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Abstract

We study the linear space of Cs-smooth isogeometric functions defined on a multi-patch
domain Ω ⊂ R2. We show that the construction of these functions is closely related to the
concept of geometric continuity of surfaces, which has originated in geometric design. More
precisely, the Cs-smoothness of isogeometric functions is found to be equivalent to geomet-
ric smoothness of the same order (Gs-smoothness) of their graph surfaces. This motivates
us to call them Cs-smooth geometrically continuous isogeometric functions. We present
a general framework to construct a basis and explore potential applications in isogeomet-
ric analysis. The space of C1-smooth geometrically continuous isogeometric functions on
bilinearly parameterized two-patch domains is analyzed in more detail. Numerical experi-
ments with bicubic and biquartic functions for performing L2 approximation and for solving
Poisson’s equation and the biharmonic equation on two-patch geometries are presented and
indicate optimal rates of convergence.
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1. Introduction

In the framework of Isogeometric Analysis (IgA), which was introduced in [12], partial
differential equations are discretized by using functions that are obtained from a param-
eterization of the computational domain. Typically one considers parameterizations by
polynomial or rational spline functions (NURBS – non-uniform rational spline functions,
see [20]) but other types of functions have been used also. On the one hand, this approach
facilitates the data exchange with geometric design tools, since the mathematical tech-
nology used in Computer Aided Design (CAD) is based on parametric representations of
curves and surfaces. On the other hand, it has been observed that the increased smooth-
ness of the spline functions compared to traditional finite elements has a beneficial effect
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on stability and convergence properties [3, 9].
Clearly, regular single-patch NURBS parameterizations are available only for domains

that are topologically equivalent to a box. Though it is possible to extend the applicability
of such parameterizations slightly by considering parameterizations with singular points
(cf. [27]), it is preferable to use other techniques, due to the difficulties introduced by the
use of singularities.

One of the most promising approaches is to use multi-patch parameterizations, which
are coupled across their interfaces. Several coupling techniques are available, such as the
direct identification of the degrees of freedom along the boundaries as in [24], the use of
Lagrangian multipliers as in [14], or Nitsche’s method [17]. The approximation power of
T-spline representations, which are a generalization of NURBS that allow T-junctions and
extraordinary vertices in the mesh (cf. [26]), was explored for two-patch geometries in [2].
However, these multi-patch constructions in isogeometric analysis are limited to functions
of low regularity (at most C0-smoothness). Consequently, the resulting numerical solutions
are highly smooth almost everywhere, except across the interfaces between the patches of
the multi-patch discretization.

Another approach is the use of trimmed NURBS geometries, which can also be combined
with the multi-patch method. Such geometries have been used in the context of IgA (see
e.g. [13, 21, 23]). However, trimming implies unavoidable gaps, when two trimmed NURBS
patches are joined together (cf. [25]), and often requires advanced techniques for coupling
the discretizations, see [21]. Another related technique is the use of mapped B-splines on
general meshes [28].

The use of functions generated by subdivision algorithms has become a valuable alter-
native to NURBS, especially in Computer Graphics, since these functions lead to gap-free
surfaces of arbitrary topology (cf. [19]). One of the standard subdivision methods is the
Catmull-Clark subdivision, which generates surfaces consisting of bicubic patches, joined
with C2-smoothness everywhere except at extraordinary vertices, where they have a well-
defined tangent plane. A Catmull-Clark based isogeometric method for solids is presented
in [7]. Disadvantages of using subdivision methods are the possible reduction of the ap-
proximation power in the vicinity of extraordinary vertices, cf. [16] and the need for
special numerical integration techniques. In fact these functions are piecewise polynomial
functions with an infinite number of segments.

Another possibility to deal with domains of general topology is the use of T-splines,
which can represent more complex geometries. This has been exploited in IgA, see e.g.
[1, 2]. However, the mathematical properties of the resulting isogeometric functions around
the extraordinary vertices are not well understood. Around extraordinary vertices, T-
splines are based on a special construction for geometrically continuous surfaces.

Geometric continuity is a well-known and highly useful concept in geometric design [18]
and there exist numerous constructions for multi-patch surfaces with this property. It can
be used to construct isogeometric functions of higher smoothness [4, 10], but the systematic
exploration of the potential for IgA has just started. Numerical experiments with a multi-
patch parameterization of a disk have been presented in [16]. The results indicate again
a reduction of the approximation power (and consequently a lower order of convergence)
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which is caused by the extraordinary vertices, similar to the case of subdivision algorithms.
Our paper consists of three main parts. Firstly we describe the concept of Cs-smooth

geometrically continuous isogeometric functions on general multi-patch domains, and we
present a general framework for computing a basis of the corresponding isogeometric dis-
cretization space in Section 2.

We then analyze the case of C1-smooth geometrically continuous functions on bilin-
early parameterized two-patch domains in Section 3. The dimension of the space of these
isogeometric functions is investigated and a particular selection of the basis is proposed. In
addition, generalizations of our approach to more general two-patch domains are discussed.

Finally, in order to demonstrate the potential of geometric continuity for IgA, we present
numerical experiments to explore the approximation power of C1-smooth geometrically
continuous isogeometric functions for bilinearly parameterized two-patch geometries in
Section 4. In addition to L2 approximation and solving Poisson’s equation, we also present
results concerning the biharmonic equation, where the use of C1-smooth test functions
greatly facilitates the (isogeometric) discretization. Our numerical results indicate that
the geometrically continuous representations maintain the full approximation power. This
may be due to the fact that the effect of geometric continuity in our approach is not
restricted to the vicinity of an extraordinary vertex as in earlier approaches, but spread
out along the entire interface between the patches.

2. Geometrically continuous isogeometric functions

We present the concept of geometrically continuous isogeometric functions on gen-
eral multi-patch domains. We show that geometric continuity of graphs of isogeometric
functions is equivalent to standard continuity of isogeometric functions. Furthermore, we
present a general framework for computing a basis of the corresponding isogeometric space.

2.1. Cs-smooth isogeometric functions

In order to simplify the presentation we restrict ourselves to the case of two-dimensional
computational domains. Given a positive integer n, we consider n bijective, regular geom-
etry mappings

G(ℓ) : [0, 1]2 → R
2, ℓ ∈ {1, . . . , n},

which are represented in coordinates by

ξ(ℓ) = (ξ
(ℓ)
1 , ξ

(ℓ)
2 ) 7→ (G

(ℓ)
1 , G

(ℓ)
2 ) = G(ℓ)(ξ(ℓ)),

with G(ℓ) ∈ S(ℓ) × S(ℓ), where S(ℓ) is a tensor-product NURBS space of degree dℓ ∈
N2

0. Consequently, each geometry mapping G(ℓ), ℓ ∈ {1, . . . , n}, is defined as a linear

combination of NURBS basis functions ψ
(ℓ)
i : [0, 1]2 → R, i.e.,

G(ℓ)(ξ(ℓ)) =
∑

i∈Iℓ

d
(ℓ)
i ψ

(ℓ)
i (ξ(ℓ)),
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with a suitable index set Iℓ (a box in index space) and control points d
(ℓ)
i ∈ R2. Thus it

is a two-dimensional regular NURBS surface patch in R2. More precisely, we even assume
that the geometry mappings G(ℓ) are defined and regular on a neighborhood of [0, 1]2.

Each geometry mapping G(ℓ), ℓ ∈ {1, . . . , n}, defines a quadrilateral subdomain or
patch

Ω(ℓ) = G(ℓ)([0, 1]2).

We assume that the interiors of these subdomains are mutually disjoint, i.e.

G(ℓ)((0, 1)2) ∩G(k)((0, 1)2) = ∅

for ℓ, k ∈ {1, . . . , n} with ℓ 6= k. The computational domain Ω ⊂ R2 is the union of these
quadrilateral patches Ω(ℓ), i.e.,

Ω =
n⋃

ℓ=1

Ω(ℓ).

On each patch Ω(ℓ), ℓ ∈ {1, . . . , n}, the space of isogeometric functions is given by

S(ℓ) ◦ (G(ℓ))−1.

Given a positive integer s, which specifies the order of smoothness, the space

V =
{
v ∈ Cs(Ω) : v|Ω(ℓ) ∈ S(ℓ) ◦ (G(ℓ))−1 for all ℓ ∈ {1, . . . , n}

}

contains the globally Cs-smooth isogeometric functions defined on the computational do-
main Ω.

2.2. Geometric continuity of the graph surfaces

Let us consider an isogeometric function w ∈ V in more detail. On each patch Ω(ℓ),
ℓ ∈ {1, . . . , n}, the function w is represented by

(w|Ω(ℓ))(x) = w(ℓ)(x) =
(
W (ℓ) ◦ (G(ℓ))−1

)
(x), x ∈ Ω(ℓ), (1)

with W (ℓ) ∈ S(ℓ). Note the difference between W (ℓ), which is a function defined on the
local parameter domain [0, 1]2, and w(ℓ), which is the associated segment of the isogeometric
function defined on Ω(ℓ).

The associated graph surface F (ℓ) of w(ℓ) possesses the form

F (ℓ)(ξ(ℓ)) =
(
G

(ℓ)
1 (ξ(ℓ)), G

(ℓ)
2 (ξ(ℓ))︸ ︷︷ ︸

=G(ℓ)(ξ(ℓ))

,W (ℓ)(ξ(ℓ))
)T

.

