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Abstract. This is a study of a problem in geodesy with methods from com-

plex algebraic geometry: for a fixed number of measure points and target

points at unknown position in the Euclidean plane, we study the problem of

determining their relative position when the viewing angles between target

points seen from measure points are known. In particular, we determine all

situations in which there is more than one solution.

Introduction

Let t > 0 and m > 0 be integers. We consider the problem of identifying the

relative position of t + m unknown points p1, . . . , pt, q1, . . . , qm in the Euclidean

plane from the angles ]qj (pi, pk), for 1 ≤ i < k ≤ t and 1 ≤ j ≤ m. We call

p1, . . . , pt the target points and q1, . . . , qm the measure points (see Figure 1).
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Figure 1. An example with t = 4 and m = 2, namely with four

target points p1, . . . , p4 and two measure points q1, q2.

Apparently, all angles can be computed from the angles ]qj (p1, pk) for 2 ≤ k ≤ t
and 1 ≤ j ≤ m, since ]qj (pi, pk) = −]qj (p1, pi) + ]qj (p1, pk). So the dimension of

given data is m(t− 1), and the dimension of the unknown data is 2(m+ t− 2); in

order that the problem is not undetermined, we should have

0 ≤ m(t− 1)− 2(m+ t− 2) = (m− 2)(t− 3)− 2.

In the two cases where equality holds, there are in general two solutions, namely

there exist two (m+t)-tuples of points in the plane both fitting with the data about

the angles.

To explain the situation for t = m = 4, we introduce the profile of a fixed

sequence ~p of target points, as the two–dimensional set of all possible measurement

results from various measure points. Then we decompose our problem into two

steps. First, we interpolate the profile surface from the given angles. Once the
1
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profile is determined, additional measure points (and the corresponding measured

angles) do not reveal any more information on the position of the target points.

Then we determine the target points from the profile. Remarkably, it turns out

that for target sequences ~p with t = 4, there is in general a second sequence ~p′ with

the same profile.

Similarily, we treat the case m = 3 and t = 5 by introducing the co-profile of a

sequence ~q of measure points, namely the two–dimensional set of measurements of

target points from ~q; however, the situation is not entirely symmetric to the case of

the profile because here we need in addition one target point in order to define the

co-profile. In this case, additional target points (and the corresponding measured

angles) do not reveal any more information on the position of the measure points

and the prescribed target point.

Section 1 is devoted to the introduction of profile and co-profile for arbitrary t

and m. In Section 2, we determine the situations where the profile or the co-profile

cannot be uniquely determined, also paying attention to non-general situations. In

Section 3 we identify the target points once the profile is known. We determine

the situations where this is not uniquely possible. Once we know the target points,

the determination of the measure points from the profile is not problematic. The

complete discussion is summarized in Theorem 3.6.

Strictly speaking, the two solutions for the general case m = t = 4 cannot be

distinguished algebraically, by means of testing polynomial equalities. But angle

measurement also gives information corresponding to inequalities, namely we can

detect on which of the two rays of a line a certain target point lies. Taking this

additional information into account, one can distinguish the two solutions in many

cases, but not in all of them. This aspect is discussed in more detail in Section 4.

The majority of the results in this paper is not new. The stated problem is

equivalent to the reconstruction of a set of points in the plane from images by a

one-dimensional calibrated camera. The paper [10] (also contained, in expanded

form, in [8]) explains the two solutions for the case m = 3 by a theorem of planar

geometry. There the authors also describe a duality which exchanges the role of

measure points and target points, except for one target point that has to keep its

role as a target point; using this duality, the existence of two solutions for t = 4

is explained as well. A similar duality is also known for the uncalibrated case

(see [9]), where three fixed target points keep their role instead of one, and also for

two-dimensional pictures of points in 3-space (see [1]). The two solutions for the

general case appear also in the one-dimensional uncalibrated case in [9]; indeed,

the calibrated case can be reduced to the uncalibrated case by considering the two

cyclic points of the Euclidean plane as additional target points. The classification

of exceptional cases with infinitely many solutions in Theorem 3.6 seems to be new,

as well as the discussion of ambiguities taking direction information into account

