finite functions at non-singular algebraic number arguments. This result makes it easier
to recognize certain numbers as D-finite.

1 Introduction

D-finite functions have been recognized long ago [20, 14, 25, 18, 15, 21] as an especially
attractive class of functions. They are interesting on the one hand because each of them can
be easily described by a finite amount of data, and efficient algorithms are available to do exact
as well as approximate computations with them. On the other hand, the class is interesting
because it covers a lot of special functions which naturally appear in various different context,
both within mathematics as well as in applications.

The defining property of a D-finite function is that it satisfies a linear differential equation
with polynomial coefficients. This differential equation, together with an appropriate num-
ber of initial terms, uniquely determines the function at hand. Similarly, a sequence is called
P-recursive (or rarely, D-finite) if it satisfies a linear recurrence equation with polynomial co-
efficients. Also in this case, the equation together with an appropriate number of initial terms
uniquely determines the object.

In a sense, the theory of D-finite functions generalizes the theory of algebraic functions.
Many concepts that have first been introduced for the latter have later been formulated also
for the former. In particular, every algebraic function is D-finite (Abel’s theorem), and many
properties the class of algebraic function enjoys carry over to the class of D-finite functions.

The theory of algebraic functions in turn may be considered as a generalization of the classical
and well-understood class of algebraic numbers. The class of algebraic numbers suffers from
being relatively small. There are many important numbers, most prominently the numbers e
and π, which are not algebraic.
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N15 (project part 13)
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Many larger classes of numbers have been proposed, let us just mention two examples. The
first is the class of periods (in the sense of Kontsevich and Zagier [13]). These numbers are defined
as the values of multivariate definite integrals of algebraic functions over a semi-algebraic set. In
addition to all the algebraic numbers, this class contains important numbers such as π, all zeta
constants (the Riemann zeta function evaluated at an integer) and multiple zeta values, but it
is so far not known whether for example e, 1/π or Euler’s constant γ are periods (conjecturally
they are not). Another class of numbers is the class of all numbers that appear as values of
so-called G-functions (in the sense of Siegel [19]) at algebraic number arguments [4, 5]. The
class of G-functions is a subclass of the class of D-finite functions, and it inherits some useful
properties of that class. Among the values that G-functions can assume are π, 1/π, values of
elliptic integrals and multiple zeta values, but it is so far not known whether for example e,
Euler’s constant γ or a Liouville number are such a value (conjecturally not).

In this paper we propose a new class of numbers.

Definition 1. Let R be a subring of C and let F be a subfield of C.

1. A number ξ ∈ C is called D-finite (with respect to R and F) if there exists a convergent
sequence (an)∞n=0 in RN with limn→∞ an = ξ and some polynomials p0, . . . , pr ∈ F[n],
pr 6= 0, not all zero, such that

p0(n)an + p1(n)an+1 + · · ·+ pr(n)an+r = 0

for all n ∈ N.

2. The set of all D-finite numbers with respect to R and F is denoted by DR,F. If R = F, we
also write DF := DF,F for short.

It is clear that DR,F contains all the elements of R, but it typically contains many further
elements. For example, let i be the imaginary unit, then DQ(i) contains many (if not all) the
periods and, as we will see below, many (if not all) the values of G-functions. In addition, it
is not hard to see that e and 1/π are D-finite numbers. According to Fischler and Rivoal’s
work [5], also Euler’s constant γ and any value of the Gamma function at a rational number
are D-finite. (We thank Alin Bostan for pointing us to this reference.) We will show below that
the limits of convergent P-recursive sequences over Q(i) are essentially the same as the values
D-finite functions can assume at non-singular algebraic number arguments. Together with the
work on arbitrary-precision evaluation of D-finite functions [3, 22, 23, 24, 16, 17], it follows that
D-finite numbers are computable in the sense that for every D-finite number ξ there exists an
algorithm which for any given n ∈ N computes a numeric approximation of ξ with a guaranteed
precision of 10−n. Consequently, all non-computable numbers have no chance to be D-finite.
Besides these artificial examples, we do not know of any explicit real numbers which are not
in DQ, and we believe that it may be very difficult to find some.

The definition of D-finite numbers given above involves two subrings of C as parameters:
the ring to which the sequence terms of the convergent sequences are supposed to belong, and
the field to which the coefficients of the polynomials in the recurrence equations should belong.
Obviously, these choices matter, because we have, for example, DR = R 6= C = DC. Also, since
DQ is a countable set, we have DQ 6= DR. On the other hand, different choices of R and F
may lead to the same classes. For example, we would not get more numbers by allowing F to
be a subring of C rather than a field, because we can always clear denominators in a defining
recurrence. One of the goals of this article is to investigate how R and F can be modified without
changing the resulting class of D-finite numbers.
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As a long-term goal, we hope to establish the notion of D-finite numbers as a class that
naturally relates to the class of D-finite functions in the same way as the classical class of
algebraic numbers relates to the class of algebraic functions.

2 D-finite Functions and P-recursive Sequences

Throughout the paper, R is a subring of C and F is a subfield of C, as in Definition 1 above.
We consider linear operators that act on sequences or power series and analytic functions. We
write Sn for the shift operator w.r.t. n which maps a sequence (an)∞n=0 to (an+1)∞n=0. The set
of all linear operators of the form L := p0 + p1Sn + · · · + prS

r
n, with p0, . . . , pr ∈ F[n], forms

an Ore algebra; we denote it by F[n]〈Sn〉. Analogously, we write Dz for the derivation operator
w.r.t. z which maps a power series or function f(z) to its derivative f ′(z) = d

dzf(z). Also the
set of linear operators of the form L := p0 + p1Dz + · · ·+ prD

r
z , with p0, . . . , pr ∈ F[z], forms an

Ore algebra; we denote it by F[z]〈Dz〉. For an introduction to Ore algebras and their actions,
see [1]. When pr 6= 0, we call r the order of the operator and lc(L) := pr its leading coefficient.

