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Abstract

Hierarchical generating systems that are derived from Zwart-Powell (ZP) elements
can be used to generate quadratic splines on adaptively refined criss-cross trian-
gulations. We propose two extensions of these hierarchical generating systems,
firstly decoupling the hierarchical ZP elements, and secondly enriching the system
by including auxiliary functions. These extensions allow us to generate the en-
tire hierarchical spline space – which consists of all piecewise quadratic C1-smooth
functions on an adaptively refined criss-cross triangulation – if the triangulation
fulfills certain technical assumptions. Special attention is dedicated to the char-
acterization of the linear dependencies that are present in the resulting enriched
decoupled hierarchical generating system.
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1. Introduction

We consider spline spaces spanned by Zwart-Powell (ZP) elements, which were
originally introduced by Zwart (1973). These functions are compactly supported
C1-smooth piecewise quadratic spline functions defined on criss-cross triangula-
tions, which are also called four-directional grids or type-2 triangulations (Wang,
2001). ZP elements were also recognized as a special instance of box splines, see
de Boor et al. (1993) and the references cited therein.

The approximation power of ZP elements has been studied thoroughly in the
literature. It was shown by Lyche et al. (2008) that no local quasi-interpolant
projector exists for the box spline space defined by translates of the ZP element.
Quasi-interpolation operators and the approximation power of ZP elements have
been studied by Dahmen and Micchelli (1984), Dagnino and Lamberti (2001) and
Foucher and Sablonnière (2008).
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Various applications of ZP elements and of the spline spaces generated by
them have been described in the literature. These include computer tomography
(Entezari et al., 2012; Richter, 1998), computation of isophotes (Aigner et al.,
2009), approximation of medial surface transforms (Bastl et al., 2010), generation
of offset surfaces (Bastl et al., 2008) and numerical simulation (Kang et al., 2014).

The underlying criss-cross triangulation, which is associated with the ZP el-
ements, possesses a highly regular structure, which precludes the possibility of
adaptive refinement. This is similar to the case of tensor-product splines.

Hierarchical splines are one of the main approaches – besides T-splines (Seder-
berg et al., 2003), PHT-splines (Deng et al., 2008) and LR splines (Dokken et al.,
2013) – that were developed to overcome this limitation. Their construction was
originally proposed by Forsey and Bartels (1988). About ten years later, Kraft
(1997) published a selection mechanism that defines a basis for hierarchial splines
and designed a quasi-interpolation operator. Yvart et al. (2005) studied hierar-
chical triangular splines, whereas Speleers et al. (2009) explored hierarchies of
Powell-Sabin splines. Recently, Giannelli et al. (2012) proposed truncated hierar-
chical B-splines as a modification of Kraft’s basis for hierarchical tensor-product
splines to restore the partition of unity property without scaling and to improve
numerical stability and sparsity properties. Quasi-interpolation operators in this
framework were discussed by Speleers and Manni (2016).

The applications reported in the literature include surface fitting and recon-
struction (Greiner and Hormann, 1997; Kiss et al., 2014) and isogeometric analysis
(Vuong et al., 2011; Schillinger et al., 2012). The idea of truncated hierarchical B-
splines has recently been generalized to spaces of functions spanned by generating
systems that are possibly linearly dependent (Zore and Jüttler, 2014; Kang et al.,
2014). In particular, these studies include the case of ZP elements.

In fact, Kang et al. (2014) in their paper use adaptively refined spaces spanned
by hierarchical ZP elements for isogeometric analysis. Their result concerning
linear independence (Lemma 4) unfortunately contradicts the related result of Zore
and Jüttler (2014) and relies on local linear independence, which is not satisfied by
ZP elements, not even after removing one of them to restore linear independence.

The completeness problems for spline spaces is one of the fundamental questions
in spline theory. Given a partition of the domain into cells (e.g., a triangulation)
and a generating system of smooth piecewise polynomial functions defined on it,
does it span the entire spline space consisting of the piecewise polynomial functions
with a specified order of smoothness? It is closely related to the computation of
the dimension of a spline space. See the monographs of Lai and Schumaker (2007)
and Wang (2001) for a detailed introduction.

Several approaches to answer the completeness question and to compute the
dimension have been proposed in the literature. The very powerful approach of
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using techniques from homological algebra was introduced by Billera (1988) and
has been further explored since, e.g., by Mourrain (2014) and Schenck and Stillman
(1997). The important particular case of biquadratic splines on hierarchical T-
meshes has been extensively studied using the smoothing cofactor method (e.g.,
Huang et al., 2006; Zeng et al., 2015), and similar results are available for higher
degrees as well. Indeed, the case of tensor-product splines of general degree on
hierarchical meshes has attracted particular attention due to the importance for
applications.

Homological techniques for hierarchical tensor-product splines were used by
Berdinsky et al. (2014, 2015). The characterization of the contact of polynomials
via blossoming led to the results by Mokrǐs et al. (2014) and Mokrǐs and Jüttler
(2014). These generalize the earlier results of Giannelli and Jüttler (2013) on
bivariate splines to the full multivariate case.

The present paper extends the latter approach to the case of bivariate splines
on adaptively refined criss-cross triangulations, which are obtained by collecting
triangles from a hierarchy of nested criss-cross triangulations. The case of trian-
gulations with only one level is studied in Section 2. Considering triangles from
criss-cross triangulations of several levels simultaneously leads us to the definition
of the multilevel spline space, which is formalized in Section 3.

Since ZP elements are defined on each of the criss-cross triangulations that form
the hierarchy, it is natural to produce a generating system by selecting ZP elements
of the different levels using a suitably modified version of Kraft’s construction.
In order to achieve completeness of this generating system, and to control its
linear dependencies, we propose to decouple the ZP elements and to enrich the
hierarchical generating system by additional functions, see Section 4. Suitably
generalizing the techniques of Giannelli and Jüttler (2013) then enables us to
establish the completeness property under certain technical assumptions in Section
5 and to analyze the resulting linear dependencies in Section 6.