(Theorem 4.4). However, we think that our uniform discussion of the ambiguities

has some value. Also, the results are obtained by general theorems in algebraic

geometry, without technical computations; a single exception is Remark 3.5, which

is not used in the remaining part of the paper.
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1. Algebraic Description of Given Data

Notation. Throughout the paper we will often use the adjective general talking

about points or measurements: as it is often done in algebraic geometry, here

we mean that a property is general if it holds for a Zariski open set of a space

parametrizing the objects we are interested in. Hence when we say that a property

holds for “general t target points ~p and m measure points ~q” we mean that the set

of pairs (~p, ~q) for which the property does not hold form a variety of dimension less

than 2(m+ t).

The aim of this section is to associate to any given tuple ~p of target points a

projective variety, called the profile of ~p, and to any given tuple ~q of measure points

together with a prescribed target point p1 another projective variety, called the

co-profile of ~q and p1. These two varieties encode information about, respectively,

all possible measurements of ~p from any measure points, and measurements with

respect to ~q and p1 of any possible target point.

Notation. For target points, we use real coordinates (u, v), and we introduce

complex coordinates w = u + iv and w = u − iv. For measure points, we use real

coordinates (x, y), and we introduce complex coordinates z = x+iy and z = x− iy.

The first aspect to clarify is how we model measurements, namely angles. We

decide to model them by complex numbers with modulus 1. More precisely, if the

measure point q has complex coordinate z and the target points p1 and p2 have

complex coordinates w1 and w2, one can check that the angle ]q(p1, p2) is given

by the complex number (z−w1)(z−w2)
|(z−w1)(z−w2)| . We fix now pairwise distinct target points

p1, . . . , pt (with real/complex coordinates as above). Hence we can define a map

R2 \ {p1, . . . , pt} −→ Ct−1 sending

z = x+ iy 7→
(

(z − w1)(z − w2)

|(z − w1)(z − w2)|
, . . . ,

(z − w1)(z − wt)

|(z − w1)(z − wt)|

)
This map is far from being algebraic. In order to make it algebraic, we start by

squaring each coordinate of the image (this corresponds to multiplying all angles

by a factor of 2) and then homogenize with respect to a new variable, which we

place in first position, so that the domain becomes a projective space. What we

obtain has the following expression, which still involves complex conjugation, so it

is not yet what we are looking for:

f~p : R2 \ {p1, . . . , pt} −→ Pt−1
C

z 7→
(
F1(z) : . . . : Ft(z)

)
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F1(z) = (z − w1)(z − w2) · · · (z − wt),

F2(z) = (z − w1)(z − w2) · · · (z − wt),
...

Ft(z) = (z − w1)(z − w2) · · · (z − wt).

We proceed towards our goal to obtain an algebraic map, and in particular we

want to make f~p into a rational map between projective varieties. To do so we

choose the following injection1 of R2 into P1
C × P1

C:

R2 −→ P1
C × P1

C

(x, y) 7→ (x+ iy : 1)× (x− iy : 1)︸ ︷︷ ︸
=(z:1)×(z:1)

Then we can extend the previously defined map f~p to a map from P1
C × P1

C, which

we still denote by f~p. If we take coordinates (α1 : β1) × (α2 : β2) on P1
C × P1

C, the

new map is given by:

f~p : P1
C × P1

C 99K Pt−1
C

(α1 : β1)× (α2 : β2) 7→
(
G1(α, β) : . . . : Gt(α, β)

)
The components Gj of f~p are obtained from the previously defined polynomials Fj

by substituting all factors (z − wi) with (α1 − β1wi) and all factors (z − wi) with

(α2 − β2wi). Thus we see that this is a rational map between complex projective

varieties.