Definition 2.

1. A sequence (an)∞n=0 ∈ RN is called P-recursive or D-finite (of order r) over F if there exists
a nonzero operator L =

∑r
j=0 pj(n)Sjn ∈ F[n]〈Sn〉 such that

L · an = pr(n)an+r + · · ·+ p1(n)an+1 + p0(n)an = 0

for all n ∈ N.

2. A formal power series f(z) ∈ R[[z]] is called D-finite (of order r) over F if there exists a
nonzero operator L =

∑r
j=0 pj(z)D

j
z ∈ F[z]〈Dz〉 such that

L · f(z) = pr(z)D
r
zf(z) + · · ·+ p1(z)Dzf(z) + p0(z)f(z) = 0.

3. A formal power series f(z) ∈ F[[z]] is called algebraic over F if there exists a nonzero
bivariate polynomial P (z, y) ∈ F[z, y] such that P (z, f(z)) = 0.

A formal power series is D-finite if and only if its coefficient sequence is P-recursive. Many
elementary functions like rational functions, exponentials, logarithms, sine, algebraic functions,
etc., as well as many special functions, like hypergeometric series, error functions, Bessel func-
tions, etc., are D-finite. Hence their respective coefficient sequences are P-recursive.

The class of D-finite functions (resp. P-recursive sequences) is closed under certain operations:
addition, multiplication, derivative (resp. forward shift) and integration (resp. summation). In
particular, the set of D-finite functions (resp. P-recursive sequences) forms a left-F[z]〈Dz〉-module
(resp. a left-F[n]〈Sn〉-module). Also, if f is a D-finite function and g is an algebraic function,
then the composition f ◦ g is D-finite. These and further closure properties are easily proved by
linear algebra arguments, proofs can be found for instance in [20, 18, 11]. We will make free use
of these facts.

We will be considering singularities of D-finite functions. Recall from the classical theory of
linear differential equations [10] that a linear differential equation p0(z)f(z)+· · ·+pr(z)f (r)(z) =
0 with polynomial coefficients p0, . . . , pr ∈ F[z] and pr 6= 0 has a basis of analytic solutions in a
neighborhood of every point ξ ∈ C, except possibly at roots of pr. The roots of pr are therefore
called the singularities of the equation (or the corresponding linear operator). If ξ ∈ C is a
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singularity of the equation but the equation nevertheless admits a basis of analytic solutions
at this point, we call it an apparent singularity. It is well-known [10, 2] that for any given
linear differential equations with some apparent and some non-apparent singularities, we can
always construct another linear differential equation (typically of higher order) whose solution
space contains the solution space of the first equation and whose only singularities are the non-
apparent singularities of the first equation. This process is known as desingularization. For later
use, we will give a proof of the composition closure property for D-finite functions which pays
attention to the singularities.

Theorem 3. Let P (z, y) ∈ F[z, y] be square-free of degree d, and let L ∈ F[z]〈Dz〉 nonzero.
Let ζ ∈ C be such that P defines d distinct analytic algebraic functions g(z) with P (z, g(z)) = 0
in a neighborhood of ζ, and assume that for none of these functions, the value g(ζ) ∈ C is a
singularity of L. Fix a solution g of P and an analytic solution f of L defined in a neighborhood
of g(ζ). Then there exists a nonzero operator M ∈ F[z]〈Dz〉 with M · (f ◦ g) = 0 which does not
have ζ among its singularities.

Proof. (borrowed from [12]) Consider the operator L̃ := L(g, (g′)−1Dz) ∈ F(z)〈Dz〉. It is easy
to check that L · f = 0 if and only if L̃ · (f ◦ g) = 0 for every root g of P near ζ. Therefore, if
f1, . . . , fr is a basis of the solution space of L near g(ζ), then f1 ◦ g, . . . , fr ◦ g is a basis of the
solution space of L̃ near ζ.

Let g1, . . . , gd be all the solutions of P near ζ, and let M be the least common left multiple
of all the operators L(gj , (g

′
j)
−1Dz). Then the solution space of M near ζ is generated by all the

functions fi ◦ gj . Since the coefficients of M are symmetric w.r.t. the conjugates g1, . . . , gd, they
belong to the ground field F(z), and after clearing denominators (from the left) if necessary, we
may assume that M is an operator in F[z]〈Dz〉 whose solution space is generated by functions
that are analytic at ζ. Therefore, by the remarks made about desingularization, it is possible to
replaceM by an operator (possibly of higher order) which does not have ζ among its singularities.

By a similar argument, we see that algebraic extensions of the coefficient field of the recur-
rence operators are useless. Moreover, it is also not useful to make F bigger than the quotient
field of R.

Lemma 4.

1. If E is an algebraic extension field of F and (an)∞n=0 is P-recursive over E, then it is also
P-recursive over F.

2. If R ⊆ F and (an)∞n=0 ∈ RN is P-recursive over F, then it is also P-recursive over Quot(R),
the quotient field of R.

3. If F is closed under complex conjugation and (an)∞n=0 is P-recursive over F, then so are
(ān)∞n=0, (Re(an))∞n=0, and (Im(an))∞n=0.

Proof. 1. Let L ∈ E[n]〈Sn〉 be an annihilating operator of (an)∞n=0. Then, since L has only
finitely many coefficients, L ∈ F(θ)[n]〈Sn〉 for some θ ∈ E. Let M be the least common
left multiple of all the conjugates of L. Then M is an annihilating operator of (an)∞n=0

which belongs to F[n]〈Sn〉. The claim follows.
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2. Let us write K = Quot(R). Let L ∈ F[n]〈Sn〉 be a nonzero annihilating operator of (an)∞n=0.
Since F is an extension field of K, it is a vector space over K. Write

L =
r∑

m=0

dm∑
j=0

pmjn
jSmn ,

where r, dm ∈ N and pmj ∈ F not all zero. Then the set of the coefficients pij belongs to
a finite dimensional subspace of F. Let {α1, . . . , αs} be a basis of this subspace over K.
Then for each pair (m, j), there exists cmj` ∈ K such that pmj =

∑s
`=1 cmj`α`, which gives

0 = L · an =
s∑
`=1

α`

 r∑
m=0

dm∑
j=0

cmj`n
jan+m


︸ ︷︷ ︸

=:bn∈K

.