For any bivariate function f we denote with ∂if its partial derivative with respect to
the i-th argument. Depending on the domain of the function, this argument can be either
one of the local parameters ξ

(ℓ)
i or one of the coordinates xi in the physical domain.
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We consider two neighboring patches Ω(ℓ) and Ω(k) with the common interface e(ℓk) =
Ω(ℓ) ∩Ω(k), see Fig. 1. Since w ∈ Cs(Ω), the derivatives up to order s of the functions w(ℓ)

and w(k) at the common interface have to be equal, i.e.,

(∂i1∂
j
2w

(ℓ))(x) = (∂i1∂
j
2w

(k))(x), x ∈ e(ℓk), i+ j ≤ s, (2)

where x = (x1, x2) are the global (world) coordinates with respect to the computational
domain Ω. We evaluate the derivatives at the boundary of the patches by considering
one-sided limits. Moreover we assume that the geometry mappings and their inverses are
at least Cs-smooth.

G(ℓ)

G(k)

Ω(ℓ)

Ω(k)

Φ(ℓk)

ē(ℓk)

ē(kℓ)

e(ℓk)

(Φ(ℓk))−1([0, 1]2)

[0, 1]2

[0, 1]2

Figure 1: The geometry mappings G(ℓ) and G(k) which are defined on a neighborhood of [0, 1]2.

We may also parameterize the graph surfaces F (ℓ) and F (k) with respect to the world
coordinates x1 and x2, simply as

(
x1, x2, w

(ℓ)(x1, x2)
)T

and
(
x1, x2, w

(k)(x1, x2)
)T
.

The fact that w ∈ V is true if and only if these two parameterized surfaces are joined
together with Cs-smoothness along e(ℓk). This is obvious for the first two coordinates, and
it is implied by (2) for the third one.

Recall that two parametric surfaces are said to be joined together with geometric
smoothness of order s if there exist reparameterizations (parameter transformations) that
transform them into two parametric surfaces that are joined together with Cs smoothness
[11, 18]. (Typically only a reparameterization of one of the two surfaces is considered, but
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it is also possible to reparameterize both surfaces.) The two graph surfaces F (ℓ) and F (k)

satisfy the criterion of this definition. We thus obtain:

Theorem 1. Let w : Ω → R be an isogeometric function, which is defined on patches Ω(ℓ),
ℓ ∈ {1, . . . , n}, by isogeometric functions w(ℓ), given in (1). Then w ∈ V if and only if
for all neighboring patches Ω(ℓ) and Ω(k), ℓ, k ∈ {1, . . . , n} with ℓ 6= k, the associated graph
surfaces F (ℓ) and F (k) meet at the common interface with geometric continuity of order s.

proof. It suffices to consider two neighboring patches as shown in Fig. 1. It has already
been observed that the Cs-smoothness of w implies the geometric continuity of order s of
the associated graph surfaces. We still need to prove the other implication. If the two
surfaces meet with geometric continuity of order s then there exists a parameter trans-
formation Φ(ℓk) such that the two surfaces F (ℓ) and F (k) ◦ Φ(ℓk) meet with Cs-smoothness
across the common interface, i.e., the composed surface patch

F+(ξ+) =
(
G+

1 (ξ
+), G+

2 (ξ
+)︸ ︷︷ ︸

=G+(ξ+)

,W+(ξ+)
)T

which is defined on [0, 1]2 ∪ (Φ(ℓk))−1([0, 1]2) by

F+(ξ+) =

{
F (ℓ)(ξ+) if ξ+ ∈ [0, 1]2

F (k)(Φ(ℓk)(ξ+)) if ξ+ ∈ (Φ(ℓk))−1([0, 1]2)

is Cs-smooth. Consequently, the function W+ ◦ (G+)−1 is also Cs-smooth. The fact that
w ∈ V then follows from W+ ◦ (G+)−1|Ω(ℓ) = w(ℓ) and W+ ◦ (G+)−1|Ω(k) = w(k).

Consequently, we will refer to the functions w ∈ V as Cs-smooth geometrically con-
tinuous isogeometric functions. In fact, the functions themselves possess the standard
smoothness properties, but their graph surfaces are joined with geometric continuity.

Theorem 1 is equivalent to a very recent result in [10], where the authors observed that
matched Gk-constructions always yield Ck-continuous isogeometric elements. In contrast
to that approach, which is based on the usual viewpoint in geometric design, we started
our derivation from the given domain parameterization and not from the reparameteri-
zation φ(ℓk). We feel that this viewpoint fits better into the IGA framework, where the
computational domain is central. It also leads to a natural framework for the construction
of a basis of the space V . This is described in the next subsection.

2.3. Constructing a basis: General framework

Constructing a basis is an essential first step, which is required in order to use geomet-
rically continuous isogeometric functions for simulations. We will construct isogeometric
basis functions on Ω, which span the space V of all Cs-smooth geometrically continuous
isogeometric functions. On each patch Ω(ℓ), ℓ ∈ {1, 2, . . . n}, any such basis function –
which we again denote by w – is given by a representation of the form (1). According
to Theorem 1, the functions w are Cs–smooth on Ω if and only if the graph surfaces join
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with geometric smoothness of order s across the common interface e(ℓk) for all neighboring
patches Ω(ℓ), Ω(k), ℓ, k ∈ {1, 2, . . . , n}, with ℓ 6= k.

We choose a basis (ψ
(ℓ)
j )j∈Iℓ for each local spline space S(ℓ), e.g., the NURBS basis

functions on each patch. Consequently, the functions W (ℓ) ∈ S(ℓ), which define the basis
function, have a local representation

W (ℓ)(ξ(ℓ)) =
∑

j∈Iℓ

b
(ℓ)
j ψ

(ℓ)
j (ξ(ℓ)).

Using Eq. (1) and (2) we obtain constraints on their coefficients,

∑

j∈Iℓ

b
(ℓ)
j (∂i1∂

j
2(ψ

(ℓ)
j ◦

(
G(ℓ)

)−1
))(x) =

∑

j∈Ik

b
(k)
j (∂i1∂

j
2(ψ

(k)
j ◦

(
G(k)

)−1
))(x), x ∈ e(ℓk).

Since we are considering a finite-dimensional space of functions, these constraints are equiv-
alent to finitely many linear constraints on the coefficients b

(ℓ)
j and b

(k)
j , which can be

formulated as a homogeneous linear system

Hb = 0, b =
(
b
(ℓ)
j

)
j∈Iℓ,ℓ∈{1,2,...,n}

. (3)

We now choose a basis of the null space (the kernel) of the matrix H . Each basis vector
defines via (1) a function

Wi =
(
W

(ℓ)
i

)
ℓ∈{1,2,...,n}, i = 1, 2, . . . , dim(kerH).

Consequently, every function Wi then defines by (1) an isogeometric basis function

wi =
(
w

(ℓ)
i

)
ℓ∈{1,2,...,n} ∈ Cs(Ω).

There are several possible strategies for choosing a basis of the null space of H . One
may try to select basis functions with local supports and to avoid basis functions having
large supports. Moreover, it is possible to extend the linear system (3) by adding further
linear equations to satisfy certain conditions on the basis, e.g., homogeneous boundary
conditions when solving Poisson’s equation and the biharmonic equation (see Sections 4.3
and 4.4). The case of two patches will be studied in the next section.

3. C1-smooth functions on bilinear two-patch geometries

In this section, we restrict the order of continuity to s = 1 and consider two-patch
configurations, where both patches are bilinearly parameterized, but represented as B-
spline patches of degree (d, d) for d ∈ {3, 4}. First, the dimension of the resulting space V
of the C1-smooth geometrically continuous isogeometric functions on such domains will
be analyzed. Next, a basis of V will be presented, providing explicit formulas for d = 4.
Finally, we discuss the generalization to more general two-patch domains.
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(p0, q0)

(p1, q1)

(p2, q2)

(p3, q3)

(0, 0)

(0, 1)

Ω(1)
Ω(2)

Figure 2: A two patch domain Ω consisting of two patches Ω(1) and Ω(2) that are defined by two bilin-
early parameterized geometry mappings G(1) and G(2). These mappings are determined by the 6 patch
vertices (0, 0), (0, 1), (p0, q0), (p1, q1), (p2, q2) and (p3, q3).

3.1. Bilinearly parameterized two-patch domains

We assume that the domain Ω consists of two patches Ω(1) and Ω(2), i.e. Ω = Ω(1)∪Ω(2),
see Fig. 2, which are glued together in such a way that they share the whole common edge
(shown in blue). We assume, that the two patches Ω(1) and Ω(2) are defined by two bilinear
geometry mappings G(1) and G(2). The shape of the patches is determined by the 8
parameters pi, qi, i = 0, . . . , 3, which form the shape vector in R8 that characterizes the
two-patch geometry. This vector is said to be feasible if the two patches are disjoint and
the bilinear parameterizations are both regular on [0, 1]2. The set F of feasible shape
vectors forms an open subset of R8. Indeed, for any pair of regular parameterization, the
determinants of the two Jacobians are strictly positive on [0, 1]2, and this remains valid
within a certain neighborhood of the associated shape vector in R8.