Remark 1.1. Note that, since during the construction of f~p we take the squares of

the involved quantities (this corresponding to multiplication by 2 of the angles),

we have that f~p(q) determines the measured angles only modulo π. This is a

consequence of the use of complex numbers: since complex numbers are not ordered,

the “complex-valued” part of our angle measurement device is unable to tell two

opposite directions of the same line apart.

Remark 1.2. If we remove the last target point and we consider ~p∗ = (p1, . . . , pt−1),

then the map f ~p∗ is equal to f~p composed with the projection Pt−1
C → Pt−2

C given

by (s1 : . . . : st) 7→ (s1 : . . . : st−1).

Definition 1.3. The Zariski closure of the image of the map f~p is an algebraic

surface S~p ⊂ Pt−1
C , which we call the profile of ~p.

Proposition 1.4. If t ≥ 3, then the measurement map f~p is birational map from

the plane to the profile of ~p, for any point sequence ~p of pairwise distinct points.

Proof. First, assume that t = 3. We recall a well-known (for surveying or land

navigation purposes; see for example [7]) geometric construction of a left inverse

of the measurement map: for each q ∈ R2, the oriented angle ]q(p1, p2) modulo π

determines a circle on which q lies. Similarly, the oriented angle ]q(p1, p3) modulo π

determines another circle. The two circles intersect in p1 and in a second point,

1The choice of P1
C × P1

C, instead of, for example, P2
C, will be justified a posteriori by the fact

that in this way we will be able to prove some properties of the map f~p in an easier way.
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which must be q. It is straightforward to express this geometric construction as a

rational map in the angles.

For t > 3, a left inverse can be given as the projection to the first three coordi-

nates followed by the inverse for the case t = 3 above. �

Notation. The inverse of the the measurement map is called the resection map.

Remark 1.5. From the geometric construction above, it is clear that the measure-

ment map is injective outside the circle through any triple of points pi, pj , pk (or

the line through pi, pj , pk if the points are collinear).

Here is a description of the profile.

Lemma 1.6. If t ≥ 3, then the profile surface S~p ⊂ Pt−1
C has degree t − 2 and

passes through the t + 1 points (1 : . . . : 0), . . . , (0 : . . . : 1), (1 : . . . : 1). Its ideal is

generated by the 2×2 minors of a 2× (t−2) matrix whose entries are linear forms.

Proof. The functions G1, . . . , Gt have bidegree (1, t − 1). The base locus of f~p

consists of t simple base points corresponding to p1, . . . , pt, hence the degree of the

image is 2(t− 1)− t = t− 2. For an explanation regarding the previous formula we

refer to [2], Appendix A2. For r ∈ {1, . . . , t}, the image of the line α2 − β2wr is the

point (0 : . . . : 1 : . . . : 0) (with 1 at position r); the point (1 : . . . : 1) appears as

the image of the point at infinity (1 : 0)× (1 : 0).

Because deg(S~p) = codim(S~p) + 1, we have a surface of minimal degree. Such

a surface is determinantal, and the generators of its ideal are well-known (see for

example [4]). �

We come to the definition of the co-profile: for this purpose let us fix a tu-

ple ~q = (q1, . . . , qm) of measure points and a target point p1. We consider the

map R2 −→ Cm associating to each target point p ∈ R2 the m–tuple of angles(
]q1(p1, p), . . . ,]qm(p1, p)

)
. Performing analogous homogeneization and operations

as before we obtain a rational map:

f ′~q,p1
: P1

C × P1
C 99K Pm

C

(α1 : β1)× (α2 : β2) 7→
(
G′0(α, β) : . . . : G′m(α, β)

)
Definition 1.7. The Zariski closure of the image of the map f ′~q,p1

is an algebraic

surface S′~q,p1
⊂ Pm

C , which we call the co-profile of ~q and p1.