For all n ∈ N, it follows from the linear independence of {α1, . . . , αs} that bn = 0. Therefore

r∑
m=0

 dm∑
j=0

cmj`n
j


︸ ︷︷ ︸

∈K[n]

Smn · an = 0 for all n ∈ N and ` = 1, . . . , s.

Thus (an)∞n=0 has a nonzero annihilating operator with coefficients in K[n].

3. Since (an)∞n=0 is P-recursive over F, there exists a nonzero operator L in F[n]〈Sn〉 such
that L · an = 0. Hence L̄ · ān = 0 where L̄ is the operator obtained from L by taking
the complex conjugate of each coefficient. Since F is closed under complex conjugation by
assumption, L̄ belongs to F[n]〈Sn〉, and hence (ān)∞n=0 is P-recursive over F.

Because of Re(an) = 1
2(an + ān) and Im(an) = 1

2i(an − ān) with i the imaginary unit, the
other two assertions follow by closure properties.

Of course, all the statements hold analogously for D-finite power series instead of P-recursive
sequences.

If we consider a D-finite function as an analytic complex function defined in a neighbor-
hood of zero, then this function can be extended by analytic continuation to any point in the
complex plane except for finitely many ones, namely the singularities of the given function.
In this sense, D-finite functions can be evaluated at any non-singular point by means of ana-
lytic continuation. Numerical evaluation algorithms for D-finite functions have been developed
in [3, 22, 23, 24, 16, 17], where the last two references also provide a Maple implementa-
tion, namely the NumGfun package, for computing such evaluations. These algorithms perform
arbitrary-precision evaluations with full error control.

3 Algebraic Numbers

Before turning to general D-finite numbers, let us consider the subclass of algebraic functions.
We will show that in this case, the possible limits are precisely the algebraic numbers. For the
purpose of this article, let us say that a sequence (an)∞n=0 ∈ FN is algebraic over F if the
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corresponding power series
∑∞

n=0 anz
n ∈ FN is algebraic in the sense of Definition 2. Since

algebraic functions are D-finite, it is clear that algebraic sequences are P-recursive. We will
write AF for the set of all numbers ξ ∈ C which are limits of convergent algebraic sequences
over F.

Recall [8] that two sequences (an)∞n=0, (bn)∞n=0 are called asymptotically equivalent, written
an ∼ bn (n → ∞), if the quotient an/bn converges to 1 as n → ∞. Similarly, two complex
functions f(z) and g(z) are called asymptotically equivalent at a point ζ ∈ C, written f(z) ∼ g(z)
(z → ζ), if the quotient f(z)/g(z) converges to 1 as z approaches ζ. These notions are connected
by the following classical theorem.

Theorem 5.

1. (Transfer theorem [7, 8]) For every α ∈ C \ Z≤0 we have

[zn]
1

(1− z)α
∼ nα−1

Γ(α)
(n→∞),

where Γ(z) stands for the Gamma function and the notation [zn]f(z) refers to the coeffi-
cient of zn in the power series f(z) ∈ F[[z]].

2. (Basic Abelian theorem [6]) Let (an)∞n=0 ∈ FN be a sequence that satisfies the asymptotic
estimate

an ∼ nα (n→∞),

where α ≥ 0. Then the generating function f(z) =
∑∞

n=0 anz
n satisfies the asymptotic

estimate

f(z) ∼ Γ(α+ 1)

(1− z)α+1
(z → 1−).

This estimate remains valid when z tends to 1 in any sector with vertex at 1 symmetric
about the horizontal axis, and with opening angle less than π.

To show that AF is in fact a field, we need the following lemma. It indicates that depending
on whether F is a real field or not, every real algebraic number or every algebraic number can
appear as a limit.

Lemma 6. Let p(z) ∈ F[z] be an irreducible polynomial of degree d. Then there is a square-
free polynomial P (z, y) ∈ F[z, y] of degree d in y and admitting d distinct analytic algebraic
functions f(z) ∈ F[[z]] with P (z, f(z)) = 0 in a neighborhood of 0 such that 1 is the only
dominant singularity of each f and

1. if F ⊆ R, then for each root ξ ∈ F̄ ∩ R of p(z) there exists a solution f(z) of P (z, y)
with limn→∞[zn]f(z) = ξ;

2. if F \ R 6= ∅, then for each root ξ ∈ F̄ of p(z) there exists a solution f(z) of P (z, y)
with limn→∞[zn]f(z) = ξ.

Proof. The two assertions can be proved simultaneously as follows.
Let ε > 0 be such that any two (real or complex) roots of p have a distance of more than ε

to each other. Such an ε exists because p is a polynomial, and polynomials have only finitely
many roots. The roots of a polynomial depend continuously on its coefficients. Therefore there
exists a real number δ > 0 so that perturbing the coefficients by up to δ won’t perturb the roots
by more than ε/2. Any positive smaller number than δ will have the same property.
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By the choice of ε, any such perturbation of the polynomial will have exactly one (real or
complex) root in each of the balls of radius ε/2 entered at the roots of p.

Let ξ be a root of p. If ξ = 0, then p(z) = z. Letting P (z, y) = y yields the assertions.
Assume that ξ 6= 0. Let m ∈ F be the maximal modulus of coefficients of p. Then m 6= 0

since p is irreducible. Therefore, we always can find a number a0 ∈ F such that |a0 − ξ| < δ/m,
with the δ from above. Indeed, we have the following case distinction.