The two bilinear patches are represented as B-spline patches of degree (d, d) that possess
the knot vectors

( 0, . . . , 0︸ ︷︷ ︸
d+1−times

, 1
k+1

, . . . , 1
k+1︸ ︷︷ ︸

d−1−times

, 2
k+1

, . . . , 2
k+1︸ ︷︷ ︸

d−1−times

, . . . , k
k+1

, . . . , k
k+1︸ ︷︷ ︸

d−1−times

, 1, . . . , 1︸ ︷︷ ︸
d+1−times

),

in both parameter directions, where k ∈ N0. Such B-spline patches are obtained by

1. parameterizing the domains Ω(1) and Ω(2) as bilinear Bézier patches,

2. applying degree-elevation d− 1 times, and

3. inserting k equidistant inner knots of multiplicity d−1 in both parameter directions.

This construction guarantees that the common edge

G(1)(1, ξ) = G(2)(0, ξ), ξ = ξ
(1)
2 = ξ

(2)
2 ∈ [0, 1], (4)
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is parameterized identically by both patches. Consequently, an isogeometric function w is
continuous (C0-smooth) across this edge if and only if

W (1)(1, ξ) = W (2)(0, ξ). (5)

Let us now consider the tangent planes of the two graph surfaces F (1) and F (2) at the
points of the common edge. They are spanned by the derivative vectors

∂1F
(1)(1, ξ), ∂2F

(1)(1, ξ) and ∂1F
(2)(0, ξ), ∂2F

(2)(0, ξ),

respectively. The C1-smoothness of the isogeometric function w is guaranteed if the 3× 4
matrix formed by them has rank 2 only, since then the two tangent planes at any point
G(1)(1, ξ) are identical. Due to the identity

∂2F
(1)(1, ξ) = ∂2F

(2)(0, ξ),

which is implied by the continuity conditions (4) and (5), this is equivalent to

det
(
(∂1F

(1))(1, ξ), (∂1F
(2))(0, ξ), (∂2F

(2))(0, ξ)
)
= 0, ξ ∈ [0, 1], (6)

which is a well-known condition for first order geometric continuity between two surface
patches, cf. [11]. This condition leads us to the homogeneous linear system (3) for the

coefficients b
(1)
j and b

(2)
j of the function W (1) and W (2), respectively.

The basis of V consists of two different kinds of C1-smooth geometrically continuous
isogeometric functions. The basis functions of the first kind possess a support that is
contained in one of the two patches only. We consider the functions that are obtained
by composing a tensor-product B-spline on one of the patches with the inverse geometry
mappings,

x 7→

{
(ψ

(ℓ)
i ◦ (G(ℓ))−1)(x) if x ∈ Ω(ℓ)

0 otherwise
ℓ ∈ {1, 2}, (7)

where neither the support of the B-spline ψ
(ℓ)
i nor of its first derivatives intersect the

interface with the other patch. These functions have exactly one non-zero coefficient b
(ℓ)
j .

All coefficients b
(ℓ)
j that correspond to the control points of the common edge or one of

the neighboring columns of the two patches G(1) and G(2), are always zero. Therefore, the
number of these functions is equal to

2(d− 1 + k(d− 1))(d+ 1 + k(d− 1)). (8)

Note that the coefficients b
(ℓ)
j of these isogeometric functions are independent of the geom-

etry mappings.
In contrast, the basis functions of the second kind depend on the geometry mappings.

Here, the coefficients b
(ℓ)
j,i of the functions that do not correspond to the control points of

the common edge or one of the neighboring columns of the two B-spline patches are set to
zero. We have to choose suitable coefficients for the remaining (d+1+k(d−1)) coefficients
in order to obtain functions that are C1-smooth across the interface. The number of these
functions will be analyzed in the following section.
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3.2. Dimension of the space

We investigate the dimension of the space V of C1-smooth geometrically continuous
isogeometric functions on the above described bilinearly parameterized two-patch domains.
Recall that the number of functions of the first kind can be computed with help of for-
mula (8). It remains to analyze the number of linearly independent functions of the second
kind.

Expanding the determinant in (6) gives

γ(ξ)y(ξ) = α(ξ) r(ξ) + β(ξ) t(ξ), ξ ∈ [0, 1], (9)

where

r(ξ) = ∂2W
(1)(1, ξ) = ∂2W

(2)(0, ξ), t(ξ) = ∂1W
(1)(1, ξ) and y(ξ) = ∂1W

(2)(0, ξ)

with the coefficient functions

α(ξ) = ∂1G
(2)
1 (0, ξ) ∂1G

(1)
2 (1, ξ)− ∂1G

(1)
1 (1, ξ) ∂1G

(2)
2 (0, ξ),

β(ξ) = ∂2G
(1)
1 (1, ξ) ∂1G

(2)
2 (0, ξ)− ∂1G

(2)
1 (0, ξ) ∂2G

(1)
2 (1, ξ),

γ(ξ) = ∂2G
(1)
1 (1, ξ) ∂1G

(1)
2 (1, ξ)− ∂1G

(1)
1 (1, ξ) ∂2G

(1)
2 (1, ξ).

The coefficient functions α, β and γ are polynomials of degree 2, 1 and 1, respectively.
Eq. (9) leads to the following interesting observation. Since the functions t and y as well

as the coefficient functions are C1-smooth, the function r has to be C1-smooth whenever
α(ξ) 6= 0 holds. This is in contrast to the case α(ξ) = 0, which includes the C1-joint of two
graph surfaces, where C0-smoothness of the function r is sufficient.

Let us denote by Sd
k the C1-smooth spline space of degree d in [0, 1] with k uniform

inner knots. Then the inner knots possess multiplicity d−1 to characterize C1-smoothness.
We are interested in solutions

(r, t, y) ∈ S
d−1
k × S

d
k × S

d
k

of Eq. (9). These solutions form a linear space L.
The following lemma analyzes the dimension dimL for the case k = 0 in the generic

case. More precisely, it applies when choosing a shape vector satisfying α(i/(k + 1)) 6= 0
for i = 1, . . . , k and

p1p2 6= p0p3. (10)

The set of all feasible shape vectors satisfying this condition1 is denoted by F⋆. It is an
open subset of F and also dense in F .

Lemma 2. If k = 0, then the dimension of L is equal to 2d in the generic case.

1In a slightly different setting a similar condition was also formulated in [4, Definition 17].
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Figure 3: If two bilinear patches satisfy the genericity condition (10), then this condition is also satisfied
by any pair of patches along the interface that is generated by the knot insertion.

proof. We consider Eq. (9) in more detail. This equation is equivalent to a homogeneous
linear system

T b̃ = 0,

where b̃ is the vector of the 3d+2 coefficients of the three functions r, t, y. Since both sides
of (9) are polynomials of degree d + 1 we obtain a system consisting of d + 2 equations.
Consequently, the space of solutions has at least dimension 3d+ 2− (d+ 2) = 2d.

The dimension of L exceeds 2d only if all (d+2)×(d+2)-submatrices of T are singular.
Analyzing these determinants for d = 3, 4 confirms that at least one regular submatrix
exists if the genericity condition (10) is satisfied.

The dimension of L in the non-generic case can take several values, depending on
the specific configuration. A complete analysis of these situations is beyond the scope
of the present paper, since this would require to analyze a large number of particular
configurations. In a different setting, a similar discussion has been given in the recent
manuscript [4].

We use this result to compute the dimension of L for general values of k.

Lemma 3. The dimension of L is equal to 2d+ k(2d− 4) in the generic case.

proof. Consider a solution (r, t, y) of Eq. (9) in the generic case. Each pair of adjacent
spline segments of the two patches along the interface can be seen as an instance of a
configuration without inner knots (k = 0), see Fig. 3. A short computation confirms that
all these pairs are again characterized by generic shape vectors if they are derived from a
global generic one.

Consequently we can apply the previous lemma to each pair of patches. Thus, within
each knot span [ i

k+1
, i+1
k+1

], i ∈ {0, . . . , k}, we represent the functions (r, t, y) with respect
to some basis of this local space, using 2d(k + 1) coefficients.

In addition, the solution needs to satisfy C1-smoothness conditions at all knots. For
this it suffices to consider the first two components (r, t) only since their values uniquely
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determine the third one via (9). The C1-conditions between neighboring knot spans give
a homogeneous linear system consisting of 4k equations.

In the generic case, these equations are linearly independent, since the functions r and
t can interpolate any first-order Hermite data (i.e., function values and first derivatives) at
all points in the interior of the domain. Indeed, the 4 triplets of functions (r, t, y) ∈ L,

(γ(ξ)ξi, 0, α(ξ)ξi), i = 0, 1;
(0, γ(ξ)ξi, β(ξ)ξi), i = 0, 1;

(11)

are linearly independent and can be extended to a basis of L. These four functions (11) can
interpolate any first order Hermite data at all points satisfying γ(ξ0) 6= 0. The violation
of this condition causes the geometry mapping G(1) to be singular at (1, ξ0), cf. (9), while
regularity of the mapping is always assumed.

This confirms that the 4k equations for C1-smoothness are linearly independent, hence
the dimension of L is equal to 2d(k + 1)− 4k.