2. Zwart-Powell elements on multicell domains

After reviewing some well-known facts about Zwart-Powell box splines, we
show that their restrictions span the entire space of C1–smooth quadratic splines
on a multicell domain.

We consider the points lying on horizontal, vertical and diagonal lines

x = 2−ℓi or y = 2−ℓi or x+ y = 2−ℓi or x− y = 2−ℓi, i ∈ Z,

which form a four-directional grid Gℓ in the plane R2. Varying the integer ℓ, which
is called the level, leads to dyadic refinement and coarsening of the grid. While we
keep it constant in this section (choosing, e.g., ℓ = 1), we shall consider grids of
different levels in the later part of the paper.
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The closures of the connected components of R2 \ Gℓ are called the cells, and
the set formed by them will be denoted by Cℓ. Any subset thereof is called a
criss-cross triangulation of level ℓ, see Fig. 1. More precisely, we shall speak of a
criss-cross triangulation of the domain that is covered by these triangles; often we
will omit the information about the level if it is clear from the context.

Figure 1: Left: criss-cross triangulation; Right: triangulation, which is not a criss-cross triangu-
lation.

More generally, any set ∆ of triangles in R2 with mutually disjoint interiors is
called a triangulation. The union operator U(∆), which is defined by

U(∆) =
⋃

c∈∆

c,

transforms each triangulation into a planar domain covered by its triangles.
If ∆ℓ ⊂ Cℓ is a criss-cross triangulation of level ℓ, then the setDℓ = U(∆ℓ) ⊂ R2

shall be called a multicell domain of level ℓ. Clearly it is then also a multicell
domain of any level ℓ′ larger than ℓ, as we consider nested grids.

Conversely, the triangulation operator T ℓ of level ℓ, which is defined by

T ℓ(D) = {c ∈ Cℓ | c ⊆ D},

transforms any set D ⊆ R2 into the maximal criss-cross triangulation covered by
it. We omitted the upper index ℓ of D since T ℓ can be applied to any set.

When applied to criss-cross triangulations ∆ℓ and multicell domains Dℓ of level
ℓ, the union and triangulation operators are inverses of each other,

T ℓ(U(∆ℓ)) = ∆ℓ and U(T ℓ(Dℓ)) = Dℓ.

For any criss-cross triangulation ∆ℓ of level ℓ we will denote the associated multicell
domain of level ℓ by Dℓ and vice versa.

Additionally, we introduce the splitting operator S, which transforms each set
D ⊆ R2 into the set S(D) that is formed by its maximal connected components,
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e1 f1 ea2 eb2 f2

e3 f3 ea4 eb4 f4

e5 ea6 eb6 e7 e8

Table 1: Classification of vertices (red dots) of a triangulation without kissing vertices.

i.e.,

D =
⋃̇

k∈S(D)

k,

where each k is a connected subset of D that is not contained in any other con-
nected subset of D.

We now classify the vertices which are contained in a multicell domain Dℓ.
A regular vertex is characterized by the fact that Dℓ is a topological manifold
with boundary in its sufficiently small neighborhood. Each regular vertex belongs
to one of the types schematically shown in Table 1 (up to rotations by integer
multiples of π/2 and reflections). The symbols shown below denote the number
of vertices of the particular type, where e and f stands for vertices of valence 8
and 4 in the underlying grid and the lower index specifies the number of incident
triangles. We omit the index ℓ to simplify the notation.

The remaining vertices will be called kissing vertices. Based on their valence
with respect to the underlying grid, they will be called valence-4 kissing vertices
and valence-8 kissing vertices, respectively. An example is shown in Fig. 2. Note
that the valence does not refer to the criss-cross triangulation of Dℓ but to the
underlying grid. There is only one possible type of a valence-4 kissing vertex, while
several types of valence-8 kissing vertices exist, see Fig. 2.

Definition 1. We define the spline space of degree d and smoothness r on a tri-
angulation ∆ by

Sr
d(∆) = {σ ∈ Cr(U(∆)) | ∀c ∈ ∆ : σ|c ∈ Pd|c}, (1)
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Figure 2: From left to right: the only type of a valence-4 kissing vertex and two examples of a
valence-8 kissing vertex.

where Pd|c is the space of polynomials of degree d restricted to the triangle c.

In this definition, we use Cr(F ) to denote the space of all functions defined on
F ⊂ R2 that possess continuous partial derivatives up to order r in the interior of
F and which can be continuously extended to the closure F . Consequently, the
spline space (1) is well defined even for multicell domains where kissing vertices
are present.

In the remainder of this section, we analyze the dimension of the spline space
S1
2(∆

ℓ) on a criss-cross triangulation ∆ℓ of level ℓ.

Lemma 2. If ∆ℓ does not contain any kissing vertices, then

dim S1
2(∆

ℓ) = 6 + e8 +
1

2

(
7∑

i=1

(i− 1)vi − 3f4

)

(2)

with ei = eai + ebi for i ∈ {2, 4, 6} and vi = ei + fi, where all undefined quantities
are equal to zero, e.g., f5 = 0.

Proof. The term in the parentheses in (2) counts the incident inner edges of all
boundary vertices. This equals twice the number of the cross-cuts of ∆ℓ, which
are the line segments that intersect the boundary of Dℓ exactly in their end points.
The formula (2) is then a special case of (Wang, 2001, Theorem 2.2).