For part 1 where F ⊆ R, we only consider ξ ∈ F̄ ∩ R. In this case, F is dense in R since F ⊇ Q.
Hence such a0 ∈ F ⊆ R exists.

For part 2 where F \ R 6= ∅, there exists a non-real complex number α in F. Therefore, Q(α) is
dense in C. Since Q(α) ⊆ F, such a0 ∈ F is guaranteed by the density of F in C.

After finding a0 ∈ F with |a0 − ξ| < δ/m, for both cases, we have

|p(a0)| = |p(a0)− p(ξ)| ≤ m|a0 − ξ| < δ.

Replace this δ by |p(a0)| for such a choice of a0. The remaining argument works for both cases.
Consider the perturbation p̃(y) = p(y)− p(a0)(1− z). For any z ∈ [0, 1] we have

|−p(a0)(1− z)| < |p(a0)| = δ.

Therefore, as z moves from 0 to 1, each root of p(y) − p(a0) moves to the corresponding root
of p(y), which belongs to the same ball. In particular, the root a0 of p̃|z=0 will move to the
root ξ of p̃|z=1. Define

P (z, y) = p((1− z)y)− p(a0)(1− z) ∈ F[z, y].

We claim that P (z, y) determines an analytic algebraic function f(z) in F[[z]] with the
dominant singularity 1 and whose coefficient sequence converges to ξ. To prove this, we make
an ansatz

f(z) =

∞∑
n=0

anz
n,

where the a0 is from above and (an)∞n=1 are to determined. Observe that for any c(z) ∈ F[z],
c(z)/(1− z) is a root of P (z, y) if and only if c(z) is a root of p̃(y), so f(z) admits the following
Laurent expansion at z = 1,

f(z) =
ξ

1− z
+

∞∑
n=0

bn(1− z)n for bn ∈ C.

Hence z = 1 is a singularity of f(z) as ξ 6= 0.
The above argument also implies that z = 1 is the only dominant singularity of f(z). Indeed,

note that z = 1 is the only root of the leading coefficient of P (z, y) w.r.t. y, so the other
singularities of f(z) could only be branch points, i.e., roots of discriminant of P (z, y) w.r.t. y.
However, the choices of ε and δ make it impossible for f(z) to have branch points in the
disk |z| ≤ 1, because in order to have a branch point, two roots of the polynomial P (z, y)
w.r.t. y would need to touch each other, and we have ensured that they are always separated
by more than ε. Consequently, z = 1 is the dominant singularity of f(z), which gives an ∼ ξ
as n→∞ by part 1 of Theorem 5. Therefore we have limn→∞ an = ξ since ξ 6= 0.

To complete the proof, it remains to show that the coefficients of f(z) are indeed in F. This
is observed by plugging the ansatz of f(z) into P (z, y) and comparing the coefficients of like
powers of z to zero. Since p(z) is irreducible and ξ is arbitrary, one sees that P (z, y) admits d
distinct analytic solutions in F[[z]] in a neighborhood of 0.
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The following theorem clarifies the converse direction for algebraic sequences. It turns out
that every element in AF is algebraic over F.

Theorem 7. Let F be a subfield of C.

1. If F ⊆ R, then AF = F̄ ∩ R.

2. If F \ R 6= ∅, then AF = F̄.

Proof. 1. Let ξ ∈ F̄ ∩ R. Then there is an irreducible polynomial p(z) ∈ F[z] such that
p(ξ) = 0. By part 1 of Lemma 6, ξ is in fact a limit of an algebraic sequence in FN, which
implies ξ ∈ AF.

To show the converse inclusion, we let ξ ∈ AF. When ξ = 0, there is nothing to
show. Assume that ξ 6= 0. Then there is an algebraic sequence (an)∞n=0 ∈ FN such
that limn→∞ an = ξ. Since ξ 6= 0, we have an ∼ ξ (n→∞).

Let f(z) =
∑∞

n=0 anz
n. Clearly f(z) is an algebraic function over F. By part 2 of Theo-

rem 5, f(z) ∼ ξ/(1− z) (z → 1−), implying that z = 1 is a simple pole of f(z) and

f(z) =
ξ

1− z
+

∞∑
n=0

bn(1− z)n for (bn)∞n=0 ∈ CN.

Setting g(z) = f(z)(1− z) establishes that

g(z) = ξ +

∞∑
n=0

bn(1− z)n+1,

and then g(z) is analytic at 1. Sending z to 1 gives g(1) = ξ. By closure properties, g(z)
is again an algebraic function over F. Thus ξ = g(1) ∈ F̄ ∩ R as F ⊆ R.

2. By part 2 of Lemma 6 and a similar argument as above, we have AF = F̄.

If we were to consider the class CF of limits of convergent sequences in F satisfying linear
recurrence equations with constant coefficients over F, sometimes called C-finite sequences, then
an argument analogous to the above proof would imply that CF ⊆ F, because the power series
corresponding to such sequences are rational functions, and the values of rational functions
over F at points in F evidently gives values in F. The converse direction F ⊆ CF is trivial, so we
have CF = F.

Corollary 8. If F ⊆ R, then F̄ = AF(i) = AF[i] = AF + iAF, where i is the imaginary unit.

Proof. Since AF is a ring and i2 = −1 ∈ F ⊆ AF, we have AF[i] = AF + iAF. Since i ∈ F̄
and F ⊆ R, F̄ is closed under complex conjugation and then

F̄ = (F̄ ∩ R) + i(F̄ ∩ R) = AF + iAF,

by part 1 of Theorem 7. It follows from part 2 of Theorem 7 that AF(i) = F(i). Since AF ⊆ AF(i)

and i ∈ AF(i),

F̄ = AF + iAF ⊆ AF(i) = F(i) = F̄,

The assertion holds.
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The following lemma says that every element in F̄ can be written as the value at 1 of an
analytic algebraic function vanishing at zero, provided that F is dense in C. This will be used
in the next section to extend the evaluation domain.

