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Abstract. Methods from algebra and algebraic geometry have been used in various ways to
study linkages in kinematics. These methods have failed so far for the study of linkages with
helical joints (joints with screw motion), because of the presence of some non-algebraic relations.
In this article, we explore a delicate reduction of some analytic equations in kinematics to algebraic
questions via a theorem of Ax. As an application, we give a classification of mobile closed 5-
linkages with revolute, prismatic, and helical joints.
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1. Introduction

Linkages, and in particular closed linkages, are a crucial object of study in the modern theory
of kinematics. The use of algebra and geometry for studying linkages is very classical and goes
back to Sylvester, Kempe, Cayley and Chebyshev.

A linkage, as appearing in robotics/mechanical engineering, biology, as well as modelling of
molecules in chemistry, etc., is a mechanical structure that consists of a finite number of rigid
bodies – its links – and a finite number of joints that connect the links together, so that they
possibly produce a motion. A linkage is called closed if its number of links and joints are equal
and they are connected cyclically. We consider four types of joints:

(R) revolute joints: allow rotations around a fixed axes;
(P) prismatic joints: allow translations in a fixed direction;
(C) cylindrical joints: allow rotations around a fixed axes and translations in the the direction
of the axes;
(H) helical joints: allow the motions of a cylindrical joint where the rotation angle and the
translation length are coupled by a linear equation.

We will use the notation R-joint for a revolute joint, and similarly for other types. Note that
the dimension of the set of allowed motions (the degree of freedom) is 1 for joints of type R, P,
and H, and it is 2 for C-joints.
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The configuration set of a closed linkage L, denoted by KL, is the set of possible simultaneous
motions of all joints (see Definition 1 for a precise description). The dimension of KL is called
the mobility of L, and L is called mobile if the mobility is positive.

It is known that KL can be described by analytic equations; see [14], page 356. If there are no
H-joints, then we also have a description by algebraic equations. We refer to [13] for a historic
overview of the use of geometric algebra in kinematics. This is the subject that has attracted
algebraists the most. It should be mentioned, however, that also number theory has been used for
studying linkages: in [9], reduction modulo prime numbers are considered in order to construct
a new family of Stewart-Gough platforms. Below, in Section 2 we briefly explain the algebraic
setup, as well as the theory of bonds, a rather new combinatorial technique that has shown to
be very useful for analysing closed linkages with R-joints [10]. We also explain the analytical
relations in the presence of H-joints. There are also other (numerical) algebraic methods that are
applied in kinematics, see for example [3, 7, 15].

A closed linkage with n joints, where all joints are R-joints, is denoted by nR-linkage. We
denote by n-linkage a linkage with n joints where no information on the type of joints is specified.
It is easy to imagine that a 3R-linkage does not have a motion, and hence its configuration set
is trivial. On the other hand a generic nR-linkage for n ≥ 7 has positive mobility (see [14], page
356), and hence there is not much to study. So the interesting cases are when n = 4, 5 or 6.
Nowadays we have a full classification of 4R- and 5R-linkages with mobility one (dimKL = 1),
and we know many cases for n = 6 (see [8]). It is an open research problem to classify all
6R-linkages. These classification problems are considered by algebraists. Because of the nature
of other types of linkages it seemed difficult, or rather impossible, to be able to use any of the
present algebraic techniques for linkages with H-joints.

What is new in this article? As a main result, we show that unexpected mobility of a linkage
with H-joints, i.e., a mobility that is strictly bigger than predicted by the Chebyshev-Grübler-
Kutzbach formula which simply counts parameters and equational restrictions, can always be
explained algebraically. Let L be a linkage with H-joints, and let L′ be the linkage obtained from
L by replacing all H-joints by C-joints. It is clear that the configuration set of L is a subset
of the configuration set of L′. The relation between the configuration set of L′ and the Zariski
closure of the configuration set of L will be made very precise (Theorem 9), with the help of
Ax’s theorem [1] on the transcendence degree of function fields with exponentials. Note that
Ax’s theorem is originally about Schanuel’s conjecture in number theory and has no apparent
connections to kinematics.

The mobile linkages with 4 joints of type H, R, or P have been classified in [6]. Here (more
precisely in Theorem 10) we give a classification of mobile linkages with 5 joints of type H, R, or
P. Using our main result, we reduce to linkages with joints of type R or P only. The classification
of mobile 5R-linkages has been done in [12], but for linkages with both R-joints and P-joints, we
could not find a complete classification in the literature. On the other hand, this classification is
not difficult when we use the theory of bonds, so we also give it in here (Theorem 6).

Structure of the paper. In Section 2 we set up a mathematical language to describe and to
analyse linkages with arbitrary types of joints, we recall the theory of bonds for R-joints and we
introduce the adaptations of this theory that make it work also for P-joints. In Section 3 we
use these algebraic methods to classify mobility for 5-linkages with P- and R-joints. In Section 4
we reduce H-joints to C-joints. Finally, in Section 5 we use Ax’s theorem and the results of the
previous sections to classify mobile 5-linkages with helical joints.

Because the two proofs of the classification results, i.e., Theorem 6 and Theorem 10, are
methodically quite different, it is possible to apply a “filter” while reading in case one is only
interested in the main result (or in one of the proofs using Ax’s theorem). In that case, the reader
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could omit the second half of Section 2, right before bonds are introduced, and the whole Section
3, except for Theorem 6 which has to be taken for granted.