Lemma 1.8. If m ≥ 2, then the co-profile map f ′~q,p1
is birational, and the co-

profile surface S′~q,p1
⊂ Pm

C has degree m − 1 and passes through the m + 1 points

(1 : . . . : 0), . . . , (0 : . . . : 1), (1 : . . . : 1). Its ideal is generated by the 2 × 2 minors

of a 2× (m− 1) matrix whose entries are linear forms.

2Here the author clarifies Equation 5.1 in [2] using arguments from intersection theory. The

only difference between our formula and Equation 5.1 in [2] is that in the latter one con-

siders homogeneous polynomials of degree n, and this justifies the term n2 appearing there,

while in our formula we have bihomogeneous polynomials of bidegree (1, t − 1), yielding the

term 2(t− 1). The term t in our formula, given by the t simple base points, corresponds to the

term
∑

p∈Z e(IZ,p,OP2,p) in Equation 5.1 in [2].
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Proof. For the inverse of f ′~q,p1
, there is again a geometric construction: when we

know ]q1(p1, p) and ]q2(p1, p), then we can construct p by intersecting the two

lines determined by the angles above.

The proof of the statement on S′~q,p1
is analogous to the proof of Lemma 1.6,

which some changes in the details: the functions G′0, . . . , G
′
m have bidegree (1,m),

the base points correspond to q1, . . . , qm and the point at infinity (1 : 0) × (1 : 0);

the images of the exceptional lines are the points (1 : . . . : 0), . . . , (0 : . . . : 1), and

the point (1 : . . . : 1) appears as the image of p1. �

2. An Interpolation Problem

As remarked in the Introduction, we are going to solve our problem in two steps.

The first step, discussed in this section, is to compute the profile of a tuple ~p from

a fixed number m of measurements. The task is to find a surface of known degree,

and we know m+ t+ 1 points on the surface, namely m points from measurements

and t+ 1 points from Lemma 1.6. We call this step profile interpolation. Once the

profile is computed, we know all possible measurements up to π, hence additional

values obtained with the “complex angle measurement device”, namely the map f~p,

do not provide more information. Analogously, one can try to compute the co-profile

of ~q and p1 from other t − 1 target points. We will see that the solution of this

problem is not always unique, namely there may exist more than one profile/co-

profile matching the given data.

If we are given t target points ~p and m measure points ~q, then we can form an

m× (t− 1) matrix M~p,~q, called the double angle matrix :

M~p,~q =


(
]q1(p1, p2)

)2 · · ·
(
]q1(p1, pt)

)2
...

...(
]qm(p1, p2)

)2 · · ·
(
]qm(p1, pt)

)2


In this way the rows of M~p,~q are the input for profile identification, while the

columns of M~p,~q are the input for co-profile identification.

We start with the case t = 4. Here the profile is a quadric surface in P3
C.

Proposition 2.1. If t = 4, then the profile can be computed from 4 measurements,

in general.

Proof. The linear space of quadratic forms in 4 variables is 10–dimensional, and

each point gives a linear condition on it. For general measurements, the 4 points

in S~p from the measurements and the 5 points from Lemma 1.6 give linear indepen-

dent conditions, and so there is a one–dimensional solution space which determines

the profile uniquely. �

Remark 2.2. If t > 4, then it is also possible to compute the profile from 4 general

measurements. For instance, if ~p = (p1, . . . , p5), then we can compute the profiles S1

and S2 of (p1, p2, p3, p4) and of (p1, p2, p3, p5), respectively. Then the profile of ~p is

the closure of the set
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{
(x0 : x1 : x2 : x3 : x4) ∈ P4

C |

(x0 : x1 : x2 : x3) ∈ S1 and (x0 : x1 : x2 : x4) ∈ S2

}
.

As the parameter counting argument in the Introduction suggests, we can remove

one measure point if t ≥ 5 and still have a finite number of solutions. Here is the

precise statement.