Lemma 9. Let F be a subfield of C with F \R 6= ∅. Let p(z) ∈ F[z] be an irreducible polynomial
of degree d. Assume that ξ1, . . . , ξd are all the (distinct) roots of p in F̄. Then there is a square-
free polynomial P (z, y) ∈ F[z, y] of degree d in y and admitting d distinct analytic algebraic
functions g1(z), . . . , gd(z) ∈ F[[z]] with P (z, gj(z)) = 0 in a neighborhood of 0 such that all gj’s
are analytic in the disk |z| ≤ 1 with gj(0) = 0 and, after reordering (if necessary), gj(1) = ξj.

Proof. By part 2 of Lemma 6, there exists a square-free polynomial P̃ (z, y) ∈ F[z, y] of de-
gree d in y and admitting d distinct analytic algebraic functions f1(z), . . . , fd(z) ∈ F[[z]] with
P (z, fj(z)) = 0 in a neighborhood of 0 such that 1 is the only dominant singularity of each fj(z)
and, after reordering (if necessary),

lim
n→∞

[zn]fj(z) = ξj , j = 1, . . . d.

If ξj = 0 for some j then p(z) = z. Letting P (z, y) = y yields the assertion. Otherwise all
roots ξ1, . . . , ξd are nonzero, and thus [zn]fj(z) ∼ ξj (n → ∞) for j = 1, . . . , d. By part 2 of
Theorem 5, fj(z) ∼ ξj/(1− z) (z → 1−), which implies that z = 1 is a simple pole of each fj(z).
Let gj(z) = fj(z)z(1− z) for each j. Then g1(z), . . . , gd(z) are distinct and each gj(z) ∈ F[[z]] is
analytic in the disk |z| ≤ 1 with gj(0) = 0 and gj(1) = ξj . By closure properties, gj(z) is again
an algebraic function over F. Define a square-free polynomial

P (z, y) =
d∏
j=1

(y − gj(z)) =
d∏
j=1

(y − fj(z)z(1− z)) ∈ F(z)[y].

Since P (z, y) is symmetric in f1, . . . , fd, the polynomial P (z, y) is in F[z, y]. The lemma follows.

4 D-finite Numbers

Let us now return to the study of D-finite numbers. Let R be a subring of C and F be a
subfield of C. Recall that by Definition 1, the elements of DR,F are exactly limits of convergent
sequences in RN which are P-recursive over F. Some facts about P-recursive sequences translate
directly into facts about DR,F.

Proposition 10.

1. R ⊆ DR,F and AF ⊆ DF.

2. If R1 ⊆ R2 then DR1,F ⊆ DR2,F, and if F ⊆ E then DR,F ⊆ DR,E.

3. DR,F is a subring of C. Moreover, if R is an F-algebra then so is DR,F.

4. If E is an algebraic extension field of F, then DR,F = DR,E.

5. If R ⊆ F, then DR,F = DR,Quot(R).
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6. If R and F are closed under complex conjugation, then so is DR,F.

In this case, we have DR,F ∩ R = DR∩R,F.

Moreover, if the imaginary unit i ∈ DR,F then DR,F = DR∩R,F + iDR∩R,F.

Proof. 1. The first inclusion is clear because every element of R is the limit of a constant
sequence, and every constant sequence is P-recursive. The second inclusion follows from
the fact that algebraic functions are D-finite, and the coefficient sequences of D-finite
functions are P-recursive.

2. Clear.

3. Follows directly from the corresponding closure properties for P-recursive sequences.

4. Follows directly from part 1 of Lemma 4.

5. Follows directly from part 2 of Lemma 4.

6. For any convergent sequence (an)∞n=0 ∈ RN, we have

Re
(

lim
n→∞

an

)
= lim

n→∞
Re(an), Im

(
lim
n→∞

an

)
= lim

n→∞
Im(an) and thus lim

n→∞
an = lim

n→∞
ān.

Hence the first assertion follows by (ān)∞n=0 ∈ RN and part 3 of Lemma 4.

Since R is closed under complex conjugation, (Re(an))∞n=0 ∈ (R∩R)N. Then the inclusion
DR,F ∩ R ⊆ DR∩R,F can be shown similarly as the first assertion. The converse direction
holds by part 2. Therefore DR,F ∩ R = DR∩R,F.

If i ∈ DR,F, then DR∩R,F + iDR∩R,F ⊆ DR,F since DR∩R,F ⊆ DR,F. To show the converse
inclusion, let ξ ∈ DR,F. Then ξ ∈ DR,F by the first assertion. Since i ∈ DR,F and R is
closed under complex conjugation, Re(ξ), Im(ξ) both belong to DR,F ∩R = DR∩R,F by the
second assertion. Therefore ξ = Re(ξ) + i Im(ξ) ∈ DR∩R,F + iDR∩R,F.

Example 11.

1. We have DQ(
√

2),Q(π,
√

2) = DQ(
√

2),Q(
√

2) = DQ(
√

2),Q. The first identity holds by part 5, the
second by part 4 of the proposition.

2. We have DQ̄,Q = DQ̄,R. The inclusion “⊆” is clear by part 2. For the inclusion “⊇”, let ξ ∈
DQ̄,R. Then ξ = a+ ib for some a, b ∈ R, and there exists a sequence (an + ibn)∞n=0 in Q̄N

and an operator L ∈ R[n]〈Sn〉 such that L · (an + ibn) = 0 and limn→∞(an + ibn) = a+ ib.
Since the coefficients of L are real, we then have L · an = 0 and L · bn = 0. Furthermore,
limn→∞ an = a and limn→∞ bn = b. Therefore,

a, b ∈ DQ̄∩R,R
part 5

= DQ̄∩R,Q̄∩R
part 4

= DQ̄∩R,Q,

whence a+ ib ∈ DQ̄∩R,Q + iDQ̄∩R,Q
part 6

= DQ̄,Q, as claimed.