2. Algebraic setup

In this section we set up the notation for an algebraic description of linkages with arbitrary
joints. Then we briefly recall bonds for R-joints as defined in [10]. Finally, we introduce bonds
for P-joints and prove some basic properties of them.

Dual quaternions and configuration set. Suppose R is the set or real numbers, D := R+ εR
is the ring of dual numbers and ε2 = 0. Denote by H the non-commutative algebra of quaternions,
where

H = {A = a0 + a1i + a2j + a3k where i2= j2= k2= −1 and i.j=k , j.k= i ,k.i= j}.

Let DH := D⊗R H denote the dual quaternions, i.e.

DH = {h = A+ εB where A,B ∈ H and ε2 = 0}.

We call A the primal part of a dual quaternion h, and B the dual part of h. The conjugate of
A ∈ H, as above, is defined by A = a0 − a1i − a2j − a3k. This extends naturally to define the
conjugate dual quaternion of h by

h = A+ εB

The norm function N: DH → D is then defined by N(h) = h.h = AA + ε(AB + AB); and the
latter is called the norm of h.

Note that DH can be regarded as a real 8-dimensional vector space, and projectivising DH we
obtain P7. The Study quadric S is a hypersurface of this projective space defined by the quadratic
equation

3∑
i=0

aibi = 0

where h = a0 + a1i + a2j + a3k + ε(b0 + b1i + b2j + b3k). In other words

S = {h ∈ P7 such that N(h) ∈ R}

The linear 3-space represented by all dual quaternions with zero primal part is denoted by E.
It is contained in the Study quadric, and the complement S−E is closed under multiplication and
multiplicative inverse; hence S−E forms a group, which is isomorphic to the group of Euclidean
displacements (see [11, Section 2.4]).

For a natural number n ∈ N, a linkage with n joints is described as an n-tuple L = (j1, . . . , jn),
where each ji represents a joint. We will use cyclic notation for joint indices, i.e., jn+1 = j1.

Quantisation. The type of joint specifies which data must be given in order to determine the
set of possible motions, as follows. Suppose k ∈ {1, . . . , n}.

I. If jk is an R-joint, then we specify a dual quaternion hk such that h2k = −1. We write pk
and qk for the primal and the dual part of hk, i.e., hk = pk + εqk with pk, qk ∈ H. The set of
possible motions is parameterised by the joint parameter tk ∈ P1, which is the rotation with
an angle of 2 arccot(tk). The rotation corresponds to the dual quaternion mk = tk−hk, and
to 1 if tk =∞. Note that the latter means we have fixed the initial position at ∞.

II. If jk is a P-joint, then we specify a quaternion pk ∈ H such that p2k = −1. The set of possible
motions is parameterised by the joint parameter sk ∈ R, and the translation corresponds to
the dual quaternion mk = 1− εskpk.
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III. If jk is a C-joint, then we specify a dual quaternion hk = pk + εqk such that h2k = −1, The
set of possible motions is parameterised by the joint parameters (sk, tk) and corresponds to
the dual quaternion mk = (1− εskpk)(tk − hk).

IV. If jk is an H-joint, then we specify a dual quaternion hk = pk+εqk such that h2k = −1, and a
nonzero real number gk. The number gk

2π is often refereed to as the pitch in mechanical engi-
neering. The joint parameter is αk ∈ R, and the motion corresponds to the dual quaternion
mk = (1− εgkαkpk)(1− tan(αk

2 )hk).

The data which must be specified for all joints are called the geometric parameters. Note that
when the linkage moves, the geometric parameters also change. However, there are functions in
the geometric parameters that do not change when the linkage moves, such as the normal distance
and the angle between neighbour rotation or helical axes.

Definition 1. The configuration set K is the set of all parameters tk, sk, αk such that the closure
equation

(1) m1m2 · · ·mn ≡ 1

is fulfilled. The symbol ≡ stands for projective equivalence, i.e., up to multiplication by a nonzero
real scalar.

The mobility of K is the dimension of the solution set of Equation 1 as a complex analytic set
in the parameter space. If it is positive, then we say that L is mobile.

We are interested in mobile linkages, and mainly those with mobility 1. Finding such linkage
for given types, and numbers, of joints is a main goal. This leads to analysing the solutions of
Equation (1).

If all values for t-parameters are ∞ and all values for s- and α-parameters are 0, then all mk

are equal to 1 and Equation (1) is fulfilled. This point of K is called the initial configuration of L.

Remark 1. The dimension of K as a real analytic set would be a more interesting number than
the mobility we defined above, but it is harder to control. For instance, planar 4R-linkages
always have mobility 1, but the real dimension can also be 0. In any case, the complex dimension
is an upper bound for the real dimension, and if the two numbers are not equal then all real
configurations must be singularities of the complex configuration space.

The remaining part of this section is concerned with the theory of bonds. If the reader is willing
to believe Theorem 6, he/she may jump forward to this theorem, skip its proof and proceed with
Section 4, in order to get faster to the application of Ax’s theorem.