The number of linearly independent functions of the second kind is equal to dimL+ 1
since they can be obtained by integration from r, t and y. The additional degree of freedom
is the integration constant. In fact, for each triplet (r, t, y) ∈ L and integration constant
C we obtain an isogeometric function of the second kind by evaluating the expressions

W (1)(ξ
(1)
1 , ξ

(1)
2 ) =

∫ ξ
(1)
2

0

r(ζ)dζ + (ξ
(1)
1 − 1) t(ξ

(1)
2 ) + C,

W (2)(ξ
(2)
1 , ξ

(2)
2 ) =

∫ ξ
(2)
2

0

r(ζ)dζ + ξ
(2)
1 y(ξ

(2)
2 ) + C.

(12)

and subsequently eliminating the contributions of the functions of the first kind. More
precisely, we express the functions defined by these formulas in the B-spline basis and
replace the B-spline coefficients that are not located on the interface or in the neighboring
column with zeros. Any basis function of the second kind is uniquely characterized by the
triplet (r, t, y) ∈ L and the integration constant C in (12).

It should be noted that the basis functions of the second kind (and consequently all
functions in V ) are C2-smooth along the common interface in the generic case, since r
has to be C1-smooth. This is different from the case of C1-joint between the two patches,
where the functions are only required to be C1-smooth along the common interface.

Theorem 4. In the generic case the dimension of the space of C1-smooth geometrically
continuous isogeometric functions on bilinear two-patch domains is equal to

dim V = 2(d− 1 + k(d− 1))(d+ 1 + k(d− 1))︸ ︷︷ ︸
first kind

+ (2d+ 1) + (2d− 4)k︸ ︷︷ ︸
second kind

.

proof. The space V is the direct sum of the linear spaces spanned by the basis functions
of the first and second kind, as these two spaces have only the null function in common.
Indeed, any function f ∈ V has a unique decomposition into a linear combination of basis
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(a) (b) (c) (d)

Figure 4: Different two-patch domains which are defined by two biquartic Bézier patches G(1) and G(2).
The blue edge is the common edge of both patches. Only the red control points influence the dimension.
The black ones can be chosen arbitrarily.

k Domain (a) Domain (b) Domain (c) Domain (d)

0 10 10 9 3
1 16 16 13 3
2 22 21 17 3
3 28 26 21 3

k ≥ 1 10 + 6k 11 + 5k 9 + 4k 3

Table 1: The number of linearly independent C1-smooth geometrically continuous isogeometric basis
functions of the second kind for some particular values of k for the domains shown in Fig. 4.

functions of the first kind (defined by all B-spline coefficients that are not located on the
interface or in the neighboring column) and a function of the second kind, which is defined
by the remainder. Since any basis function of the second kind is uniquely characterized by
the triplet (r, t, y) ∈ L and the integration constant C in (12) we may complete the proof
using Lemma 3 and Eq. (8).

We present an example that shows how the number of linearly independent functions
of the second kind is influenced by the geometry of the two-patch domains for d = 4.

Example 5. Let d = 4 and let us consider four different pairs of geometry mappings
G(1) and G(2), which define computational domains Ω consisting of two quadrilateral
patches Ω(1) and Ω(2), see Fig. 4. The domains (a) and (b) consist of two symmetric
rectangles and trapezoids, respectively, which is in contrast to the domain (c), where the
patches are not symmetric. Finally, the domain (d) is represented by a non-bilinear pa-
rameterization.

For all instances (a)-(d) we obtain a different number of linearly independent functions
of the second kind. This number depends on the shape vector and is presented in Table 1.
We explicitly computed the number of these functions for several small values of k and
used these results to formulate conjectures for general values of k. The case (c) confirms
Theorem 4, which applies to the generic case, whereas case (a) is well known since it
exactly describes the C1-joint of two graph surfaces. It should be noted that non-bilinearly
parameterized domains may give only 3 functions (corresponding to the linear polynomials
on the domain) of the second kind, independently of the number of knots k.

In all cases, the dimension of V depends solely on the location of the red control points.
The remaining ones can be replaced without changing the number of linearly independent
functions of the first or second kind. ♦
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Figure 5: Bézier coefficients for two (left) and three (right) neighboring pairs of spline segments of W (1)

and W (2) along the associated common interface of the two patches. The geometry of these configurations
is specified by the points (p̂i, q̂i) and (p̃i, q̃i), i = 0, . . . , 3. The formulas in the appendix refer to these
configurations.

3.3. Basis of the space

We will describe the construction of a basis of the space V of C1-smooth geometrically
continuous isogeometric functions on the above described bilinearly parameterized two-
patch domains in more detail. As already explained in Section 3.1 our basis consists of two
different kinds of functions. The construction of the functions of the first kind have been
already described in (7). Now we focus on the functions of the second kind.

Our construction uses the Bézier representation of the k + 1 pairs of spline segments
of W (1) and W (2) along the associated common interface of the B-spline patches G(1) and
G(2). Since we consider only functions of the second kind only the Bézier coefficients along
the common edge and in the neighboring columns are non-zero.

We will denote these Bézier coefficients by ai and will identify the coefficients along the
common edge, thereby ensuring continuity. In total we obtain 3d(k+ 1) + 3 coefficients ai
which will be used in the construction. These coefficients are numbered from bottom
to top along the common interface. Fig. 5 shows examples of two and three pairs of
neighboring spline segments, where the coefficients are denoted by âi and ãi, respectively.
We introduced these additional variables in order to identify the coefficients in these special
cases, which serve as masks for the general one.

As observed in the previous subsection, we obtain d+2 linear equations for each pair of
Bézier elements to achieve C1-smoothness of the isogeometric functions along the common
interface. Ensuring C1-smoothness across inner knots of the patches requires 3k additional
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equations. We arrive at a linear system

H̃ a = 0, a = (ai)i∈{0,...,3d(k+1)+2} , (13)

similar to (3). Note that not all equations are linearly independent. Selecting a basis of

the nullspace of the matrix H̃ gives the coefficients of the basis functions of the second
kind.

We devised a procedure that creates a matrix which is as banded as possible and whose
columns form a basis of the null space for the degrees d = 3 and d = 4 considered in this
paper. The details of this method are described in [5]. This procedure revealed a pattern of
basis functions that allowed us to derive simple explicit formulas for the basis functions of
the second kind. In a subsequent step these formulas have been confirmed using symbolic
computation.

The appendix reports the resulting Bézier coefficients for degree d = 4 in the generic
case. (Similar formulas, not reported here due to space limitations, are available for d = 3
also.) We obtain four types of basis functions, see Fig. 6. The formulas in the appendix
specify the values of the coefficients with respect to the local geometry of the bilinear
two-patch configuration consisting of either two (types A, L, U) or three (type B) pairs
of neighboring spline segments, see Fig. 5. We use the tilde ˜ and the hat ˆ symbol to
identify the local shape parameters (pi, qi) and the corresponding Bézier coefficients ai.
The classification of these functions is based on their support:

A These basis functions are defined on two pairs of neighboring spline segments. There
are three subtypes A.1-A.3. The total number of these functions is 3k.

B These basis functions are defined on three pairs of neighboring spline segments. There
is only one subtype. The total number of these functions is k − 1.

L These five basis functions (subtypes L.1-L.5), which are present at the lower bound-
ary of the common interface, are defined on the first pair or the first two pairs of
neighboring spline segments.

U These five basis functions (subtypes U.1-U.5), which are present at the upper bound-
ary of the common interface, are defined on the last pair or the last two pairs of
neighboring spline segments.

It should be noted that all these basis functions are well defined for any generic con-
figuration. They are even well-behaved in the vicinity of non-generic configurations and
their coefficients are defined for any pair of regular bilinear patches.

We summarize our construction.

Theorem 6. Let d = 4 and k ≥ 1. The 9 + 4k basis functions of types A, B, L, U (see
appendix and Fig. 5) combined with the basis functions of the first kind defined in (7) form
a basis of the space V of C1-smooth geometrically continuous isogeometric functions in the
generic case.
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type A.1 type A.2 type A.3

type B type L.1 type L.2

type L.3 type L.4 type L.5

type U.1 type U.2 type U.3

type U.4 type U.5

Figure 6: All different types of basis functions of the second kind for d = 4 (differently colored on the two
patches Ω1 and Ω2). The formulas for the coefficients of these functions are given in the appendix.
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Figure 7: Three examples of two-patch domains Ω, where the common interfaces are not straight lines.
Each domain is defined by geometry mappings G(1) and G(2), such that the two-dimensional surface patch
consisting of G(1) and G(2) belongs to the space V × V , where V is the space of C1-smooth geometrically
continuous isogeometric functions on the domain from Fig. 8(a). Note that for each domain Ω the resulting
space of C1-smooth geometrically continuous isogeometric functions has at least the same dimension as V .

proof. The use of symbolic computation confirms that the coefficient vectors solve the
homogeneous linear system (13). The analysis of the coefficients of these vectors proves
linear independence in the generic case. Finally, the number of these functions plus the
number of basis functions of the first kind equals the dimension of the space V .

3.4. Beyond bilinear parameterizations

We describe two possible generalizations of our construction to more general two-patch
domains.