Proposition 2.3. For t = 5 and m = 3, there are in general two solutions for the

profile interpolation problem.

Proof. In this case the profile is a rational cubic surface in P4
C. By [5], Example 3.4,

there are exactly two such cubic surfaces passing through 9 points in general position

in P4
C. Interestingly, the proof there uses Gale duality, which seems to be tightly

related to the correspondence between the m points on the profile and the t − 1

points on the co-profile given by a double angle matrix M~p,~q: in both cases, in fact,

the coordinates of the two sets of points are given by the rows of a matrix and its

transpose. �

Intuitively, increasing t should increase the amount of information, so we may

think that for t > 5 and m = 3, we have only a single solution for the profile

interpolation problem. We will see later that this is not the case. What is true is

that considering also the co-profile increases the amount of insight.

Proposition 2.4. If m = 3 and t ≥ 5, then the co-profile can be uniquely computed,

in general.

Proof. The statement is analogous to Proposition 2.1: again, we have to interpo-

late 9 or more points via a quadric surface in P3
C. �

Proposition 2.5. For t = 4 and m = 4, there are in general two solutions for the

co-profile interpolation problem.

Proof. Here the situation is as in Proposition 2.3: we have to interpolate 9 points

using cubic surfaces in P4
C. �

Proposition 2.6. For m = 3 and t > 5, there are in general two solutions for the

profile interpolation problem. Dually, for m > 4 and t = 4, there are in general two

solutions for the co-profile interpolation problem.

Proof. If m = 3 and t = 5, then we know two possible candidates for the profile,

giving two possible candidates for the position of measure/target points; however

the two co-profiles must be equal by Proposition 2.4. But if we know the co-

profile, then any measurements from new target points does not give any additional

information about the position of the old target points. Therefore we will never be

able to tell the true profile, no matter how many new target points we introduce.

The proof of the dual statement is analogous. �

So far we completed the description of the profile/co-profile interpolation in the

general case, and we summarize the results in Theorem 2.7.
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Theorem 2.7. Let ~p and ~q be general t and m–tuples of points in R2. Then the

following tables summarize the number of possible profiles and co-profiles compatible

with the double angle matrix M~p,~q:

Table 1. Number of pro-

files fitting, in general, a

given double angle matrix.

m\t 3 4 5 or more

3 1 ∞ 2

4 or more 1 1 1

Table 2. Number of co-

profiles fitting, in general, a

given double angle matrix.

m\t 3 4 5 or more

3 ∞ ∞ 1

4 or more ∞ 2 1

In Theorem 2.10 we analyze those cases for which for a general choice of the

points ~p and ~q there is a unique profile or co-profile, but for some special choices

there may be more than one profile/co-profile, and we identify how these special

choices look like. Considering Table 1 and Table 2 we see that, in general, we have

uniqueness for the profile if m = t = 3 or if m ≥ 4 and t ≥ 4, and for the co-profile

if m ≥ 3 and t ≥ 5. Notice that if t = 3, then the profile is equal to P2
C, and so

in this case it can never happen, even in special situations, that the profile is not

unique.

Notation. A cyclic cubic curve is a plane cubic curve which passes through the

two cyclic points at infinity, with homogeneous coordinates (0 : 1 : ±i). In the

embedding of R2 into P1
C × P1

C which we use, the equation of a cyclic curve has

bidegree (2, 2) and passes through the point (1 : 0)× (1 : 0).

We allow cyclic cubics to be reducible. There are two reducible cases, a line and

a circle, or a conic and the line at infinity.

We start treating the base cases.

Lemma 2.8. Suppose that t = 4 and m ≥ 4 and that the profile is not uniquely

determined by the double angle matrix M~p,~q, or that t ≥ 5 and m = 3 and the

co-profile is not uniquely determined by the double angle matrix M~p,~q. Then there

exists a cyclic cubic curve that contains all target points and all measure points, or

a line that contains all target points.