Bonds. For linkages with R-joints, bonds have been introduced in [10] as an algebraic tool which
is used to describe and understand the algebraic structure of the configuration set. Informally
speaking, bonds are the points in the boundary of the compactification of the complex configu-
ration set. The closure equation degenerates in the boundary, and one obtains useful algebraic
consequences. At this moment, we do not have any geometric intuition for bonds, we just use them
mainly as a tool for studying the (real) configuration set and for deriving geometric conditions of
the rotation axes. Here is the precise definition.

Definition 2. Let L be an n-linkage with joints of type R or P. Suppose Z is the projective
closure of the complexification of KL in (P1

C)n. Then the bond set B is defined as the intersection
of Z and the solution set of the bond equation

(2) m1m2 · · ·mn = 0.

Remark 2. In [10], where the theory of bonds is initially developed, only linkages with mobility
1 are considered and bonds are defined as points on the normalisation of the curve K. In this
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paper, however, this is not necessary because we do not need multiplicities of bonds. Hence we
can afford to simply say a bond is a point of B.

Construction of the bond diagram. Let β be a bond. We say that β is attached to a joint
mk if N(mk(β)) = 0. This is equivalent to t2k + 1 = 0 if jk is an R-joint, and to sk =∞ if jk is a
P-joint. If β is attached to two different joints jk and j`, then we say that β connects jk and j`
if and only if

mk(β)mk+1(β) · · ·m`(β) = m`(β)m`+1(β) · · ·mk(β) = 0

(this definition is slightly different from the definition in [10], but the more complicated definition
using multiplicities is not needed here).

Definition 3. Suppose G = (V,E) is the graph of a linkage, where vertices, elements of V ,
represent the rigid bodies of L and vi, vi ∈ V are connected via an edge e ∈ E is there is a joint
between them. The bond diagram is then defined to be this graph together with the following
extra information: two edges are connected if their corresponding joints are connected via a bond.

Example 1. There is a unique family of 4R linkages such that the four axes are not all parallel
and do not all have a common point, the Bennett linkage (see [4]). Its configuration curve can
be defined by the equations

t1 = t3, t2 = t4, at1s− t2 + b = 0,

where a, b ∈ R, (a, b) 6= (1, 0), a 6= 0 are parameters. The bond set is

B = {(±i, a± i + b,±i, a± i + b), ((±i− b)/a,±i, (±i− b)/a,±i)},

and the bond diagram is shown in Figure 1.

We define the offset o(h1, h2, h3) of three lines h1, h2, h3 as follows. We assume that neither
h1||h2 nor h2||h3, where the symbol || is used to show the two lines are parallel (otherwise, the
offset is not defined). Let n12 be the common normal of h1, h2, i.e., the unique line intersecting
both h1 and h2 at a right angle. Let n23 be the common normal of h2, h3. Then o(h1, h2, h3) is
defined as the signed distance between the intersection of h2, n12 and the intersection of h2, n23.
The sign comes from the orientation of the line h2 represented as a dual quaternion. The offset
of three consecutive R-joints is fixed when the linkage moves.

Example 2. Assume that the lines h1, h2, h3 are coplanar and pairwise not parallel. Then
o(h1, h2, h3) is the distance of the intersection points h1 ∩ h2 and h2 ∩ h3. If h3 is rotated around
h2 by an angle different from π, call the result h′3, then h1, h2, h

′
3 will not be coplanar, but we

still have o(h1, h2, h3) = o(h1, h2, h
′
3).

We recall some well-known facts on the bond diagram, and refer to [10] for details.

(i) Every bond is attached to at least two joints.
(ii) If a bond is attached to a joint jk, then it connects jk to at least one other joint.
(iii) If a joint jk actually moves during the motion, then it is attached to at least one bond.
(iv) Two consecutive R-joints, ji and ji+1, are not connected by a bond.
(v) If ji, ji+1 and ji+2 are R-joints with axes hi, hi+1 and hi+2 such that ji is connected to ji+2

and h1||h2, then h2||h3.
(vi) If ji, ji+1 and ji+2 are R-joints with axes hi, hi+1 and hi+2 such that hi is not parallel to

hi+1, and ji is connected to ji+2, then o(hi, hi+1, hi+2) = 0.
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3. 5-linkages with Revolute and Prismatic Joints

In this section we classify mobile closed 5-linkages with R- and P-joints. For the case of R-joints
only, this is well-known, as described below. The general case is handled by bond theory; this
makes the proof quite conceptual and avoids long and technical calculations. We use the results
of this section to classify 5-linkages with helical joints in Section 5.

If L has two neighbouring R-joints with equal axes or two neighbouring P-joints with equal
directions, then we say that L is degenerate. Throughout this section, we assume that n = 5
or n = 4, and L = (j1, . . . , jn) is a mobile linkage with configuration set K. We also assume
that L is not degenerate, and that no joint parameters are constant during motion of the linkage
(otherwise one could easily make n smaller).

If L has only R-joints, then we have one of the following three cases ([12]; see [10] for a proof
using bond theory).