Modification of certain control points of the geometry mappings G(1) and G(2). As de-
scribed in Section 3.1 only the basis functions of the second kind depend on the initial ge-
ometry. Therefore, we can modify all control points of the bilinear geometry mappings G(1)

and G(2) (represented as B-spline patches), which do not affect the basis functions of the
second kind. More precisely, only the control points of the common interface and of the
neighboring columns of the two splines patches G(1) and G(2) have to be kept (i.e., they
have to comply with bilinear parameterizations) while the remaining control points can be
modified. This allows us to construct C1-smooth geometrically continuous isogeometric
functions on this particular class of two-patch domains that can have curved boundaries.
However, the common interface of the two-patch domain needs to be a straight line. An
example of a two-patch domain Ω, which can be parameterized by such geometry map-
pings G(1) and G(2), is visualized in Fig. 8(c).

Use of the space V × V to construct geometry mappings G(1) and G(2). Let G be the
two-dimensional surface patch which consists of the geometry mappings G(1) and G(2). By
choosing geometry mappings G(1) and G(2) such that G ∈ V × V , we can define a more
general two-patch domain Ω, for which the resulting space of C1-smooth geometrically
continuous isogeometric functions possesses at least the same dimension as V . In contrast
to the first strategy, this approach allows us to obtain C1-smooth geometrically continuous
isogeometric functions on two-patch domains, where the common interfaces between the
two patches are not necessarily straight lines, see Fig. 7.
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4. Numerical results

We generate sequences of nested spaces of C1-smooth geometrically continuous isogeo-
metric functions and use them for numerical experiments with L2 approximation, Poisson’s
equation and the biharmonic equation.

4.1. Nested spaces of C1-smooth geometrically continuous isogeometric functions

Let Ω = Ω(1) ∪ Ω(2) be a general two-patch domain defined by two bilinear geometry
mappings G(1) and G(2) which are represented as bicubic (d = 3) or biquartic (d = 4)
patches using degree elevation. Some of the control points (sufficiently far away from the
interface) are further modified in order to obtain more general geometries (see Section 3.4).

We first construct C1-smooth geometrically continuous isogeometric basis functions as
described in Section 3. Further, in order to obtain a finer space, we insert 2L − 1, L ∈ N,
equidistant inner knots of multiplicity d − 1 in both parameter directions, where L is
the level of the refinement. This gives C1-smooth geometrically continuous isogeometric
basis functions for a refined space, which will be denoted by Vh, where h = O(2−L).
The geometrically continuous isogeometric functions are globally C1-smooth and piecewise
C∞-smooth, and therefore belong to the space H2(Ω). Since all functions v′ ∈ Vh′ can be
represented as linear combinations of functions v ∈ Vh for h ≤ h′, we get a sequence of
nested spaces Vh ⊂ H2(Ω).

Later, for solving Poisson’s equation and the biharmonic equation, respectively, we
will need C1-smooth geometrically continuous isogeometric functions wi, which satisfy the
boundary conditions

wi(x) = 0 on ∂Ω

and

wi(x) =
∂wi

∂n
(x) = 0 on ∂Ω,

respectively. We obtain sequences of nested spaces by solving the linear system (3) with
additional linear equations for the corresponding boundary conditions. These spaces will
be denoted by V0,0h and V1,0h, respectively.

For d = 4, in addition to the suitable basis functions of the first kind, the space V0,0h
is spanned by all functions of types A.1, A.2, A.3, B, L.4, L.5, U.4 and U.5, and the space
V1,0h is spanned by all functions of types A.1, A.2, A.3 and B.

Example 7. We consider the three different computational domains Ω, shown in Fig. 8
(first row), which consist of two quadrilateral patches Ω(1) and Ω(2). For the domains (a)
and (b), the corresponding initial geometry mappings G(1) and G(2) are bilinear parame-
terizations, which are represented as Bézier patches of degree (d, d) for d = 3, 4. In case
of domain (c), the initial geometry mappings G(1) and G(2) are again Bézier patches of
degree (d, d) for d = 3, 4, but they are chosen in such a way that the control points of the
common edge and of the first neighboring columns are a part of a bilinear parameteriza-
tion. In addition, the figure also shows the different exact analytic solutions, which will be
used in the remaining examples in this section to verify the order of convergence.

Table 2 reports the number of isogeometric basis functions for various levels L of re-
finement and for the different boundary conditions. ♦
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(a) (b) (c)
Computational domains Ω

Graphs of functions z on Ω

Graphs of functions u on Ω with the property u = 0 on ∂Ω.

Graphs of functions ũ on Ω with the property ũ = ∂ũ

∂n
= 0 on ∂Ω.

Figure 8: Three different two-patch domains Ω (first row) on which different functions are defined, which
are to be approximated by L2 norm minimization (second row) in Example 8, or used as exact solutions
(third row) for Poisson’s equation in Example 9, or as exact solutions (fourth row) for the biharmonic
equation in Example 10.

In the following subsections we present three possible applications of these isogeometric
functions over two-patch domains, in order to demonstrate their potential for IgA on the
basis of several examples.

4.2. L2 approximation

Let z : Ω → R be a smooth function defined on a two-patch domain Ω = Ω(1) ∪ Ω(2).
In addition, let {wi}i∈I for I = {1, 2, . . .dimVh} be a set of C1-smooth geometrically
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b.c. L2 approximation Poisson’s equation Biharmonic equation
Bicubic Biquartic Bicubic Biquartic Bicubic Biquartic

L # patches # bfct # k2 # bfct # k2 # bfct # k2 # bfct # k2 # bfct # k2 # bfct # k2

0 2 23 7 39 9 5 1 15 3 - -
1 8 57 9 109 13 27 3 67 7 - 35 3
2 32 173 13 357 21 119 7 279 15 75 3 211 11
3 128 597 21 1285 37 495 15 1135 31 403 11 995 27
4 512 2213 37 4869 69 2015 31 4575 63 1827 27 4291 59
5 2048 8517 69 19849 133 8127 63 18367 127 7747 59 17795 123

Table 2: The number of C1-smooth geometrically continuous isogeometric basis functions (# bfct: in total,
# k2: second kind) for each level L for the three domains in Fig. 10 without boundary conditions (for L2

approximation) and with homogeneous boundary conditions of order 0 and 1 (for Poisson’s equation and
for the biharmonic equation).

continuous isogeometric functions, which form a basis of a subspace Vh of H2(Ω). We
approximate the function z by the function

uh(x) =
∑

i∈I
ciwi(x), ci ∈ R,

using the least squares approach, i.e., we compute the coefficients {ci}i∈I such that

‖uh − z‖20 =

∫

Ω

(uh(x)− z(x))2dx → min
ci, i∈I

. (14)

The minimization problem (14) can be formulated as a system of linear equations
Kc = z for the unknown coefficients c = (ci)i∈I , where the elements of the (mass) matrix
K = (ki,j)i,j∈I and of the vector z = (zi)i∈I are

ki,j =

∫

Ω

wi(x)wj(x)dx and zi =

∫

Ω

z(x)wi(x)dx.

Since the functions wi are given as in (1) the entries ki,j and zi can be rewritten as

ki,j = k
(1)
i,j + k

(2)
i,j , k

(ℓ)
i,j =

∫

[0,1]2
W

(ℓ)
i (ξ(ℓ))W

(ℓ)
j (ξ(ℓ))| det J (ℓ)(ξ(ℓ))| dξ(ℓ), ℓ = 1, 2,

and

zi = z
(1)
i + z

(2)
i , z

(ℓ)
i =

∫

[0,1]2
z(G(ℓ)(ξ(ℓ)))W

(ℓ)
i (ξ(ℓ))| detJ (ℓ)(ξ(ℓ))| dξ(ℓ), ℓ = 1, 2,

where J (ℓ) is the Jacobian of G(ℓ).

Example 8. We use the isogeometric basis functions on the three domains described in
the previous example to apply L2 approximation to smooth functions, which are defined
on the domains (a)-(c).

More precisely, we approximate for all three domains the same function

z(x1, x2) = 2 cos(2x1) sin(2x2), (15)
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Bicubic Biquartic
Domain (a) Domain (b) Domain (c) Domain (a) Domain (b) Domain (c)

L ||z−u
h
||0

||z||0
c.r. ||·||0

||z−u
h
||0

||z||0
c.r. ||·||0

||z−u
h
||0

||z||0
c.r. ||·||0

||z−u
h
||0

||z||0
c.r. ||·||0

||z−u
h
||0

||z||0
c.r. ||·||0

||z−u
h
||0

||z||0
c.r. ||·||0

0 0.62276 - 0.60175 - 0.44238 - 0.09259 - 0.36954 - 0.09068 -
1 0.05315 3.5505 0.18912 1.67 0.04593 3.2679 0.0157 2.5603 0.03667 3.333 0.00987 3.1992
2 0.00614 3.114 0.01192 3.9879 0.0054 3.0917 0.00042 5.235 0.00272 3.7524 0.00031 4.9781
3 0.0005 3.6293 0.00126 3.2469 0.00038 3.8381 9.6 10−6 5.438 0.00005 5.6651 8.3 10−6 5.2331
4 0.00004 3.7407 0.0001 3.5831 0.00003 3.7617 2.6 10−7 5.2044 1.3 10−6 5.3824 2.3 10−7 5.1522
5 2.5 10−6 3.9087 7.4 10−6 3.8275 1.9 10−6 3.8892 7.5 10−9 5.1122 3.6 10−8 5.1611 6.7 10−9 5.1263

Table 3: The relative H0-errors with the estimated convergence rates (c.r.; the dyadic logarithm of the
ratio of two consecutive relative errors) obtained by approximating the function z, defined in (15), using
L2 norm minimization (see Example 8 and Fig. 8, first and second row).