For each i ∈ Z2 we define the Zwart-Powell (ZP) element ζℓi on the level ℓ
criss-cross triangulation by its Bernstein-Bézier coefficients as shown in Fig. 3.
The center of the support of such an element is the point 2−ℓ(i+ (1

2
, 1
2
)).

For each ZP element ζℓi and a domain D ⊆ R2 we define support components
S(supp ζℓi ∩D) as the connected components of the support of the restricted func-
tion ζℓi |D. Note that we take

supp f(x) = {x ∈ R2 | f(x) 6= 0}

and, therefore, in the case of ZP elements, the support is an open set. Note also
that in case of a kissing vertex, one has to take special care: such a vertex may
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Figure 3: Bernstein-Bézier coefficients defining a ZP element.

split supp ζℓi ∩D into several connected components only if it is on the boundary
of the octagon supp ζℓi . An example is shown in Fig. 4.

Since we will need to refer to the support components for the different ZP
elements, we introduce the index set

IℓD =
⋃

i∈Z2

{i} × S(supp ζℓi ∩D),

which consists of pairs ı̂ = (i, s) where s is a support component of ζℓi .

Definition 3. The separated generating system Rℓ
D = {̺ℓ

ı̂
| ı̂ ∈ IℓD} on a do-

main D ⊆ R2 is formed by the restrictions of the ZP elements to their support
components (each considered separately)

̺ℓ(i,s)(x) =

{

ζℓi (x) if x ∈ s,

0 otherwise.

These are indexed by ı̂ = (i, s) ∈ IℓD.

Note that the restriction of a ZP element to D is decomposed into separated
ZP elements ∑

s∈S(supp ζℓ
i
∩D)

̺ℓ(i,s)(x) = ζℓi (x) for x ∈ D. (3)
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Figure 4: The kissing vertices of the multicell domain (shown in gray) split the support of the
element (the outer octagon) into several components shown in tiling of various colors (red, blue
and green). Note that the connected component shown in red is indeed connected due to the
kissing vertices inside the support.

The sum is empty if no support component exists. It consists of one or more
contributions otherwise.

Lemma 4. If D = c is a single cell of level ℓ, then Rℓ
c consists of seven functions

and any six of them are linearly independent.

Proof. This can be confirmed by a direct computation using the Bernstein-Bézier
representations of the ZP elements, see Fig. 3. The seven local coefficient vectors
form the matrix 











2 0 0 0 0 0
2 2 1 2 2 4
0 0 0 0 2 0
0 0 1 2 2 0
2 4 4 4 2 4
2 2 1 0 0 0
0 0 1 0 0 0













and removing any row thereof produces a regular matrix.

We extend this observation to connected multicell domains.

Lemma 5. Removing at least one function from Rℓ
Dℓ produces a linearly indepen-

dent system if Dℓ is a connected multicell domain of level ℓ.

Proof. After removing at least one function, we obtain a subset R′ ( Rℓ
Dℓ . We

consider a linear combination of the zero function by functions in R′ with certain
coefficients. The difference Rℓ

Dℓ \ R′ contains one or more functions and we con-
sider all cells c in their combined support. The previous lemma implies that the
coefficients of all functions in R′ with a support containing at least one of these
cells are equal to zero. Adding these functions to the difference set then increases
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the number of cells in the combined support since Dℓ is connected, unless the cells
already cover Dℓ entirely. Using the same argument repeatedly shows that all
coefficients are equal to zero.

The coefficients
χı̂ = χ(i,s) = (−1)(i1+i2)

will be called the chessboard pattern. Note that their values are independent of s.

Lemma 6. Any representation

0 =
∑

ı̂∈Iℓ
Dℓ

αı̺̂
ℓ
ı̂
(x) (4)

of the zero function on a connected multicell domain Dℓ of level ℓ has coefficients
of the form αı̂ = λχı̂ for some scalar λ.

Proof. A direct computation using the Bernstein-Bézier representation (see Fig. 3)
confirms

0 =
∑

ı̂∈Iℓ
Dℓ

χı̺̂
ℓ
ı̂
(x). (5)

Consequently, any function ̺ℓ
ı̂
′ with ı̂

′ ∈ Iℓ
Dℓ can be represented as a linear combi-

nation
̺ℓ
ı̂
′ = −

∑

ı̂∈Iℓ
Dℓ

\{ı̂′}

χı̂

χı̂
′

̺ℓ
ı̂

(6)

of the remaining functions. Given an identity of the form (4), using the represen-
tation (6) of the function ̺ℓ

ı̂
′ transforms it into a linear combination of functions

in Rℓ
Dℓ \ {̺

ℓ
ı̂
′} with coefficients

αı̂ −
αı̂

′

χı̂
′

︸︷︷︸

=λ

χı̂.

These coefficients are equal to zero, as the functions are linearly independent
according to Lemma 5. This completes the proof.

Note that any two functions ̺ℓ(i,s) and ̺ℓ(i,s′) that are derived from the same

function ζℓi (see Definition 3) are multiplied by the same coefficient λχı̂ in (4).

Definition 7. A multicell domain Dℓ is admissible, if its connected components
are simply connected and no valence-4 kissing vertices are present in T ℓ(Dℓ).
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Figure 5: Admissible (right) and non-admissible (left and center) multicell domains.

Definition 7 rules out multicell domains with holes. Some admissible and non-
admissible level ℓ multicell domains are presented in Fig. 5.

Theorem 8. If Dℓ is an admissible multicell domain of level ℓ, then the separated
generating system on its criss-cross triangulation ∆ℓ of level ℓ is complete, i.e.,

span{̺ℓ
ı̂
| ı̂ ∈ IℓDℓ} = S1

2(∆
ℓ). (7)

Proof. The proof consists of two steps: Firstly, we prove the theorem in the case
of a single connected component without kissing vertices, based on the dimension
result (2). Secondly, we extend it to domains with valence-8 kissing vertices and
several connected components.