(1) L is spherical, i.e., all rotation axes meet in the same point; then L has mobility 2.
(2) L is planar, i.e., all rotation axes are parallel; then L has mobility 2.
(3) L is a Goldberg linkage, constructed as follows: take two spatial 4-linkages with one joint

and one link in common; then remove the common link. The mobility of the Goldberg
linkage is 1. If h1, . . . , h5 are the rotation axes, then

o(h4, h5, h1) = o(h5, h1, h2) = o(h1, h2, h3) = 0, and o(h2, h3, h4) = ±o(h3, h4, h5)
up to cyclic permutation of joints.

h1

h2

h3

h4

h1

h2

h3h4

h5

Figure 1. Bond diagrams for the Bennett 4R and the Goldberg 5R linkage.
The vanishing of all offsets of the Bennett 4R linkage and of the three offsets
o(h4, h5, h1), o(h5, h1, h2), and o(h1, h2, h3) of the Goldberg 5R linkage is an easy
consequence of bond theory.

By considering the specified data and parameterised motions modulo ε, we may construct a
spherical linkage L′, the spherical projection of L. The P-joints of L disappear, their translation
motions are projected to the identity. Parallel joint axes of L are projected to identical axes of
L′. Note that K is projected to an algebraic subset of K ′ (the configuration set of L′). This
subset has positive dimension if and only if L has at least one R-joint.

Lemma 3. If L has 2 or more P-joints, then all rotation axes are parallel.

Proof. Let r ≥ 2 be the number of P-joints. Then L′ is a spherical linkage with 5− r ≤ 3 joints.
Such a linkage is necessarily degenerate: if all three (or fewer) joints are actually moving, then
all axes are identical. �

In order to classify PRRRR linkages, we use bond theory. Here are some additional facts for
bonds in the presence of P-joints.
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Lemma 4. Assume that ji is a P-joint, and ji+1 and ji+2 are R-joints.

(a) The joints ji and ji+1 cannot be connected by a bond.
(b) If the joints ji and ji+2 are connected by a bond, then the axes hi+1 and hi+2 are parallel.

Proof. (a) Assume, without loss of generality, that (∞, t) are the coordinates at (ji, ji+1) of the
bond connecting ji and ji+1. Then we have that εpi(t− hi+1) = 0, which is impossible.

(b) If (∞, t, t′) are the coordinates at (ji, ji+1, ji+2) of the bond connecting ji and ji+1, then
εpi(t − hi+1)(t

′ − hi+2) = 0. We pass to the dual part. Since pi is invertible, we conclude that
(t− pi+1)(t

′ − pi+2) = 0. This is only possible if t2 + 1 = t′2 + 1 = 0 and pi+1 = ±pi+2. �

Lemma 5. If j1 is a P-joint and all other joints are R-joints, then h2||h3 and h4||h5.

Proof. Assume that j1 is the P-joint. It must be connected by a bond to at least one other joint.
By Lemma 4, this cannot be j2 and j5, so we may assume it is connected to j3. By Lemma 4
again, h2 and h3 are parallel. Then the spherical projection L′ is a 4-linkage with 2 equal axes
p2 and p3. Hence L′ is degenerate, and the other two axes p4 and p5 are equal too. �

Note that Lemma 5 holds for all ji with appropriate indices.

Theorem 6. Let L be a 5-linkage with at least one P-joint and all other joints of type R. Then
the following two cases are possible.

(1) Up to cyclic shift, j1 is the only P-joint, h2||h3, and h4||h5; L has mobility 1, and t2 = ±t3
and t4 = ±t5 is fulfilled on the configuration curve.

(2) All axes of R-joints are parallel.

Proof. Using Lemma 5, we get h2||h3, h4||h5. Without loss of generality, we assume p2 = p3 and
p4 = p5; if this is not true, it can be easily achieved by replacing h3 by −h3 or h5 by −h5. Either
all axes of R-joints are parallel or the axes of h3 and h4 are not parallel. In the second case, there
is nothing left to show; let us assume that h3 and h4 are not parallel. The primal part of the
closure equation is equivalent to the equality of the two rotations

(t2 − p2)(t3 − p2) ≡ (t5 + p5)(t4 + p4).

Since the axes are distinct, both rotations must be the identity, which implies t2 = −t3 and
t4 = −t5. �

4. Construction of Linkages with Helical Joints

In this section we give a construction that produces mobile linkages with H-joints from linkages
with C-, P-, and R-joints. We illustrate the construction by several well-known examples and one
example which is new.

We start with a simple construction: take a linkage with r C-joints that has mobility at least
r+ 1. For each C-joint jk, impose the additional restriction tk = cot( sk2gk

) on its joint parameters

(sk, tk), where gk is a nonzero real constant. Any additional equation reduces the mobility at most
by 1, so we get a mobile linkage where every C-joint jk is replaced by an H-joint with pitch gk.

We can extend this simple construction using the observation that Q-linear relations between
the angles imply algebraic relations between their tangents. For the general construction, which
we call screw carving, we need the following ingredients.

(1) a linkage L with m C-joints jk1 , . . . , jkm and an undetermined number of R- and P-joints;
(2) an irreducible analytic subspace K0 of the configuration space of L;
(3) an integer matrix A with m columns that annihilates the vector of analytic functions

(αk1 , . . . , αkm)t ∈ C(K0)
m such that cot(αk

2 ) = tk;
(4) an m-tuple (gk1 , . . . , gkm) of nonzero real numbers, so that A also annihilates the vector

of functions (ak1 , . . . , akm)t, where ak : K0 → C is the function (s∗, t∗) 7→ sk
gk

.
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As before, the linkage L′ with H-joints instead of C-joints is obtained by imposing the additional
restriction tk = cot( sk2gk

) on its joint parameters (sk, tk), for each C-joint tk. To obtain linkages

with large mobility, the integer matrix A should have the largest possible rank, which means that
all integral relations between the analytic angle functions are linear combination of matrix rows.
(In the next section, we will indeed always choose such matrices of maximal rank.) The empty
matrix with zero rows is allowed, then we just get the simple construction above.