restricted to the different domains, see Fig. 8 (second row). The resulting H0-errors (i.e.
L2-errors) and convergence rates for the different level L of refinement are presented in
Table 3. The numerical results indicate that the convergence rate is optimal with respect
to the H0-norm, which is O(h4) and O(h5) for bicubic and biquartic cases, respectively. ♦

4.3. Poisson’s equation

We consider again a two-patch domain Ω = Ω(1) ∪ Ω(2), and a set {wi}i∈I for I =
{1, 2, . . .dimV0,0h} of C1-smooth geometrically continuous isogeometric functions, which
form a basis of a subspace V0,0h ⊂ H1

0 (Ω). We consider the following problem for the
unknown function u over the computational domain Ω,

{
△u(x) = f(x) on Ω
u(x) = 0 on ∂Ω

(16)

with f ∈ H0(Ω). Using the weak formulation and applying isogeometric Galerkin projec-
tion (cf. [9]) leads to a system of linear equations

Sc = f

for the unknown coefficients c = (ci)i∈I , where the entries of the stiffness matrix S =
(si,j)i,j∈I and of the load vector f = (fi)i∈I are given by

si,j =

∫

Ω

(∇wi(x))
T∇wj(x)dx and fi =

∫

Ω

f(x)wi(x)dx,

respectively. Using the isogeometric approach, we rewrite these integrals as

si,j = s
(1)
i,j + s

(2)
i,j , s

(ℓ)
i,j =

∫

[0,1]2
(∇W

(ℓ)
i (ξ(ℓ)))TN (ℓ)(ξ(ℓ))∇W

(ℓ)
j (ξ(ℓ)) dξ(ℓ), ℓ = 1, 2,

and

fi = f
(1)
i + f

(2)
i , f

(ℓ)
i =

∫

[0,1]2
f(G(ℓ)(ξ(ℓ)))W

(ℓ)
i (ξ(ℓ))| det J (ℓ)(ξ(ℓ))| dξ(ℓ), ℓ = 1, 2,

with

N (ℓ)(ξ(ℓ)) =
(
J (ℓ)(ξ(ℓ))

)−T (
J (ℓ)(ξ(ℓ))

)−1

| detJ (ℓ)(ξ(ℓ))|, ℓ = 1, 2.
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Domain (a) Domain (b) Domain (c)
||u−u

h
||0

||u||0
c.r. ||·||0

||u−u
h
||1

||u||1
c.r. ||·||1

||u−u
h
||0

||u||0
c.r. ||·||0

||u−u
h
||1

||u||1
c.r. ||·||1

||u−u
h
||0

||u||0
c.r. ||·||0

||u−u
h
||1

||u||1
c.r. ||·||1

L Bicubic
0 0.76824 - 0.79715 - 0.85307 - 0.78634 - 0.77419 - 0.79388 -
1 0.0312 4.6219 0.06712 3.5701 0.15608 2.4504 0.21366 1.8798 0.08635 3.1645 0.16776 2.2425
2 0.00145 4.4272 0.00762 3.1382 0.0053 4.88 0.01752 3.6084 0.01184 2.867 0.03805 2.1406
3 0.00009 4.0313 0.00097 2.9709 0.00021 4.625 0.00177 3.3082 0.00055 4.4407 0.00402 3.2438
4 5.7 10−6 3.9702 0.00012 2.9675 0.00001 4.2529 0.00021 3.0843 0.00003 4.4278 0.00048 3.0505
5 3.6 10−7 3.9765 0.00002 2.981 6.8 10−7 4.0479 0.00003 3.014 1.5 10−6 4.0772 0.00006 2.9304

L Biquartic
0 0.01303 - 0.0256 - 0.16407 - 0.20565 - 0.06356 - 0.10765 -
1 0.00059 4.4648 0.00207 3.6269 0.0064 4.6792 0.01542 3.7376 0.01069 2.5717 0.03546 1.6022
2 0.00002 4.8915 0.00013 3.9454 0.0002 5.0164 0.00094 4.0393 0.00055 4.2792 0.00341 3.3765
3 5.6 10−7 5.1539 7.8 10−6 4.1024 5.3 10−6 5.2141 0.00005 4.2045 0.00002 4.9272 0.00023 3.9074
4 1.4 10−8 5.3021 4.3 10−7 4.18 1.3 10−7 5.3376 2.6 10−6 4.2651 5 10−7 5.1786 0.00001 4.0898
5 3.5 10−10 5.3383 2.4 10−8 4.1744 3.2 10−9 5.3586 1.4 10−7 4.2482 1.3 10−8 5.2902 7.5 10−7 4.1526

Table 4: The relative Hi-errors, i = 0, 1, with the corresponding estimated convergence rates (c.r.: the
dyadic logarithm of the ratio of two consecutive relative errors) obtained by solving Poisson’s equations
for different exact solutions u, for the domains (a)-(c) (see Example 9 and Fig. 8, first and third row).

Example 9. We consider again the three computational domains, which are shown in Fig. 8
(first row). For each of the domains (a)-(c) we consider a different right side function f of
Poisson’s equation (16), which are obtained by differentiating

ua(x1, x2) = 10−
5
2x2
(

1
12
x1+x2)(4x1+x2− 14

)(
1
3
x1+x2− 3

)(
1
8
x1−x2+3

)(
9
4
x1+x2+

13
2

)
,

ub(x1, x2) =
1

20
√
10

(
18
25
x1 − x2

)
(x1 + x2)

(
3 + 21

20
x1 − x2

) (
3− 25

48
x1 − x2

)
(
19
10

+ 21
50
x1 + x2

) (
290
93

− 110
93
x1 + x2

)
,

and

uc(x1, x2) =
1

100
√
2

(
2
(
128327
48672

+ x1
)
+
(
x2 −

185
156

)2)(
2
(
215
72

− x1
)
+
(
x2 −

11
6

)2)

(
1
9
x1 + x2

) (
3
10
x1 − x2

) (
3 + 1

7
x1 − x2

) (
3− 1

3
x1 − x2

)
,

respectively. The three functions satisfy the boundary conditions u = 0 on ∂Ω, and are
visualized in Fig. 8 (third row). The resulting H i-errors, i = 0, 1, with the corresponding
convergence rates are presented in Table 4. The numerical results indicate convergence
rates of O(h4−i) and O(h5−i) in the H i-norms, i = 0, 1, for the bicubic and the biquartic
case, respectively. ♦

4.4. Biharmonic equation

Higher order smoothness of isogeometric elements is particularly advantageous for solv-
ing high order partial differential equations. An example of such an equation is (the weak
formulation of) the biharmonic equation, where C1-smoothness of isogeometric functions
is an advantage, since test functions from the space H2(Ω) are required (cf. [8, 22]).

Let {wi}i∈I for I = {1, 2, . . .dimV1,0h} be a set of C1-smooth geometrically continuous
isogeometric functions, which form a basis of a subspace V1,0h of H2

0 (Ω), where Ω = Ω(1) ∪
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Ω(2) is a two-patch domain. As a model problem we consider the first biharmonic boundary
value problem for the unknown function u over the computational domain Ω,

{
△2u(x) = f(x) on Ω

u(x) = ∂u
∂n

(x) = 0 on ∂Ω
, (17)

with f ∈ H0(Ω). Using the weak formulation, we compute u ∈ H2
0 (Ω) such that

∫

Ω

△u(x)△v(x)dx =

∫

Ω

f(x)v(x)dx

for all v ∈ H2
0 (Ω) (see [22]). Using the Galerkin projection we find vh ∈ V1,0h by solving

the system of equations

∫

Ω

△uh(x)△vh(x)dx =

∫

Ω

f(x)vh(x)dx

for all vh ∈ V1,0h, which leads to a system of linear equations. More precisely, we are solving
the linear system Sc = f , for the coefficients of

uh(x) =
∑

i∈I
ciwi(x),

where

si,j =

∫

Ω

△wi(x)△wj(x)dx and fi =

∫

Ω

f(x)wi(x) dx,

respectively. After some computations we arrive at the following formulas for the elements
of the stiffness matrix and the load vector for the two-patch isogeometric case:

si,j = s
(1)
i,j +s

(2)
i,j , s

(ℓ)
i,j =

∫

[0,1]2
tr
(
M̃

(ℓ)
i (ξ(ℓ))

)
tr
(
M̃

(ℓ)
j (ξ(ℓ))

) 1

| det J (ℓ)(ξ(ℓ))|
dξ(ℓ), ℓ = 1, 2,

and

fi = f
(1)
i + f

(2)
i , f

(ℓ)
i =

∫

[0,1]2
f(G(ℓ)(ξ(ℓ)))W

(ℓ)
i (ξ(ℓ))| detJ (ℓ)(ξ(ℓ))| dξ(ℓ), ℓ = 1, 2,

with

M̃
(ℓ)
i (ξ(ℓ)) =

(
J (ℓ)(ξ(ℓ))

)−T

M
(ℓ)
i (ξ(ℓ))

(
J (ℓ)(ξ(ℓ))