Step 1. We consider a simply connected domain without kissing vertices. Ac-
cording to Lemma 5 it suffices to prove that

dim S1
2(∆

ℓ) = |IℓDℓ| − 1. (8)

A careful case-by-case analysis, which is similar to the offset counting by Mokrǐs
et al. (2014), leads to

|IℓDℓ| = |{̺ℓ
ı̂
| ı̂ ∈ IℓDℓ}|

= 2e1 + 2f1 + ea2 + 2eb2 + f2 + e3 + eb4 + f4 − ea6 − 2e7 + εb, (9)

where εb is the number of axis-aligned (i.e., horizontal or vertical) boundary edges.
Substituting (9) and (2) into (8) results (after rewriting) in the equivalent formula

2εb + 4e1 + 4f1 + ea2 + 3eb2 + f2 − 2f3 − 3ea4 − eb4 + 2f4

− 4e5 − 7ea6 − 5eb6 − 8e7 − 2e8 − 14 = 0, (10)

which is now proved with the help of four identities:
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(i) Each axis-aligned boundary edge has two incident vertices and each bound-
ary vertex has between zero and two incident axis-aligned boundary edges,
depending on its type, thus

2εb = e1 + 2ea2 + e3 + 2ea4 + e5 + 2ea6 + e7.

(ii) Each non-axis-aligned (i.e., diagonal) boundary edge connects one vertex of
valence 4 with one vertex of valence 8, and each boundary vertex has between
zero and two incident non-axis-aligned boundary edges. Counting the con-
tributions of the boundary vertices of the two different valencies separately
gives

2f1 + 2f2 + 2f3 = e1 + 2eb2 + e3 + 2eb4 + e5 + 2eb6 + e7.

(iii) A similar observation, applied to the interior non-axis-aligned edges gives

f2 + 2f3 + 4f4 = ea2 + e3 + 2ea4 + eb4 + 2e5 + 3ea6 + 2eb6 + 3e7 + 4e8.

(iv) The boundary of the domain is a simple closed curve, hence the total turning
of the tangent vector equals 2π. Summing up the turning angles for the
different types of boundary vertices confirms that

(3e1 + 2f1 + 2ea2 + 2eb2 + e3 − 2f3 − e5 − 2ea6 − 2eb6 − 3e7)
π

4
= 2π.

A suitable linear combination of the four identities (i-iv) proves Eq. (10), which is
equivalent to (8).

Step 2. First we extend our result to simply connected domains with valence-
8 kissing vertices. Such a domain can be subdivided at the kissing vertices into
several simply connected parts. (For instance, the domain in Fig. 5 (right) is sub-
divided into 6 connected parts without kissing vertices.) Any function in S1

2(∆
ℓ),

which is defined on the entire domain, can be represented as a linear combina-
tion of the functions in the separated generating system on each of these parts.
Clearly, each of these representations can be modified by adding a real multiple
of the chessboard pattern, since the coefficients thereof correspond to the zero
function.

We number the parts, starting with 1, so that each part is connected by a kissing
vertex to exactly one part with a lower number, except for the first one. At each
kissing vertex, exactly four functions in each of the separated generating systems
on the parts joining there take non-zero values. We visit the parts according to the
chosen ordering and add a scaled multiple of the chessboard pattern to make sure
that one of the four associated coefficients takes the same value. Since the function
is C1-smooth at the kissing vertex, the remaining three coefficients take the same
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values too, as there are three equations characterizing a C1-joint at the kissing
vertex. This completes the proof for simply connected domains with valence-8
kissing vertices.

Finally, we note that, since the support components are considered separately,
the theorem extends to admissible domains with more than one connected compo-
nent, as the representations on the different components are independent of each
other.

Theorem 8 does not generalize to domains possessing valence-4 kissing vertices,
since there are five functions in each of the separated generating systems on the
parts joining there that take non-zero values. Moreover, the theorem is not valid
for non-admissible domains, as demonstrated by the following example.

Example 9. We consider the level 0 multicell domain D0 shown in Fig. 6 (left),
which is not admissible in the sense of Definition 7. Removing the dashed line
segment AB transforms it into a simply connected domain. The dimension of
the spline space defined on that domain is equal to 41 according to Lemma 2.
Enforcing C1-smoothness across AB reduces the dimension of the space by 5,
therefore dim S1

2(∆
0) = 36. The number of linearly independent functions in the

separated generating system, however, amounts to 35 only. Consequently this
system does not generate the entire spline space on D0.

The construction of a function in S1
2(∆

0) \ spanR0
D0 is shown in Fig. 6 (right).

The function is equal to zero everywhere except in the green region. Within that
region, the function is defined as a linear combination of the six ZP elements with
the coefficients specified in the picture. Due to the choice of these coefficients as
a subset of a chessboard pattern, the function is C1-smooth and therefore belongs
to S1

2(∆
0). However, it does not admit a representation by ZP elements of level 0.

Indeed, this function can be represented as a linear combination of 42 ZP
elements on the simply connected domain obtained after removing AB, where
only six coefficients (the ones shown in the figure) take non-zero values. These six
coefficients correspond to the six ZP elements that are split into pairs of separated
functions, and the non-zero coefficients are assigned to the separated functions that
act on the right-hand side of AB. This representation on the simply connected
domain is unique up to additions of multiples of the chessboard pattern. However,
no addition of such a multiple gives a representation with the property that the
six pairs of coefficients of the separated ZP elements possess matching values. ⋄

3. Hierarchical spline spaces

In the remainder of the paper we consider criss-cross triangulations of several
levels and the ZP elements defined on them simultaneously. An adaptively refined
spline space is defined with the help of a hierarchy of subdomains.