Lemma 7. Let d := dim(K0) and ` := rank(A). Then the mobility of the linkage produced by
screw carving is at least d−m+ `.

Proof. The subset K ′ of K0 that satisfies the additional restrictions tk = cot( sk2gk
) is contained in

the configuration space of L′. Since the codimension of an analytic subset is never bigger than
the number of defining equations, we see that dim(K ′) ≥ d−m. We claim that K ′ can be defined
(as a subset of K ′) by only m− ` equations.

Let αk1 , . . . , αkm ∈ C(K0) be as above. The Q-vector space generated by these m functions
has dimension at most m − `. Without loss of generality, we assume that {αk1 , . . . , αkm−`

} is a
generating set. Any other αk can be expressed as a Q-linear combination

αk = q1αk1 + · · ·+ qkm−`
αkm−`

,

with rational coefficients depending on the matrix A. But then we also have

sk
gk

= q1
sk1
gk1

+ · · ·+ qkm−`

skm−`

gkm−`

.

It follows that the equations tk1 = cot(
sk1
2gk1

), . . . , tkm−`
= cot(

skm−`

2gkm−`
) imply all other equations.

�

Example 3. Let L be a 4-linkage with 4 cylindrical joints with parallel axes. Its mobility is 4.
For all configurations (t1 = cot(α1

2 ), s1, . . . , t4 = cot(α4
2 ), s4), we have α1 + α2 + α3 + α4 = 0 and

s1 + s2 + s3 + s4 = 0. So we take K0 as the full configuration set, A as the 1×4 matrix (1, 1, 1, 1),
and g1 = g2 = g3 = g4, and apply screw carving. We obtain a 4-linkage with 4 helical joints and
mobility 4-4+1=1.

Similarly, one can obtain an n-linkage with n H-joints with parallel axes with mobility n− 3,
n ≥ 4.

Example 4. Here is a variation of the previous example. Set

h1 = k− εi, h2 = k + εi, h3 = h5 = k, h4 = k + 2εj

and let L be the CCRRR linkage with C-joint axes h1, h2 and R-joint axes h3, h4, h5. Its mobility
is 3, and all configurations satisfy s1 + s2 = 0. We define K0 as the subvariety defined by
tan(17 arccot(t1)− 11 arccot(t2)) = 0 (this is a rational function in t1, t2). Its dimension is 2. We
set as the 1 × 2 matrix A = (1, 1) and g1 = 1

17 , g2 = −1
11 . By screw carving we get an HHRRR

linkage with mobility 1. Figure 2 shows the trace of the joint j4 when the link with the two
H-joints j1, j2 is fixed.

Example 5. Let h1, h2, h3 be lines. Reflecting them by the coordinate axes represented by i, we
get h4 = ih1i, h5 = ih2i, h6 = ih3i. Let L be the 6C-linkage with axes h1, . . . , h6. The zero set of
the closure equation

(t1 − h1)(1− εs1h1) · · · (t6 − h6)(1− εs6h6) ≡ 1

has a component of dimension 4, given by the equations

t1 = t4, t2 = t5, t3 = t6, s1 = s4, s2 = s5, s3 = s6, xi + ix = 0,
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Figure 2. Planar projection of an HHRRR linkage with 5 parallel axes to the
plane orthogonal to the axes (Example 4). The helical joints are at j1 and j2. The
ratio of the pitches at the two helical joints j1, j2 is 11:17. The curve shown is the
trace of the joint j4. It is an algebraic curve of large degree.

where x = (t1 − h1)(1− εs1h1)(t2 − h2)(1− εs2h2)(t3 − h3)(1− εs3h3).

With A =

1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 and g1 = g4, g2 = g5, g3 = g6, the screw carving procedure

gives a line symmetric 6H linkage with mobility 1.
Similarly, one can construct a plane symmetric RHHRHH linkage with mobility 1. Both

linkages are well-known, see [2].

Example 6. Let h1, h2, h3 be lines with linear independent primal parts that do not intersect
pairwise, such that o(h1, h2, h3) = o(h3, h1, h2) = 0. Let L be the RRCRRC linkage with axes
h1, h2, h3, h2, h1, h3. The zero set of the closure equation

(t1 − h1)(t2 − h2)(t3 − h3)(1− εs1h3)(t4 − h2)(t5 − h1)(t6 − h3)(1− εs6h3) ≡ 1

has two components of dimension 2. The first is given by t1 = −t5, t2 = −t4, t3 = t6 = ∞,
s3 = s6 = 0; this is a degenerate motion which does not separate the pairs of axes at joints (j1, j5)
and at (j2, j4). The equations of the second component K0 can be computed by computer algebra.
Two of them are s3 = s6 and t3 = t6; the remaining are more complicated. With A =

(
1 −1

)
and g3 = g6, the screw carving procedure gives an RRHRRH linkage with mobility 1. In contrast
to all families of mobile 6-linkages with H-joints that have been known up to now, this linkage
has no parallel axes or apparent geometric symmetries. A distinctive property is the existence of
a starting position with three pairs of coinciding axes.