Lemma 9 motivates the following theorem, which says that every D-finite number is essen-
tially the value of an analytic D-finite function at 1.



D-FINITE NUMBERS 11

Theorem 12. Let R be a subring of C and let F be a subfield of C. Then for every ξ ∈ DR,F,
there exists g(z) ∈ R[[z]] D-finite over F and analytic at 1 such that ξ = g(1).

Proof. The statement is clear when ξ = 0. Assume that ξ is nonzero. Then there exists a
sequence (an)∞n=0 ∈ RN, P-recursive over F, such that limn→∞ an = ξ. Since ξ 6= 0, we have
an ∼ ξ (n → ∞). Let f(z) =

∑∞
n=0 anz

n. By Theorem 5, f(z) ∼ ξ/(1 − z) as z → 1−, which
implies that z = 1 is a simple pole of f(z). Let g(z) = f(z)(1− z). Then g(z) belongs to R[[z]]
and is analytic at z = 1. Write

f(z) =
ξ

1− z
+
∞∑
n=0

bn(1− z)n with bn ∈ C.

Then we get

g(z) = f(z)(1− z) = ξ +
∞∑
n=0

bn(1− z)n+1,

which gives ξ = g(1). The assertion follows by noticing that g(z) is D-finite over F due to closure
properties.

Example 13. We have ζ(3) =
∑∞

n=1
1
n3 = g(1) for g(z) =

∑∞
n=1

1
n3 z

n ∈ Q[[z]]. Note that g is
D-finite and analytic at 1.

Note that the above theorem implies that D-finite numbers are computable when the ring R
and the field F consist of computable numbers. This allows the construction of (artificial)
numbers that are not D-finite.

Some kind of converse of Theorem 12 can be proved for the case when F \R 6= ∅. Note that
this condition is equivalent to saying that F is dense in C. To this end, we first need to develop
several lemmas.

The following lemma says that the value of a D-finite function at any non-singular point in F̄
can be represented by the value of another D-finite function at 1.

Lemma 14. Let F be a subfield of C with F \ R 6= ∅ and R be a subring of C containing F.
Assume that f(z) ∈ DR,F[[z]] is analytic and annihilated by a nonzero operator L ∈ F[z]〈Dz〉
with zero an ordinary point. Then for any non-singular point ζ ∈ F̄ of L, there exists an analytic
function h(z) ∈ DR,F[[z]] and a nonzero operator M ∈ F[z]〈Dz〉 with 0 and 1 ordinary points
such that M · h(z) = 0 and f(ζ) = h(1).

Proof. Let ζ ∈ F̄ be a non-singular point of L. Then there exists an irreducible polynomial
p(z) ∈ F[z] such that p(ζ) = 0. Let ζ1 = ζ, . . . , ζd be all the roots of p in F̄. By Lemma 9,
there exists a square-free polynomial P (z, y) ∈ F[z, y] of degree d in y and admitting d distinct
analytic algebraic functions g1(z), . . . , gd(z) ∈ F[[z]] with P (z, gj(z)) = 0 in a neighborhood of 0.
Moreover, g1(z), . . . , gd(z) are all analytic in the disk |z| ≤ 1 with gj(1) = ζj and gj(0) = 0.

Since g1(1) = ζ is not a singularity of L by assumption, none of gj(1) = ζj is a singularity
of L. Suppose otherwise that for some 2 ≤ ` ≤ d, the point g`(1) = ζ` is a root of lc(L). Since
lc(L) ∈ F[z] and p is the minimal polynomial of ζ` over F, we know that p divides lc(L) over F.
Thus ζ is also a root of lc(L), a contradiction.

Note that g1(z), . . . , gd(z) are analytic in |z| ≤ 1 and gj(0) = 0. By Theorem 3, there
exists a nonzero operator M ∈ F[z]〈Dz〉 with M · (f ◦ g1) = 0 which does not have 0 or 1
among its singularities. By part 1 of Proposition 10, F ⊆ R ⊆ DR,F. Since f(z) ∈ DR,F[[z]]
and g1(z) ∈ F[[z]] with g1(0) = 0, we have f(g1(z)) ∈ DR,F[[z]]. Setting h(z) = f(g1(z))
completes the proof.
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With the above lemma, it suffices to consider the case when the evaluation point is in R∩F.
This is exactly what the next two lemmas are concerned about.

Lemma 15. Assume that f(z) =
∑∞

n=0 anz
n ∈ R[[z]] is D-finite over F and convergent in some

neighborhood of 0. Let ζ ∈ R∩F be in the disk of convergence. Then f (k)(ζ) ∈ DR,F for all k ∈ N.

Proof. For k ∈ N, it is well-known that f (k)(z) ∈ R[[z]] is also D-finite and has the same radius
of convergence at zero as f(z). Note that since f(z) is D-finite over F, so is f (k)(z). Thus to
prove the lemma, it suffices to show the case when k = 0, i.e., f(ζ) ∈ DR,F.

Since f(z) is D-finite over F, the coefficient sequence (an)∞n=0 is P-recursive over F. Note
that ζ ∈ R ∩ F is in the disk of convergence of f(z) at zero, so

f(ζ) =
∞∑
n=0

anζ
n = lim

n→∞

n∑
`=0

a`ζ
`.

Since (ζn)∞n=0 is P-recursive over F, the assertion follows by noticing that (
∑n

`=0 a`ζ
`)∞n=0 ∈ RN

is P-recursive over F due to closure properties.