12



B

A

1

1

1

−1

−1

−1

Figure 6: Left: A non-admissible multicell domain of level 0 with an incomplete separated
generating system. Right: A function in S1

2
(∆0) that cannot be represented by the separated

generating system.

More precisely, given a bounded domain Ω0 ⊂ R2, the definition of a hierarchi-
cal spline space is based on a nested sequence of N + 1 subdomains

Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩN−1 ⊇ ΩN = ∅,

where N denotes the number of levels in the hierarchy. Setting ΩN = ∅ simplifies
some of the definitions below.

Each subdomain Ωℓ represents the part of Ω0 selected for refinement to func-
tions of level ℓ, in order to benefit from the increased approximation properties in
this region.

We will assume that each difference set

Dℓ = Ω0 \ Ωℓ+1, ℓ = −1, . . . , N − 1,

is a multicell domain of level ℓ. This is automatically satisfied if each Ωℓ+1 is a
multicell domain of level ℓ. In particular, we have that D−1 = ∅ and DN−1 = Ω0.

Definition 10. The spline space H = S1
2(∆H), which is defined on the adaptively

refined triangulation

∆H =
N−1⋃

ℓ=0

T ℓ(Ωℓ \ Ωℓ+1),

will be called the multilevel spline space.

The adaptively refined triangulation ∆H is obtained by triangulating each set
Ωℓ \Ωℓ+1 individually using cells of level ℓ. Combining these gives a triangulation
of the entire domain Ω0, possibly with cells of different levels. The individual tri-
angulations are obtained by applying the triangulation operator T ℓ from Section 2.
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The following equivalent characterization of the multilevel spline space will be
useful.

Lemma 11. The multilevel spline space can be equivalently characterized by

H′ = {σ : Ω0 → R | ∀N−1
ℓ=0 : σ|Dℓ ∈ S1

2(∆
ℓ)},

i.e., H = H′.

Proof. On the one hand, the inclusion H ⊆ H′ follows from the fact that ∆ℓ is a
finer triangulation of the domain covered by

ℓ⋃

k=0

T k(Ωk \ Ωk+1)

for ℓ = 0, . . . , N − 1. On the other hand, any spline function σ ∈ H′ is C1-smooth
on Ω0 since U(∆N−1) = DN−1 = Ω0. Moreover, it is a single polynomial on each
triangle in ∆H . Indeed, for each c ∈ ∆H there exists a level ℓ such that c ∈ ∆ℓ

and σ ∈ S1
2(∆

ℓ). We conclude that σ ∈ S1
2(∆H) = H.

The next section proposes a generating system for the multilevel spline space.
An affirmative answer to the completeness question will be given later in Section 5.

4. Enriched decoupled hierarchical generating systems

We introduce decoupled Zwart-Powell elements and auxiliary functions, which
we will call partial chessboard functions. The enriched decoupled hierarchical
generating system is then constructed using a selection procedure which is inspired
by the work of Kraft (1997).

It should be noted that we use a slightly modified definition of the support in
the remainder of the paper. Since the domain of all functions under consideration
is the set Ω0 introduced in Section 3, all supports are understood as subsets thereof,
i.e.,

supp0 f = {x ∈ Ω0 | f(x) > 0}.

The grids of adjacent levels are nested, Gℓ ⊂ Gℓ+1. Each ZP element of level ℓ
can be represented as a linear combination of 12 elements of level ℓ + 1 with the
coefficients shown in Fig. 7. Consequently, the space generated by the ZP elements

Zℓ = {ζℓi | i ∈ Z2}

of level ℓ is a refinement of the coarser space spanned by the elements of the
coarser levels. Raising the level ℓ increases the approximation power, see Foucher
and Sablonnière (2008).
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Figure 7: Refinement coefficients of the 12 ZP elements obtained by representing the element at
the next level, and the supports of two decoupled functions obtained from it.

In Section 2, we introduced the separated generating systems by considering
the support components of the ZP elements with a given multicell domainDℓ. This
system, however, consists of functions that are defined on Dℓ only. We will now use
the refinability of ZP elements to construct decoupled functions that continuously
extend the separated ones to R2. In order to do so, we need an assumption, which
we call the support intersection condition (SIC):

∀N−2
ℓ=0 ∀i ∈ Z2 : supp0 ζℓ+1

i ∩Dℓ is connected. (SIC)

This condition is illustrated in Fig. 8, which shows several hierarchical grids
consisting of two levels ℓ = 0, 1 and the support of ZP elements of level 1 (hatched).
The set D0 consists of all cells that belong to the coarser grid. SIC is satisfied for
the first two triangulations (left and center) since the support components with
D0 are all connected, while this is not the case for the third one (right).

Figure 8: Adaptively refined triangulations with two levels satisfying (left and center) and vio-
lating (right) SIC. The supports of ZP elements on the finer grid are hatched.

SIC is automatically satisfied if each triangulation T (Dℓ) possesses no vertices
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of type f1, f2 and f3, i.e., the multicell domains Dℓ consist of squares formed by
the four triangles incident to vertices of type f4, see again Fig. 8 left.

Definition 12. For each index ı̂ = (i, s) ∈ Iℓ
Dℓ we define the decoupled function

γℓ
ı̂
= γℓ

(i,s) =
∑

{j | supp0 ζℓ+1

j
∩s 6=∅}

ci,jζ
ℓ+1
j , (11)

where the coefficients ci,j are determined by representing the ZP element ζℓi with
respect to the ZP elements of the next finer level, i.e.,

ζℓi =
∑

j∈Z2

ci,jζ
ℓ+1
j , (12)

using the refinement relation shown in Fig. 7. All decoupled functions of level ℓ
form the set Gℓ.

Note that supp0 ζℓi ⊆ Dℓ implies γℓ
ı̂
= ζℓi where ı̂ = (i, supp0 ζℓi ).