5. Classification of 5-linkages with Helical Joints

Now we show that the construction in Section 4 is complete, i.e., every linkage with helical
joints can be obtained in this way. The main idea is the application of a theorem by Ax to



10 HAMID AHMADINEZHAD, ZIJIA LI, AND JOSEF SCHICHO

separate the transcendental part and the algebraic part of the closure equation. Then, we use
the completeness result to classify 5-linkages with P-, R-, and H-linkages.

Let L be a mobile linkage with m helical joints; we assume that it is not degenerate, and
that all joints actually move. There is a natural candidate for ingredients of the screw carving
constructions in order to produce L.

(i) We define the cylindrical extension L′ of L be replacing all H-joints by C-joints. The
configuration set K of L can be naturally embedded in the configuration K ′ set of L′.

(ii) We take K0 as the Zariski closure of K in K ′, i.e., the subset of K ′ defined by all algebraic
equations that hold for K.

(iii) We take A as an integer matrix whose rows generate, as a Z-module, the coefficient vectors
of all integral linear equations that hold for the m α-parameters in K.

(iv) The m nonzero numbers are defined as the m pitches of K.

Application of the screw carving constructions just re-installs the screw conditions that already
existed in L. But our construction includes a prediction on the mobility, and it is not clear if the
mobility of L′ is big enough to explain the mobility of L.

Since the use of number theoretic theorems is not usual in kinematics, we include the full
statement of the Ax theorem on the transcendence degrees of a function field with exponential
functions.

Theorem 8. Let q, n be positive integers. Let f1, . . . , fq be analytic functions in some neigh-
bourhood of Cm about the origin o for which f1 − f1(o), . . . , fq − fq(o) are Q-linearly inde-

pendent. Let r be the rank of the Jacobi matrix
∂(f1,...,fq)
∂(z1,...,zm) . Then the transcendence degree of

C(f1, . . . , fq, e
f1 , . . . , efq) is greater than or equal to q + r.

Proof. This is [1], Corollary 2. �

Theorem 9. Let L be a linkage with m helical joints. Let K be an irreducible component of
its configuration space containing the initial configuration as a nonsingular point. Let K0 be the
Zariski closure of K in the cylindrical extension of L. Let A be the integral matrix defined by the
Z-relations between the helical joint parameters. Then

dim(K0) = dim(K) +m− rank(A).

Consequently, L can be obtained by screw carving from its cylindrical extension.

Proof. By Lemma 7, we have dim(K0) ≤ dim(K) +m− rank(A), so it suffices to show the other
inequality. Let d := dim(K), and q := m − rank(A). Let πH : K → Cm be the projection to
the helical joint parameters αk1 , . . . , αkm , and let KH ⊂ Cm be its image. Similarly, we define
πC : K0 → Cm × (P1)m as the projection to the cylindrical joint parameters of L′ and KC as the
image. There is a natural embedding KH ↪→ KC , the map πH is the restriction of πC along this
embedding, and KC is the Zariski closure of KH in Cm × (P1)m.

Let dH := dim(KH). Then there is an analytic isomorphism φ of a neighbourhood U ⊂ CdH
of the origin o mapping o to the initial configuration. For k = 1, . . . ,m, let αk : U → C be the
projection to the joint parameter αk. They generate a q-dimensional Q-vector space. We may
assume that αk1 , . . . , αkq generate this vector space. The rank of the Jacobian of αk1 , . . . , αkq is
equal to the rank of the Jacobian of all coordinate functions, which is equal to dH . By Theorem 8,
the field C(αk1 , . . . , αkq , e

αk1 , . . . , eαkq ) has transcendence degree at least dH +q over C. This field
is C-isomorphic to the function field of KC , by the isomorphism

αk1 7→ g−1k1 sk1 , . . . , αkq 7→ g−1kq skq , e
αk1 7→ 1 + itk1

1− itk1
, . . . , eαkq 7→

1 + itkq
1− itkq

.

Therefore dim(KC) ≥ dH + q.
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Let E ⊂ KC be the set of all points x such that dim(π−1C (x)) > dim(K0) − dim(KC). Since
dimension is upper semicontinuous in the Zariski topology, E is a proper algebraic subvariety of
KC . Since KH is Zariski dense in KC , it is not contained in E. Therefore the generic fibre of
πH : K → KH has dimension dim(K0)− dim(KC). Hence we have

dim(K0) = dim(KC) + dim(K)− dim(KH) ≥ dH + q + dim(K)− dH = dim(K) + q.

�

From the cylindrical extension Lc, we may construct families Fp and Fr of linkages by setting
either the rotation parameters or the translation parameters of the joints jk1 , . . . , jkq to fixed
values (τk1 , . . . , τkq) respectively (σk1 , . . . , σkq), where αk1 , . . . , αkq generate the Q-vector space of
all angle parameter functions at the helical joints. This imposes exactly q additional equations
to the configuration set K0, hence the mobility of any linkage in one of the two families is greater
than or equal to the mobility of L. In family Fr, every C-joint is replaced by an R-joint, and in
family Fp, every C-joint is replaced by a P-joint.