Example 16. Since exp(z) =
∑∞

n=0
1
n!z

n ∈ Q[[z]] is D-finite over Q, and converges everywhere,
we get from the lemma that the numbers e, 1/e,

√
e belong to DQ,Q. More precisely, since we

are currently only considering non-real fields F, we could say that exp(z) is D-finite over Q̄,
therefore e, 1/e,

√
e ∈ DQ,Q̄, but by Proposition 10, DQ,Q̄ = DQ,Q.

Lemma 17. Let R be a subring of C containing F. Let f(z) =
∑∞

n=0 anz
n ∈ DR,F[[z]] be

an analytic function. Assume that there exists a nonzero operator L ∈ F[z]〈Dz〉 with zero an
ordinary point such that L · f(z) = 0. Let r > 0 be the smallest modulus of roots of lc(L) and
let ζ ∈ F with |ζ| < r. Then f (k)(ζ) ∈ DR,F for all k ∈ N.

Proof. Let ρ be the order of L. Since zero is an ordinary point of L, there exist P-recursive

sequences (c
(0)
n )∞n=0, . . . , (c

(ρ−1)
n )∞n=0 in FN ⊆ RN with c

(m)
j equal to the Kronecker delta δmj for

m, j = 0, . . . , ρ − 1, so that the set {
∑∞

n=0 c
(m)
n zn}ρ−1

m=0 forms a basis of the solution space of L
near zero. Note that the singularities of solutions of L can only be roots of lc(L). Hence the

power series f(z) =
∑∞

n=0 anz
n as well as

∑∞
n=0 c

(m)
n zn for m = 0, . . . , ρ − 1 are convergent in

the disk |z| < r. It follows from |ζ| < r and Lemma 15 that the set {
∑∞

n=0 c
(m)
n ζn}ρ−1

m=0 belongs
to DR,F. Since a0, . . . , aρ−1 ∈ DR,F,

f(ζ) =
∞∑
n=0

anζ
n = a0

∞∑
n=0

c(0)
n ζn + · · ·+ aρ−1

∞∑
n=0

c(ρ−1)
n ζn

is D-finite by closure properties. In the same vein, we find that for k > 0, the derivative f (k)(ζ)
also belongs to DR,F.

Example 18.

1. We know from Proposition 10 that
√

2 ∈ DQ. The series

(z + 1)
√

2 = 1 +
√

2z + (1− 1√
2

)z2 + · · · ∈ Q(
√

2)[[z]] ⊆ DQ[[z]]

is D-finite over Q, an annihilating operator is (z + 1)2D2
z + (z + 1)Dz − 2. Here we have

the radius r = 1. Taking ζ =
√

2− 1, the lemma implies
√

2
√

2 ∈ DQ.
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2. Observe that the lemma refers to the singularities of the operator rather than to the
singularities of the particular solution at hand. For example, it does not imply that
J1(1) ∈ DQ,Q, where J1(z) is the first Bessel function, because its annihilating opera-
tor is z2D2

z + zDz + (z2 − 1), which has a singularity at 0. It is not sufficient that the
particular solution J1(z) ∈ Q[[z]] is analytic at 0. Of course, in this particular example we

see from the series representation J1(1) = 1
2

∑∞
n=0

(−1/4)n

(n+1)n!2
that the value belongs to DQ,Q.

3. The hypergeometric function f(z) := 2F1(1
3 ,

1
2 , 1, z + 1

2) can be viewed as an element
of DQ,Q[[z]]:

f(z) =
3
√

2
∞∑
n=0

(1/3)n(1/2)n
n!2

(−1)n︸ ︷︷ ︸
∈DQ

+
3
√

2

3

∞∑
n=0

(1/2)n(4/3)n
(2)nn!

(−1)n︸ ︷︷ ︸
∈DQ

z

+
2 3
√

2

3

∞∑
n=0

(1/2)n(7/3)n
(3)nn!

(−1)n︸ ︷︷ ︸
∈DQ

z2 + · · · .

The function f is annihilated by the operator

L = 3(2z − 1)(2z + 1)D2
z + (22z − 1)Dz + 2.

This operator has a singularity at z = 1/2, and there is no annihilating operator of f which

does not have a singularity there. Although f(1/2) = Γ(1/6)
Γ(1/2)Γ(2/3) is a finite and specific

value, the lemma does not imply that this value is a D-finite number.

Theorem 19. Let F be a subfield of C with F \R 6= ∅ and let R be a subring of C containing F.
Assume that f(z) ∈ DR,F[[z]] is analytic and there exists a nonzero operator L ∈ F[z]〈Dz〉 with
zero an ordinary point such that L · f(z) = 0. Further assume that ζ ∈ F̄ is not a singularity
of L. Then f (k)(ζ) ∈ DR,F for all k ∈ N.

Proof. By Lemma 14, it suffices to show the assertion holds for ζ = 1 (or more generally ζ ∈ F).
Now assume that ζ ∈ F. We apply the method of analytic continuation.

Let P be a simple path with a finite cover
⋃s
j=0 Brj (βj), where s ∈ N, β0 = 0, βs = ζ,

βj ∈ F, rj > 0 is the distance between βj and the zero set of lc(L), and Brj (βj) is the open
circle centered at βj and with radius rj . Moreover, βj+1 ∈ Brj (βj) for each j (as illustrated by
Figure 1). Such a path exists because F is dense in C and the zero set of lc(L) is finite. Since
the P avoids all roots of lc(L), the function f(z) is analytic along P. We next use induction on
the index j to show that f (k)(βj) ∈ DR,F for all k ∈ N.

It is trivial when j = 0 as f (k)(β0) = f (k)(0) ∈ DR,F for k ∈ N by assumption. Assume now
that 0 < j ≤ s and f (k)(βj−1) ∈ DR,F for all k ∈ N. We consider f(βj) and its derivatives.