The construction of decoupled functions is visualized in Fig. 7. A ZP element
of level 0, whose support is the entire octagon, is used to define two decoupled
functions according to (11). This element possesses two support components. The
ZP element is represented as a linear combination of 12 ZP elements of level 1
with coefficients shown in the circles, which are then grouped according to the
associated support components. The green and blue coefficients correspond to
the left and the upper right support component. The supports of the elements
associated with the red coefficients do not intersect D0. Consequently, we obtain
two decoupled functions in this case, the supports of which (hatched regions) are
shown in green and blue.

Lemma 13. SIC implies that the decoupled functions satisfy

γℓ
ı̂
(x) = ̺ℓ

ı̂
(x) for all x ∈ Dℓ.

Therefore, Gℓ|Dℓ = Rℓ
Dℓ.

Proof. SIC implies that the support of each of the finer elements in (12) intersects
Dℓ in at most one support component of ζℓi .

Since the support components s of the ZP elements of level ℓ are contained in
Dℓ, the supports of the decoupled functions γℓ

ı̂
are not entirely contained in Ωℓ+1.

We classify the decoupled functions according to the intersection of their sup-
ports with Ωℓ and Dℓ−1. We collect the functions with support contained in Ωℓ in
the set

Hℓ = {γℓ
ı̂
| ı̂ ∈ J ℓ}, where J ℓ = {ı̂ | supp0 γℓ

ı̂
⊆ Ωℓ}. (13)
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The supports of the remaining functions intersect Dℓ−1. For each connected com-
ponent k ∈ S(Dℓ−1), we collect the decoupled functions of level ℓ that take non-zero
values there,

P ℓ
k = {γℓ

ı̂
| supp0 γℓ

ı̂
∩ k 6= ∅}.

The sets P ℓ
k are mutually disjoint. Indeed, the supports of the ZP elements ζℓi

intersect at most one k ∈ S(Dℓ−1) due to SIC and supp0 γℓ
(i,s) ⊆ supp0 ζℓi .

For each connected component k ∈ S(Dℓ−1) we define the partial chessboard as
the function

πℓ
k(x) =

∑

γℓ

ı̂
∈P ℓ

k

χı̂γ
ℓ
ı̂
(x), (14)

where the coefficients χı̂ are taken from the chessboard pattern defined in Section 2.

Lemma 14. The supports of the partial chessboards πℓ
k, k ∈ S(Dℓ−1), are con-

tained in Ωℓ.

Proof. We rewrite Ωℓ as

Ωℓ = Ω0 \Dℓ−1 = Ω0 \
⋃

k∈S(Dℓ−1)

k.

Combining Lemma 13, k ⊆ Dℓ and (5) confirms πℓ
k|k = 0, whereas P ℓ

k′ ∩ P ℓ
k = ∅

implies πℓ
k|k′ = 0 for k′ 6= k.

Fig. 9 shows an adaptively refined triangulation and the supports (red and green
regions) of the two partial chessboards of level 1 defined on it. The colored circles
(blue/green and red/yellow, respectively) correspond to the decoupled functions
in the sets P 1

k .
The definition of the sets Hℓ uses the selection mechanism, which was intro-

duced in Kraft (1997) to define a basis for hierarchical B–splines. We generalize
this mechanism by applying it to decoupled functions and enriching the result with
partial chessboards.

Definition 15. The set

H+ =

N−1⋃

ℓ=0

Hℓ ∪ {πℓ
k | k ∈ S(Dℓ−1)}

︸ ︷︷ ︸

=Hℓ
+

, (15)

is called the enriched decoupled hierarchical generating system (EDHGS).
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Figure 9: Two partial chessboards (supports and the coefficients of the involved decoupled func-
tions) of level 1 on an adaptively refined triangulation with three levels. The two connected
components k ∈ S(D0) are shown in gray.

It should be noted that the definition of EDHGS assumes SIC, since this as-
sumption is needed for the definition of the partial chessboards.

Fig. 10 summarizes the relationships between the definitions in this section.
The decoupled functions γℓ

ı̂
∈ Gℓ are derived from the ZP elements ζℓi ∈ Zℓ. They

are then classified according to their supports, forming the sets P ℓ
k and Hℓ. The

sets P ℓ
k define partial chessboards. Finally, combining those with the selected

functions Hℓ provides the contribution Hℓ
+ of each level to the EDHGS.

5. Completeness of EDHGS

We show that the enriched decoupled hierarchical generating system is com-
plete, i.e., that it spans the entire hierarchical space defined in Section 3. We need
to assume – in addition to SIC, which is required by the definition of the EDHGS
– that the multicell domains Dℓ are all admissible. This is equivalent to requiring
that each connected component of Ωℓ contains at least one point on the boundary
of Ω0.

Theorem 16. The EDHGS spans the entire multilevel spline space, spanH+ = H,
if each difference set Dℓ is an admissible multicell domain of level ℓ.

Proof. The proof is inspired by that of Theorem 20 by Giannelli and Jüttler (2013).
The EDHGS, however, is not linearly independent, thus the original proof does
not apply directly.
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Figure 10: Graphical summary of the construction of the EDHGS.

On the one hand, spanH+ ⊆ H, as all the functions in H+ are elements of H
as well. On the other hand, we consider any σ ∈ H and show that it is contained
in spanH+.