We choose generic members for both families and call them Lp and Lr. The angles and
orthogonal distances of neighbouring R-joints is constant for both families, and is equal to the
value of the corresponding parameter of L. The offsets do change, but in a transparent way: if
j2 is an H-joint and j1, j3 are H- or R-joints in L, then the offset of the axes at the corresponding
axes in the family Fr is a linear non-constant function in the family parameter σ2. Similarly, the
angle between the directions of j1 and j3 from j2 in spherical geometry change with the family
parameter τ2. In particular, the generic family member Lr has nonzero offset and the generic
family member Lp has nonzero angles at this place.

Linkages with helical joints are called degenerate if there are neighbouring R- or H-joints with
equal axes, neighbouring P-joints with equal directions, or an H-joint with a neighbouring P-joint
in the direction of the axis of the H-joint. In all these cases it is easily possible to simplify the
pair of neighbouring joints from RR to R, HH to H or C, HR to C, PP to P, or HP to C.

Assume that L is nondegenerate. Because the axes/directions of Lr and Lp are equal to the
axes/directions of an instance of Lc after application of a motion in K0, Lr is also nondegenerate,
and Lp can only be degenerate if L has neighbouring H-joints with parallel axes. However, it may
happen that some joints of Lr or Lp remain fixed during the motion, even if this is not the case
for L.

The existence of mobile linkages with only P- and R-joints with particular properties as a
consequence of the existence of mobile linkages with H-joints allows to classify the 5-linkages
with H-joints. We do that by constructing the linkages Lr and Lp and then compare with the
classifications in Section 3 and Theorem 6. We also need the classification of 4-linkages, because
it may be that some joints of Lr or Lp are fixed. For convenience, we write here the facts on
4-and 5-linkages that are used below. For the first 4 facts, we assume that L is a nondegenerate
mobile linkage with R- and P-joints, such that every joint actually moves. Let n be the number
of joints of L.

(1) If n = 4 and L has a P-joint, then all axes of R-joints are parallel (this is a special case
of Delassus’ theorem [6]).

(2) If n = 4 and L has no P-joints, then either all axes are parallel, or no neighbouring pair
of axes is parallel and all offsets are zero (see [5]).

(3) If n = 5 and L has a P-joint, then either all axes of R-joints are parallel, or j1 is a P-joint,
all other joints are of type R, and h2||h3 and h4||h5 (Theorem 6).

(4) If n = 5 and L has no P-joints, then either all axes are parallel, or no neighbouring pair
of axes is parallel and at least three of the five offsets are zero (see Section 2).
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(5) Any movable CRP linkage is degenerate, i.e., either the axis of the C-joint and the axis of
the R-joint coincide, or the axis of the C-joint is parallel to the direction of the P-joint.
Here we leave the proof to the reader.

Here is the classification of 5-linkages with joints of type R, P, or C, based on Theorem 9
(compare also with Delassus’ classification [6] of 4-linkages with these three types of joints).

Theorem 10. Let L be a non-degenerate mobile 5-linkage with R-, P-, and H-joints, with at least
one H-joint, such that all joints actually move. Up to cyclic permutation, the following cases are
possible.

(1) All axes of R- and H-joints are parallel.
(2) There is one P-joint j1, all other joints are of type H or R, h2||h3 and h4||h5.

Proof. Let r be the number of neighbouring blocks of equal axes of the spherical projection Ls.
The proof proceeds by case distinction on r. The cases r = 4 and r = 5 are split into two subcases.

Case r = 1: Then all axes of Ls are equal, hence all axes of H- and R-joints of L are parallel;
this is possibility (1) of the theorem.

Case r = 2: Then each of the two blocks of R-joints in Ls has at least two joints and at
most three joints, because a single joint could not move. The linkage Lr is movable and
therefore has at least four joints that actually move. In particular, it cannot happen that
all axes of Lr that actually move are parallel. After removing the joints that remain fixed,
Lr still has two blocks of parallel axes. By comparing with Facts 3 and 4 above, it follows
that Lr is a PRRRR linkage; if, say, j1 is the prismatic joint, then h2||h3 and h4||h5. This
is possibility (2) of the theorem.

Case r = 3: There is at least one group of joints of the spherical projection Ls with only
one R-joint. This joint cannot move. Hence the corresponding H- or R-joint of L does
not move either, contradicting our assumption. So this case is impossible.

Case r = 4: If L has a P-joint, then Lr is a mobile and nondegenerate PRRRR linkage
without any parallel rotation axes. Such a linkage does not exist, hence L has no P -joint.
Then we have two parallel neighbouring axis of L. Up to cyclic permutation, we may
assume h1||h2, and the other directions of axes are not parallel. There is no 4R or 5R
linkage with exactly two parallel axes (see Fact 3). Therefore at least one of the two joints
with parallel axes h1, h2 must be fixed in Lr. Without loss of generality, we may assume
that Lr is a 4R linkage with axes h2, h3, h4, h5. By Fact 2, all offsets of Lr are zero. In
particular, o(h2, h3, h4) = o(h3, h4, h5) = 0. Hence j3 and j4 are R-joints in L. Hence h3
and h4 are axes of R-joints of Lp. On the other hand, they are not parallel to each other
and not parallel to the remaining axes. In any movable 4-linkage or 5-linkage with joints
of type R and P, at least one P, any revolute axis is in a block of at least two parallel
axes (see Fact 1). It follows that the two joints with axes h3 and h4 must be fixed in Lp.
Hence Lp has at most three joints that actually move. This is not possible if Lp has an
R-joint that actually moves. Since h1||h2 and h5 is not parallel to both, the joint of Lp
corresponding to j5 is also fixed, and Lp is a degenerate linkage with two P-joints sharing
the same direction. It follows that j1 and j2 are H-joints in L. The type of joint j5 may
be either H or R.