Proof. First, assume t = 4 and m ≥ 4, so that the profile surface S is a quadric

surface in P3. Moreover we assume that the profile is not unique. This is equivalent

to the fact that the m+ 5 points f~p(q1), . . . , f~p(qm) and (1 : . . . : 0), . . . , (0 : . . . : 1)

and (1 : . . . : 1) are contained in the intersection with a second quadric Q. The

pullback under f~p of any plane section of S is a divisor of P1
C × P1

C of bidegree

(1, 3) passing through p1, . . . , p4, therefore the pullback of any quadric section is

a divisor of bidegree (2, 6) passing with multiplicity at least 2 through p1, . . . , p4.

In addition, by hypothesis Q passes through the point (1 : . . . : 0), which is the

image of an exceptional divisor E1, namely the unique curve of bidegree (0, 1)

passing through p1. Hence the pullback of Q contains this divisor E1. Similarly,
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the pullback contains the other 3 exceptional divisors E2, E3 and E4. If we remove

these components, it remains a curve of bidegree (2, 2) passing through p1, . . . , p4.

It must contain the preimage of (1 : . . . : 1), which is the point (1 : 0)× (1 : 0), and

all measure points q1, . . . , qm. So we have found a cyclic cubic curve as stated in

the thesis.

The proof for the dual assertion assuming non-uniqueness of the co-profile is

similar. �

Example 2.9. Consider the case t = m = 4 where all 4 target points p1, . . . , p4 lie

on a circle and the 2 measure points q1 and q2 lie on the same circle, as in Figure 2.

In this case all 8 points lie on a (reducible) cyclic cubic, given by the union of the

circle and a line.

p1

p2

p3

p4
q1

q2
q3

q4

Figure 2. An example of a configuration of target and measure

points for which the profile is not unique: the four target points

lie on a circle, two measure points lie on the same circle, and the

other two measure points lie on a line.

Since all p1, . . . , p4, q1 and q2 lie on the same circle, we have the equalities

]q1(p1, pk) = ]q2(p1, pk) for all k ∈ {2, 3, 4},

which imply that the conditions imposed by q1 and q2 to the linear space of quadratic

forms in 4 variables as in the proof of Proposition 2.1 are not independent. This

means that there exists at least a two-dimensional linear space of such forms, this

ensuring the existence of infinitely many possible profiles for the pair (~p, ~q).

It would be nice now to use an inductive argument (on the number of target

or measure points) to establish the same result as in Lemma 2.8 for all remaining

cases. Unfortunately, in each induction step we encounter new possibilities, making

a uniform description difficult to achieve. Because of this, we prefer to strengthen

the hypotheses of our theorem in order to get rid of these “spurious” cases.

Theorem 2.10. Assume that, for given sequences ~p of target points and ~q of mea-

sure points, either m ≥ 4 and the profile is not uniquely determined by the double

angle matrix M~p,~q, or t ≥ 5 and the co-profile is not uniquely determined by the

double angle matrix M~p,~q. Assume furthermore that no 5 target points and no 4

measure points are cocircular or collinear. Then there exists a cyclic cubic curve

that contains all target points and all measure points.
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Proof. Let us start analyzing the case when t = 5 and m ≥ 4. We try to reduce

to Lemma 2.8. By hypothesis we know that the profile is not unique. If now

we consider any subset ~p′ of four points out of the five points of ~p, we have that

the profile of ~p′ and ~q may or may not be unique. Notice that if we could find

two four tuples ~p′ and ~p′′ for which the profile is unique, then by Remark 2.2 we

would be able to reconstruct the profile of ~p and ~q uniquely, and this is against the

assumption. Hence there can be at most one 4–subtuple ~p′ for which the profile is

unique. So we can distinguish two cases:

Case i: For all 4–subtuples ~p′, the profile is not uniquely detemined. Then by

Lemma 2.8 we have that all points ~p′ and ~q lie on a cyclic cubic for each ~p′.