We start by considering the restriction σ0 = σ|D0, which is an element of the
spline space S1

2(∆
0). According to Theorem 8 and Lemma 13 it can be written as

σ0 =
∑

ı̂∈I0
D0

α0
ı̂
γ0
ı̂
|D0 =

∑

ı̂∈J0

α0
ı̂
γ0
ı̂
|D0 ∈ spanH0

+,

with certain coefficients α0
ı̂
, since I0

D0 = J0, cf. (13).
We now consider the remainder

σ1 =

(

σ −
∑

ı̂∈J0

αı̂γ
0
ı̂

)

|D1,

which belongs to the spline space S1
2(∆

1). Invoking Theorem 8 and Lemma 13
again, we obtain the representation

σ1 =
∑

ı̂∈I1
D1

α1
ı̂
γ1
ı̂
|D1, (16)

with certain coefficients α1
ı̂
. Since

σ1|D0 = (σ − σ0)|D0

is equal to zero on each connected component k ∈ S(D0), there exist scalars λ1
k

such that the coefficients satisfy α1
ı̂
= λ1

kχı̂ for all ı̂ ∈ I1k , due to Lemma 6. The
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corresponding parts of the representation (16) can therefore be expressed by partial
chessboards,

∑

ı̂∈I1
k

α1
ı̂
γ1
ı̂
= λ1

kπ
1
k.

We rewrite (16) as

σ1 =
∑

ı̂∈J1

α1
ı̂
γ1
ı̂
|D1 +

∑

k∈S(D0)

λ1
kπ

1
k|D1 ∈ spanH1

+. (17)

Proceeding to the next level, we find a representation of

σ2 =



σ −
∑

ı̂∈J0

α0
ı̂
γ0
ı̂
−
∑

ı̂∈J1

α1
ı̂
γ1
ı̂
−

∑

k∈S(D0)

λ1
kπ

1
k



 |D2 ∈ spanH2
+,

and similarly for all higher levels ℓ = 3, . . . , N − 1. In the final step we obtain a
representation

σN−1 =

(

σ−
∑

ı̂∈J0

α0
ı̂
γ0
ı̂

︸ ︷︷ ︸

∈ spanH0
+

−
N−2∑

ℓ=1

(
∑

ı̂∈Jℓ

αℓ
ı̂
γℓ
ı̂
+

∑

k∈S(Dℓ−1)

λℓ
kπ

ℓ
k

)

︸ ︷︷ ︸

∈ spanHℓ
+

)

|DN−1 ∈ spanHN−1
+ .

This completes the proof of σ ∈ spanH+, since DN−1 = Ω0.

Remark 17. If each difference set Dℓ is connected, i.e., |S(Dℓ)| ≤ 1, then the
above theorem remains valid for the non-enriched decoupled hierarchical generat-
ing system H =

⋃N−1
ℓ=0 Hℓ as well. Moreover, the theorem can be extended to non-

enriched non-decoupled hierarchical generating systems by assuming a stronger
version of SIC.

The assumption of Theorem 16 that each difference set Dℓ is an admissible
multicell domain implies that each Ωℓ is required to be connected to the boundary.
This could be guaranteed by choosing a refinement strategy that always generates
a thin stripe connecting the refined domain to the boundary. Thanks to the
decoupling, it suffices to choose the width of this stripe as one cell of level ℓ.
Fig. 11 (left) shows domains selected for refinement to level 1 and 2 (light and
dark gray, respectively) as well as the stripes added to reach the boundary.

Finally, we present an example to show that the assumptions of Theorem 16
are indeed necessary for completeness of the EDHGS.
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Figure 11: Left: areas selected for refinement together with their enlargement to ensure that the
domain hierarchy is admissible. Right: Non-admissible mesh from Example 18.

Example 18. We consider the adaptively refined triangulation shown in Fig. 11
(right). The function, which is defined as the linear combination of the 8 ZP ele-
ments of level 1 with the coefficients specified in the picture, has been constructed
by representing the function from Example 9 in the next finer level, using the
refinement coefficients shown in Fig. 7. It clearly belongs to the multilevel spline
space, since its restriction to ∆0 is equal to the function from Example 9 and it
also obviously belongs to S1

2(∆
1), as it is a linear combination of level 1 ZP ele-

ments. However, it does not admit a representation with respect to the EDHGS,
cf. Example 9. ⋄

Adding the function from this example to the EDHGS resolves the completeness
problem in this specific case. We conjecture that this idea can be extended to
more general configurations, thereby eliminating the assumption regarding the
admissibility of the difference sets. A more detailed investigation of this issue is
beyond the scope of the current paper.

6. Linear dependencies of the generating system

Any function f ∈ spanH+ possesses a representation

f =
N−1∑

ℓ=0




∑

ı̂∈Jℓ

dℓ
ı̂
γℓ
ı̂
+

∑

k∈S(Dℓ−1)

pℓkπ
ℓ
k



 , (18)

where (dℓ
ı̂
)
ı̂∈Jℓ and (pℓk)k∈S(Dℓ−1) are vectors of real coefficients and S(D−1) = ∅.

A linear dependency relation (LDR) is a system of coefficients (dℓ
ı̂
)ı̂∈J and

(pℓk)k∈S(Dℓ−1), ℓ = 0, . . . , N − 1, such that the corresponding function f defined in
(18) is equal to zero.
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The LDRs form a linear space and we specify a basis for it; thus the linear
dependencies of H+ are well-controlled. One may see this in the terminology of
operators: Equation (18) implicitly defines the evaluation operator E : R|H+| → R,
which can be applied to a system of coefficients. We provide a basis for ker(E).

Lemma 19. The equation

0 =
∑

{(i,s)∈Jℓ | s⊆k}

χℓ
(i,s)γ

ℓ
(i,s) +

∑

{k′∈S(Dℓ−1) | k′⊆k}

πℓ
k′ , (19)

holds for each level ℓ and for each connected component k ∈ S(Dℓ). Consequently,
the associated system of coefficients (which are all equal to zero except for some
coefficients of level ℓ) forms an LDR.