Subcase 1: j5 is an R-joint. The cylindrical extension Lc has two C-joints with axes
h1 and h2. If the mobility of Lc is 3 or higher, then we freeze one of the two C-joints,
and we get mobile CRRR linkage without parallel neighbouring axes, contradicting
Fact 1. Therefore the mobility of Lc is 2, and we must have a Q-linear relation
between the angle functions. But in Lr, the joint corresponding to j1 is fixed, and
the joint corresponding to j2 moves. This is a contradiction.
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Subcase 2: j5 is an H-joint. If the mobility of Lc is 2, then we may argue as in
Subcase 1: the three angle functions at the C-joints of Lc have to generate a one-
dimensional Q-vector space of Lc. Especially, there is a Q-linear relation between
the angle functions at the joints corresponding to j1 and j2. And in Lr, the joint
corresponding to j1 is fixed, and the joint corresponding to j2 moves, which gives a
contradiction. Hence the mobility of Lc is at least 3. Now we freeze the R-joint with
axes h3 and the translation component at the joint corresponding to j2. We get a
mobile CRRC linkage L′ with joint axes h1, h2, h4, h5. Since h1||h2, and h4 and h5
have different directions, the spherical projection of L′ is fixed at the two joints with
axes h4 and h5. Hence L′ is fixed at the joint with axes h4 and the C-joint with axes
h5 can be replaced by a P-joint. We may consider L′ as a CRP linkage with axes
h1, h2, and translation direction p5. By Fact 5, either h1 ≡ h2 or h1||h5. Neither is
possible.

Case r = 5: Then Lr is either a 5R-linkage or a 4R-linkage with an extra immobile R-joint.
Subcase 1: If Lr is a 5R-linkage, then Lr has at least three vanishing offsets, by Fact 4.

Hence L has at least one and at most two H-joints, and Lp has at least one at most
two P-joints. Because Lp has no parallel rotation axes, all its R-joints must be fixed.
Then Lp must have two P-joints with equal directions. On the other hand, L has no
parallel axes. This is a contradiction.

Subcase 2: Without loss of generality, let us say that the joint with axis h1 is fixed in
Lr. By Fact 2, all offsets of Lr are zero. In particular, o(h2, h3, h4) = o(h3, h4, h5) =
0. Hence j3 and j4 are R-joints. Again, Lp has no parallel rotation axes, so all its
R-joints must be fixed. If Lp has two moving P-joints, then they would have to be
parallel, which is not possible. Hence Lp has three moving P-joints with direction
p5, p1, p2. Then these three vectors have to be linear dependent, which is equivalent
to saying that the angle between p5 and p2 from p1 (in spherical geometry) is equal
to 0. On the other hand, Lp has a nonzero angle at every joint corresponding to an
H-joint of L. This is a contradiction.

�

Example 7. Here is an example that shows that the second case is indeed possible.
Let h2, h3 be parallel lines with a distance a to each other. Let h4, h5 be another pair of parallel

lines, not parallel to the first pair, also with distance a to each other. We assume that p2 = −p3
and p4 = −p5. Let g2, g4 ∈ R. For any α2 = α3 ∈ R, the composed motion

m2m3 = (1− εg2α2p2)(1− tan
(α2

2

)
h2)(1− εg2α3p3)(1− tan

(α3

2

)
h3)

is a translation, where the translation vector lies on a circle in a plane orthogonal to p2 with
radius a. Similarly, for α4 = α5 ∈ R the composed motion m4m5 is a translation with translation
vector on another circle with the same radius. We can choose a parametrisation such that the
motion m2m3m4m5 is a translation in a fixed direction (p2+p4 or p2−p4). Hence the linkage with
P-joint in this direction and H-joints with axes h2, h3, h4, h5 and pitches g2, g2, g4, g4 is mobile.

6. Conclusion

Using Ax’s theorem and screw carving, it is possible to investigate mobility questions for
arbitrary linkages with helical joints. The classification of mobile closed 5-linkages with joints of
type R, P, or H, given in this paper, is just a first application of this reduction.

A challenge for future research is the classification of mobile closed 6-linkages with helical
joints. In contrast to the case of 5-linkages, reduction to linkages with joints of type R or
P will not be enough, because our knowledge of that linkages is still quite incomplete: even the
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classification of mobile closed 6R linkages is an open problem. But there is a reason to believe that
classifying 6-linkages with at least one H-joint is substantially easier than the 6R case: the linkages
constructed by cylindrical extension and fixing either the rotational or the translational parameter
have properties that could help the classification (for instance, generic offsets). Another possible
attempt would be to extend the theory of bonds to linkages with C-joints and to configuration
sets where a fixed set of angle functions satisfy Z-linear equations.
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