)−1

,

where M
(ℓ)
i =

(
m

(ℓ)
i; r,s

)
r,s=1,2

is given by

m
(ℓ)
i; r,s =

(
∂2F

(ℓ)
i

∂ξ
(ℓ)
r ∂ξ

(ℓ)
s

(ξ(ℓ)))T ·

(
∂F

(ℓ)
i

∂ξ
(ℓ)
1

(ξ(ℓ))×
∂F

(ℓ)
i

∂ξ
(ℓ)
2

(ξ(ℓ))

))
.
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Bicubic Biquartic
||u−u

h
||0

||u||0
c.r. ||·||0

||u−u
h
||1

||u||1
c.r. ||·||1

||u−u
h
||2

||u||2
c.r. ||·||2

||u−u
h
||0

||u||0
c.r. ||·||0

||u−u
h
||1

||u||1
c.r. ||·||1

||u−u
h
||2

||u||2
c.r. ||·||2

L Domain (a)
1 - - - - - - 0.03487 - 0.0825 - 0.21691 -
2 0.0854 - 0.10026 - 0.19868 - 0.01122 1.6367 0.01529 2.4316 0.04748 2.1916
3 0.01023 3.0619 0.01322 2.9231 0.04907 2.0175 0.00068 4.0498 0.00118 3.6939 0.0077 2.6253
4 0.00099 3.3717 0.00147 3.1638 0.01207 2.0237 0.00003 4.6554 0.00006 4.2169 0.00095 3.0169
5 0.00007 3.9088 0.00013 3.5344 0.00286 2.0758 8.8 10−7 4.9244 3.2 10−6 4.3237 0.00011 3.0704

L Domain (b)
1 - - - - - - 0.28053 - 0.36533 - 0.45296 -
2 0.26249 - 0.35642 - 0.46964 - 0.0067 5.3871 0.0182 4.327 0.05738 2.9808
3 0.00751 5.1264 0.01511 4.5602 0.07582 2.6309 0.00059 3.6641 0.00235 2.9509 0.01407 2.0271
4 0.0007 3.4276 0.00252 2.5817 0.0214 1.825 0.00002 4.9899 0.00015 3.935 0.00187 2.9112
5 0.00004 4.0957 0.00026 3.3062 0.00514 2.0572 3.7 10−7 5.4819 7.9 10−6 4.2917 0.0002 3.206

L Domain (c)
1 - - - - - - 0.15127 - 0.19195 - 0.34591 -
2 0.23492 - 0.26927 - 0.39737 - 0.00435 5.12 0.01153 4.0569 0.06199 2.4803
3 0.0037 5.9883 0.00827 5.0256 0.06516 2.6084 0.00141 1.6242 0.00273 2.0813 0.01605 1.9491
4 0.00149 1.3077 0.00266 1.637 0.01976 1.7218 0.00008 4.076 0.00022 3.6083 0.00284 2.499
5 0.00014 3.4688 0.0003 3.1319 0.00491 2.0072 3.2 10−6 4.7036 0.00001 4.1635 0.00036 2.9718

Table 5: The relative Hi-errors, i = 0, 1, 2, with the corresponding estimated convergence rates (c.r.;
the dyadic logarithm of the ratio of two consecutive relative errors) obtained by solving the biharmonic
equations for different exact solutions ũ, for the domains (a)-(c) (see Example 10 and Fig. 8, first and
fourth row).

Example 10. We numerically solve the biharmonic equation (17) over the same three
computational domains Ω with the same associated initial geometry mappings G(1) and
G(2) as in Example 8 and 9 (see Fig. 8, first row). We use the nested spaces V1,0h ⊂ H2

0 (Ω)
of C1-smooth geometrically continuous isogeometric functions for degree d = 3, 4, where
the number of resulting functions (for each level L) are presented in Table 2. Note, that for
the bicubic and the biquartic case, there do not exist non-trivial geometrically continuous
isogeometric functions for low levels L, due to the boundary conditions. Therefore, the
coarsest level starts with L = 2 and L = 1 for d = 3 and d = 4, respectively.

The right-hand side functions f of the biharmonic equation (17) for the domains (a)-
(c) are obtained by differentiating the functions ũ = u2, where u are the corresponding
functions from Example 9. These functions fulfill the boundary conditions ũ = ∂ũ

∂n
= 0 on

∂Ω, and are visualized in Fig. 8 (fourth row). The resulting H i-errors, i = 0, 1, 2, with the
corresponding convergence rates are presented in Table 5. The numerical results indicate
a convergence rate of O(h2) and O(h3) in the H2-norm for the bicubic and the biquartic
case, respectively. ♦

Example 11. Table 6 reports the condition numbers κ and the estimated growth rate
for the three matrices considered in the numerical experiments with domain (a) in Fig. 8
and d = 4. Diagonal scaling was applied to all matrices, cf. [6]. These numerical results
indicate that using geometric continuity does not have much impact on the growth rate of
the condition numbers. ♦
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L2 approximation Poisson’s equation Biharmonic equation

L κ(D− 1

2 KD− 1

2 ) rate κ(D− 1

2 SD− 1

2 ) rate κ(D− 1

2 SD− 1

2 ) rate

1 4770.34 - 127.35 - 10.85 -
2 5351.16 0.1658 184.43 0.5343 115.2 3.4085
3 5307.29 −0.0119 210.51 0.1908 2041.25 4.1472
4 5254.07 −0.0145 224.08 0.0901 35038.22 4.1014
5 5248.63 −0.0014 723.73 1.6914 587462.26 4.0675

Table 6: Condition numbers κ with the estimate growth rate (the dyadic logarithmic of the ratio of two
consecutive condition numbers), see Example 11 for details.

5. Conclusion

We discussed Cs-smooth geometrically continuous isogeometric functions defined on
multi-patch domains Ω ⊂ R2. Their construction is based on the observation that the
geometric smoothness of the graph of such a function is equivalent to the smoothness of
the function over Ω. We also sketched a procedure to construct a basis for the space of
Cs-smooth geometrically continuous isogeometric functions. Special attention was paid to
the case of bilinearly parameterized two-patch geometries, where we were able to present
the construction in more detail.

The potential of the resulting geometrically continuous isogeometric functions has been
demonstrated by several examples, including L2 approximation, Poisson’s equation and the
biharmonic equation. For these examples, we considered different two patch-domains Ω
consisting of two quadrilateral patches, for which we generated geometrically continuous
isogeometric functions of order 1 and degree d = 3, 4. For all three different applications,
the numerical results indicated optimal convergence rates.

This is different from the experiments reported in [16], where a reduction of the order
of convergence for geometrically continuous discretizations has been observed. A possible
explanation is the fact that the effect of geometric continuity in those experiments was
concentrated at an extraordinary vertex, while we spread it out along the entire interface
between two patches. In fact, many constructions for geometrically continuous surfaces
in geometric modeling aim at limiting the effect of geometric continuity to the vicinity of
extraordinary vertices [18], as it is then possible to use standard constructions everywhere
except at very few places. However, our experiments seem to indicate that spreading
out the effect of geometric continuity is more appropriate for applications in isogeometric
analysis, in order to maintain the approximation power. Moreover, the latter approach
makes it also simpler to obtain nested spaces by h-refinement.

The detailed construction of the basis functions presented in this paper is restricted
to two-patch domains. In order to overcome this limitation, we are currently working on
using our general framework to generate C1-smooth geometrically continuous isogeometric
functions for multi-patch domains with extraordinary vertices. A detailed investigation of
the structure of the resulting spaces of geometrically continuous isogeometric functions is
of interest, too. On the one hand we could generate basis functions with a small support,
if feasible. On the other hand we aim at finding explicit formulas, depending on the initial
geometry, for the coefficients of the isogeometric functions. Related results have recently
become available as a technical report [4], especially focusing on higher degrees and special
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configurations.
Another possible topic of future work is a theoretical investigation of the approximation

power of geometrically continuous isogeometric functions. For bilinearly parameterized
two-patch domains, the space of these functions contains the spline space of the C1-smooth
spline functions of degree d on the quadrangular partition of the domain determined by
the knot lines in the parameter domains. There exist dimension results for this type of
spline spaces [15] but the approximation power has not yet been investigated.

Finally, the extension of the concept of geometrically continuous isogeometric functions
to three-dimensional multi-patch domains should be considered.

Acknowledgments. Supported by the Austrian Research Fund (FWF) through Grant
NFN (National Research Network) S117 “Geometry +Simulation”.

Appendix A. Basis functions of the second kind for d = 4

We provide simple explicit formulas for the Bézier coefficients of the basis functions
of the second kind in the generic case for d = 4 and bilinearly parameterized two-patch
domains Ω (see Section 3.3). These basis functions have been categorized into 4 types,
see Fig. 6, according to the number of spline segments in their support. The values of the
Bézier coefficients are given with respect to the corresponding local geometry specified in
Fig. 5, where the left and right geometry applies to types A, L, U and B, respectively. All
coefficients not specified in the equations below take the value zero.

• Type A.1:

â6 = 1, â8 =
p̂2
p̂0
, â9 = 1 + 3p̂1

4p̂0
, â11 =

4p̂2+3p̂3
4p̂0

, â12 =
p̂0+p̂1
2p̂0

, â14 =
p̂2+p̂3
2p̂0

, â15 =
p̂1
4p̂0
,

â17 =
p̂3
4p̂0
.