Proof. We use the definition of the partial chessboard (14) to rewrite the right-
hand side of equation (19) as

∑

{(i,s) | s⊂k}

χℓ
iγ

ℓ
(i,s). (20)

This sum involves all decoupled functions of level ℓ which take non-zero values on
k and their coefficients form a chessboard pattern.

Firstly we consider its restriction to k. We rewrite it using (3) and Lemma 13
and obtain ∑

{i | supp ζi∩k 6=∅}

χℓ
iζ

ℓ
i , (21)

which equals zero everywhere (on k) according to Lemma 6.
Secondly, considering the right-hand side (20) again for general arguments (i.e.,

also outside k), we express it in terms of ZP elements of the next finer level
ℓ + 1 using the refinement relation (11). This representation involves only ZP
elements of level ℓ + 1 with supports that intersect k, due to the definition of
the decoupled functions (11) and the partial chessboards (14). The coefficients of
these ZP functions of level ℓ+1, however, are obtained by refining the chessboard
pattern (21), and this is known to produce zero coefficients only (Zore and Jüttler,
2014, Example 22). This completes the proof.

The equations in Lemma 19 are instances of evaluations of linearly independent
LDRs. The linear independence is obvious since the equations involve mutually
disjoint sets of coefficients. We will refer to them as Linear Dependency Generators
(LDGs).

An example for LDGs of level ℓ = 1 is shown in Fig. 12. Two such LDGs are
obtained in this case, since S(D1) possesses two connected components (shown in
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gray). The LDG on the left connected component involves two partial chessboards
(visualized by the red dots that represent the participating decoupled functions)
and 76 decoupled functions (represented by blue dots). The other LDG involves
48 decoupled functions (represented by green dots) but no partial chessboard.
In total, we get two LDGs of level 0 (each involving 18 decoupled functions but
no partial chessboard), two of level 1 and one of level 2 (involving two partial
chessboards and 88 decoupled functions) in this situation.

Figure 12: Linear dependency generators (LDGs) of level 1 on an instance of an adaptively
refined criss-cross triangulation.

We show that the system of LDGs from Lemma 19 forms a basis of the space
of LDRs. Consequently, the number of LDRs equals

dim ker(E) =

N−1∑

ℓ=0

|S(Dℓ)|.

It should be noted that the definition of the EDHGS assumes that SIC is satisfied.

Theorem 20. Any LDR that is present in the EDHGS is a linear combination of
the LDGs in Lemma 19.

Proof. We consider an LDR f = 0, where f is defined in (18), and re-arrange the
sum according to the levels ℓ and the connected components of Dℓ,

0 =
N−1∑

ℓ=0

∑

k∈S(Dℓ)




∑

(i,s)∈Jℓ,s⊆k

dℓ(i,s)γ
ℓ
(i,s) +

∑

k′∈S(Dℓ−1),k′⊆k

pℓk′π
ℓ
k′



 . (22)
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Note that the index sets of the sums within the brackets for different values of ℓ, k
are mutually disjoint, since we assume SIC.

For ℓ = 0 and the first connected component k, the only functions that are
active on k are the decoupled functions γ0

(i,s) with indices satisfying (i, s) ∈ J0, s ⊆
k, but no partial chessboards. Invoking Lemma 6 confirms that the associated
coefficients are a multiple of the corresponding LDG.

We now continue by considering the levels ℓ from 0 to N − 1 and visiting one
connected component k after the other. In each step we prove that the associated
coefficients are a multiple of the corresponding LDG. This is possible since the co-
efficients of the previously considered decoupled functions and partial chessboards
have been chosen so that their sum is equal to zero (as they are linear combina-
tions of LDGs) and the supports of the remaining decoupled functions and partial
chessboards do not intersect k.

Consequently, the only functions that are active on k are the decoupled func-
tions γℓ

(i,s) with indices satisfying (i, s) ∈ J ℓ, s ⊆ k, and the partial chessboards

πℓ
k′ with indices k′ ∈ S(Dℓ−1), k′ ⊆ k. The latter ones can be split into decoupled

functions according to (14). Invoking Lemma 6 again confirms that the associated
coefficients are a multiple of the corresponding LDG.

Corollary 21. The dimension of the multilevel spline space H equals

dimH = |H+| −
N−1∑

ℓ=0

|S(Dℓ)|

if each ring Dℓ is an admissible multicell domain of level ℓ. A basis of H is obtained
by removing one of the functions involved in each of the LDGs from H+.

Under the assumptions of the previous corollary,

dimH =

N−1∑

ℓ=0

|Hℓ| − S(Ω0).

In particular, this agrees with the observation that there is exactly one LDR among
the separated functions of one level on a simply connected domain.

7. Conclusions

We defined the enriched decoupled hierarchical generating system (EDHGS)
of ZP elements on adaptively refined criss-cross triangulations. The definition
assumes that the subdomains – which represent the regions selected for refinement
to a certain level – are chosen such that the resulting difference sets satisfy SIC.
This assumption can be ensured by always refining sufficiently wide subdomains.
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The completeness of the EDHGS was proved under an additional assumption.
More precisely, the difference sets need to be admissible. This condition is fulfilled
if each component of the refined area is connected to the boundary of the domain.

In addition, we studied the linear dependencies that are present in the EDHGS.
They can be controlled easily and linear independence can be restored by simply
eliminating one of the functions involved in each of the linear dependency gener-
ators, which have been identified. Combining this with the completeness result
allows to compute the dimension of the multilevel spline space.

Future work may be devoted to the generalization of our approach to other
classes of box splines.
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Bastl, B., Jüttler, B., Kosinka, J. and Lávička, M. (2010). Volumes with piecewise quadratic
medial surface transforms: Computation of boundaries and trimmed offsets, Comput. Aided

Design 42: 671–679.
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