Recall that rj−1 > 0 is the distance between βj−1 and the zero set of lc(L). Since f(z) is
analytic at βj−1, it is representable by a convergent power series expansion

f(z) =

∞∑
n=0

f (n)(βj−1)

n!
(z − βj−1)n for all |z − βj−1| < rj−1.

By the induction hypothesis, f (n)(βj−1)/n! ∈ DR,F for all n ∈ N and thus f(z) ∈ DR,F[[z−βj−1]].
Let Z = z − βj−1, i.e., z = Z + βj−1. Define g(Z) = f(Z + βj−1) and L̃ to be the operator
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β0 = 0

β1

β2 β3

βs−2

βs−1

βs = ζ

P

r0

r1

r2

rs−1

rs

Figure 1: a simple path P with a finite cover
⋃s
j=0 Brj (βj) ( stands for the roots of lc(L))

obtained by replacing z in L by Z + βj . Since βj−1 ∈ F ⊆ DR,F and Dz = DZ , we have
g(Z) ∈ DR,F[[Z]] and L̃ ∈ F[Z]〈DZ〉. Note that L · f(z) = 0 and βj−1 is an ordinary point of L
as rj−1 > 0. It follows that L̃ · g(Z) = 0 and zero is an ordinary point of L̃. Moreover, we
see that rj−1 is now the smallest modulus of roots of lc(L̃). Since |βj − βj−1| < rj−1, applying
Lemma 17 to g(Z) yields f (k)(βj) = g(k)(βj − βj−1) ∈ DR,F for k ∈ N. Thus the assertion holds
for j = s. The theorem follows.

Example 20. By the above theorem, exp(
√

2) and log(1+
√

3) both belong to DQ. We also have
eπ ∈ DQ. This is because eπ = (−1)−i with i the imaginary unit, is equal to the value of the
D-finite function (z + 1)−i ∈ Q(i)[[z]] at z = −2 (outside the radius of convergence; analytically
continued in consistency with the usual branch cut conventions) and then eπ ∈ DQ(i) ∩R = DQ.
Furthermore, as remarked in the introduction, the numbers obtained by evaluating a G-function
at algebraic numbers which avoid the singularities of its annihilating operator are in DQ(i),
because G-functions are D-finite.

5 Open Questions

We have introduced the notion of D-finite numbers and made some first steps towards under-
standing their nature. We believe that, similarly as for D-finite functions, the class is interesting
because it has good mathematical and computational properties and because it contains many
special numbers that are of independent interest. We conclude this paper with some possible
directions of future research.

Evaluation at singularities. While every singularity of a D-finite function must also be
a singularity of its annihilating operator, the converse is in general not true. We have seen
above that evaluating a D-finite function at a point which is not a singularity of its annihilating
operator yields a D-finite number. It would be natural to wonder about the values of a D-finite
function at singularities of its annihilating operator, including those at which the given function
is not analytic but its evaluation is finite. Also, we always consider zero as an ordinary point of
the annihilating operator. If this is not the case, the method used in the paper fails, as pointed
out by part 2 of Example 18.
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Quotients of D-finite numbers. The set of algebraic numbers forms a field, but we do not
have a similar result for D-finite numbers. It is known that the set of D-finite functions does
not form a field. Instead, Harris and Sibuya [9] showed that a D-finite function f admits a
D-finite multiplicative inverse if and only if f ′/f is algebraic. This explains for example why
both e and 1/e are D-finite, but it does not explain why both π and 1/π are D-finite. It would
be interesting to know more precisely under which circumstances the multiplicative inverse of
a D-finite number is D-finite. Is 1/ log(2) a D-finite number? Are there choices of R and F for
which DR,F is a field?

Roots of D-finite functions. A similar pending analogy concerns compositional inverses.
We know that if f is an algebraic function, then so is its compositional inverse f−1. The
analogous statement for D-finite functions is not true. Nevertheless, it could still be true that
the values of compositional inverses of D-finite functions are D-finite numbers, although this
seems somewhat unlikely. A particularly interesting special case is the question whether (or
under which circumstances) the roots of a D-finite function are D-finite numbers.

Evaluation at D-finite number arguments. We see that the class CF of limits of convergent
C-finite sequences is the same as the values of rational functions at points in F, namely the
field F. Similarly, the class AF of limits of convergent algebraic sequences essentially consists
of the values of algebraic functions at points in F̄. Continuing this pattern, is the value of a
D-finite function at a D-finite number again a D-finite number? If so, this would imply that also

numbers like eee
e

are D-finite. Since 1/(1 − z) is a D-finite function, it would also imply that
D-finite numbers form a field.
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[19] Carl L. Siegel. Über einige Anwendungen diophantischer Approximationen [reprint of Ab-
handlungen der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische
Klasse 1929, Nr. 1]. In On some applications of Diophantine approximations, volume 2
of Quad./Monogr., pages 81–138. Ed. Norm., Pisa, 2014.

[20] Richard P. Stanley. Differentiably finite power series. European J. Combin., 1(2):175–188,
1980.

[21] Richard P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a foreword
by Gian-Carlo Rota and appendix 1 by Sergey Fomin.

[22] Joris van der Hoeven. Fast evaluation of holonomic functions. Theoret. Comput. Sci.,
210(1):199–215, 1999.

[23] Joris van der Hoeven. Fast evaluation of holonomic functions near and in regular singular-
ities. J. Symbolic Comput., 31(6):717–743, 2001.

[24] Joris van der Hoeven. Efficient accelero-summation of holonomic functions. J. Symbolic
Comput., 42(4):389–428, 2007.

[25] Doron Zeilberger. A holonomic systems approach to special functions identities. J. Comput.
Appl. Math., 32(3):321–368, 1990.


	Introduction
	D-finite Functions and P-recursive Sequences
	Algebraic Numbers
	D-finite Numbers
	Open Questions