• Type A.2:

â8 =
−p̂2q̂0+p̂0q̂2

2p̂0
, â9 =

−3p̂1p̂3q̂0+p̂0p̂3(2−q̂0+3q̂1)+p̂20(−2+q̂3)

8p̂0p̂3
, â10 = 1,

â11 =
−p̂3(4p̂2+3p̂3)q̂0+p̂0(p̂2(−2+q̂3)+p̂3(2+3q̂2+3q̂3))

8p̂0p̂3
,

â12 =
−p̂1p̂3q̂0+p̂0(−p̂3(−4+q̂0)+p̂1(−2+q̂3))+p̂20(−2+q̂3)

4p̂0p̂3
,

â13 = 1, â14 =
−p̂3(p̂2+p̂3)q̂0+p̂0(p̂2(−2+q̂3)+p̂3(2+q̂3))

4p̂0p̂3
,

â15 =
−p̂1p̂3q̂0+p̂0(p̂3(14−3q̂0−3q̂1)+4p̂1(−2+q̂3))+3p̂20(−2+q̂3)

8p̂0p̂3
,

â16 = 1, â17 =
−p̂23q̂0+p̂0(3p̂2(−2+q̂3)+p̂3(6−3q̂2+q̂3))

8p̂0p̂3
, â18 =

−p̂3(−2+q̂1)+p̂1(−2+q̂3)
2p̂3

.

• Type A.3:

â9 =
p̂0
4p̂3
, â11 =

p̂2
4p̂3
, â12 =

p̂0+p̂1
2p̂3

, â14 =
p̂2+p̂3
2p̂3

, â15 =
3p̂0+4p̂1

4p̂3
, â17 = 1 + 3p̂2

4p̂3
, â18 =

p̂1
p̂3
,

â20 = 1.
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• Type B:

ã11 =
−p̃2q̃0+p̃0q̃2

16p̃0
, ã12 =

−p̃1q̃0+p̃0q̃1
12p̃0

, ã13 =
1
4
, ã14 =

−2p̃2q̃0−p̃3q̃0+p̃0(2q̃2+q̃3)
12p̃0

,

ã15 =
−p̃1q̃0+p̃0q̃1

6p̃0
, ã16 =

1
2
, ã17 =

−13p̃2q̃0−8p̃3q̃0+13p̃0q̃2+8p̃0q̃3
48p̃0

,

ã18 =
−2p̃1p̃3q̃0+p̃0(p̃3(9−2q̃0+q̃1)+p̃1(−3+q̃3))+2p̃20(−3+q̃3)

12p̃0p̃3
, ã19 = 1,

ã20 =
−p̃3(p̃2+2p̃3)q̃0+p̃0(2p̃2(−3+q̃3)+p̃3(6−q̃2+2q̃3))

12p̃0p̃3
,

ã21 =
p̃3(63−8q̃0−13q̃1)+8p̃0(−3+q̃3)+13p̃1(−3+q̃3)

48p̃3
, ã22 =

1
2
,

ã23 =
−p̃3(−3+q̃2)+p̃2(−3+q̃3)

6p̃3
, ã24 =

−p̃3(−9+q̃0+2q̃1)+p̃0(−3+q̃3)+2p̃1(−3+q̃3)
12p̃3

, ã25 =
1
4
,

ã26 =
−p̃3(−3+q̃2)+p̃2(−3+q̃3)

12p̃3
, ã27 =

−p̃3(−3+q̃1)+p̃1(−3+q̃3)
16p̃3

.

• Type L.1:

â0 =
−(p̂2+p̂3)(−1+q̂0)+p̂0(−2+q̂2+q̂3)

p̂2+p̂3
, â1 = 1, â2 =

p̂3−p̂3q̂2+p̂2(−1+q̂3)
p̂2+p̂3

,

â3 =
−(p̂2+p̂3)(−2+q̂0+q̂1)+p̂0(−2+q̂2+q̂3)+p̂1(−2+q̂2+q̂3)

8(p̂2+p̂3)
.

• Type L.2:

â1 = 1, â2 =
p̂0+p̂2(−1+q̂0)−p̂0q̂2

p̂0
, â3 =

p̂0+p̂1(−1+q̂0)−p̂0q̂1
8p̂0

, â5 =
(p̂2+p̂3)(−1+q̂0)−p̂0(−2+q̂2+q̂3)

8p̂0
.

• Type L.3:

â2 =
−p̂2q̂0+p̂0q̂2

p̂0
, â3 = −

p̂1(p̂2+p̂3)q̂0+p̂0(p̂2+p̂3)(−6+6q̂0−q̂1)−6p̂20(−2+q̂2+q̂3)

8p̂0(p̂2+p̂3)
, â4 = 1,

â5 =
−(p̂2+p̂3)2q̂0+p̂0(p̂3(6−5q̂2+q̂3)+p̂2(−6+q̂2+7q̂3))

8p̂0(p̂2+p̂3)
,

â6 =
−(p̂2+p̂3)(−2+q̂0+q̂1)+p̂0(−2+q̂2+q̂3)+p̂1(−2+q̂2+q̂3)

4(p̂2+p̂3)
.

• Type L.4:
â3 = 1, â5 =

p̂2
p̂0
, â6 =

p̂0+p̂1
3p̂0

, â8 =
p̂2+p̂3
3p̂0

.

• Type L.5:

â5 =
3(−p̂2q̂0+p̂0q̂2)

4p̂0
, â6 =

−p̂1p̂3q̂0+p̂0p̂3(2−q̂0+q̂1)+p̂20(−2+q̂3)

4p̂0p̂3
, â7 = 1,

â8 =
−p̂3(p̂2+p̂3)q̂0+p̂0(p̂2(−2+q̂3)+p̂3(2+q̂3))

4p̂0p̂3
, â9 =

p̂3(14−4q̂0−3q̂1)+4p̂0(−2+q̂3)+3p̂1(−2+q̂3)
16p̂3

,

â10 =
1
2
, â11 =

−p̂3(−2+q̂2)+p̂2(−2+q̂3)
4p̂3

, â12 =
−p̂3(−4+q̂0+q̂1)+p̂0(−2+q̂3)+p̂1(−2+q̂3)

8p̂3
, â13 =

1
4
,

â14 =
−p̂3(−2+q̂2)+p̂2(−2+q̂3)

8p̂3
, â15 =

−p̂3(−2+q̂1)+p̂1(−2+q̂3)
16p̂3

.

• Type U.1:

â23 =
−(p̂2+p̂3)(−2+q̂0+q̂1)+p̂0(−2+q̂2+q̂3)+p̂1(−2+q̂2+q̂3)

8(p̂0+p̂1)
, â24 =

p̂1−p̂1q̂0+p̂0(−1+q̂1)
p̂0+p̂1

,

â25 = 1, â26 =
−p̂3(−2+q̂0+q̂1)+p̂0(−1+q̂3)+p̂1(−1+q̂3)

p̂0+p̂1
.
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• Type U.2:

â21 =
p̂0+p̂1+p̂3(−2+q̂0+q̂1)−p̂0q̂3−p̂1q̂3

8p̂3
, â23 =

p̂2+p̂3(−1+q̂2)−p̂2q̂3
8p̂3

, â24 =
p̂1+p̂3(−1+q̂1)−p̂1q̂3

p̂3
,

â25 = 1.

• Type U.3:

â20 =
−(p̂2+p̂3)(−2+q̂0+q̂1)+p̂0(−2+q̂2+q̂3)+p̂1(−2+q̂2+q̂3)

4(p̂0+p̂1)
,

â21 =
p̂1(−p̂3(−10+7q̂0+q̂1)+p̂1(−2+q̂3))+p̂0(−p̂3(2+q̂0−5q̂1)+2p̂1(−2+q̂3))+p̂20(−2+q̂3)

8(p̂0+p̂1)p̂3
, â22 = 1,

â23 =
−6p̂23(−2+q̂0+q̂1)+p̂0(−p̂3(4+q̂2−6q̂3)+p̂2(−2+q̂3))+p̂1(−p̂3(4+q̂2−6q̂3)+p̂2(−2+q̂3))

8(p̂0+p̂1)p̂3
,

â24 =
−p̂3(−2+q̂1)+p̂1(−2+q̂3)

p̂3
.

• Type U.4:
â18 =

p̂0+p̂1
3p̂3

, â20 =
p̂2+p̂3
3p̂3

, â21 =
p̂1
p̂3
, â23 = 1.

• Type U.5:

â11 =
−p̂2q̂0+p̂0q̂2

16p̂0
, â12 =

−p̂1q̂0+p̂0q̂1
8p̂0

, â13 =
1
4
, â14 = − p̂2q̂0+p̂3q̂0−p̂0(q̂2+q̂3)

8p̂0
,

â15 =
−p̂1q̂0+p̂0q̂1

4p̂0
, â16 =

1
2
, â17 =

−3p̂2q̂0−4p̂3q̂0+3p̂0q̂2+4p̂0q̂3
16p̂0

,

â18 =
−p̂1p̂3q̂0+p̂0(−p̂3(−4+q̂0)+p̂1(−2+q̂3))+p̂20(−2+q̂3)

4p̂0p̂3
, â19 = 1,

â20 =
−p̂23q̂0+p̂0(p̂2(−2+q̂3)+p̂3(2−q̂2+q̂3))

4p̂0p̂3
, â21 =

3(−p̂3(−2+q̂1)+p̂1(−2+q̂3))
4p̂3

.
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