We can consider the linear system of all cyclic cubics through q1, . . . , qm.

It defines a rational map g : (P1
C × P1

C) 99K PN
C , where N is the rank of

the linear system (namely its dimension as a projective space). Since 4 real

points in the plane give independent conditions for interpolating a cyclic

cubic, it follows that N ≤ 3. Suppose now that the linear system giving g

does not have any fixed component. Then because any four target points

lie on cyclic cubic, it follows that any four of their images under g lie on

hyperplane. Hence by a linear algebra argument all images of the target

points lie on a hyperplane, and this hyperplane corresponds to a cyclic

cubic curve as stated in the thesis. If the linear system has some fixed

component then this fixed component can only be a circle or a line, and

this contraddicts the hypotesis, since we supposed that no 4 measure points

are cocircular or aligned.

Case ii: There exists a 4–subtuple ~p′ for which the profile is unique, but

for any other 4–subtuple ~p′′ is not unique. After possibly relabeling the

points we can assume that ~p′ = (p2, p3, p4, p5). We can define a map g :

(P1
C × P1

C) 99K PN
C as in Case i. Suppose that the linear system Λ of cyclic

cubics through q1, . . . , qm does not have any fixed component. Then by

hypothesis we have that each 4–tuple of points
(
g(p1), g(pi), g(pj), g(pk)

)
lies on the same plane for all i, j, k ∈ {2, 3, 4, 5}. This forces g(p2), . . . , g(p5)

to lie on the same plane, but this contraddicts the hypothesis, since the

profile of ~p′ = (p2, p3, p4, p5) is unique. Hence the linear system Λ has a

fixed component, but this means that the measure points are collinear or

cocircular. Hence under our hypothesis Case ii never arises.

If now t is arbitrary, we can argue as before showing that at most one t−1 tuple of

target points admits a unique profile, and use induction on t since the hypothesis

ensures that Case ii never happens.

The proof for the dual assertion assuming non-uniqueness of the co-profile is

similar, but with one modification. If m ≥ 4 and t ≥ 5, then the linear system of

cyclic cubics through all target points defines the rational map g : (P1
C×P1

C) 99K PN
C ,

where N is the rank of the linear system (which, in this case, is less than or equal

to 2). Here is the modification: 5 real points may fail to give independent conditions

for interpolating a cyclic cubic, and this happens if and only if the all target points
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are collinear. However this situation is ruled out by the hypothesis, so we have the

thesis. �

3. Point Identification

We are turning to the task of determining the target points p1, . . . , pt, assuming

we already know the surface S~p ⊂ Pt−1
C , describing all possible results of measure-

ments modulo π. As stated above, the problem can only be solved up to rotations,

translations and dilations. For t = 3, the problem is clearly not solvable, because

in that case S~p = P2
C does not give any information on the target points.

Proposition 3.1. If t ≥ 5 and the target points are not collinear, then the point

identification problem has a unique solution.

Proof. One sees that it is enough to prove the statement for t = 5. To do this, one

can proceed algebraically, showing that point identification boils down to solving

systems of linear equations admitting in general a unique solution. Otherwise one

can use the following argument. We assume that no 4 points are collinear. If we

coinsider four points pi, pj , pk, ph out of the five, there exists a unique measure point

qijkh such that both angles ]qijkh
(pi, pk) and ]qijkh

(pj , ph) are zero (modulo π).

In fact this point is given by the intersection of the two diagonals −−→pipk and −−→pjph.

Then one performs the following construction: take the three tuples (p1, p2, p3, p4),

(p1, p2, p5, p4) and (p1, p2, p3, p5) and denote by q1, q2 and q3 the points q1234, q1254

and q1235 respectively, as in Figure 3.

p1 p2

p3

p4

p5

q2
q1

q3

β
α

γ

Figure 3. Identification of 5 points from the knowledge of their profile.

Since by hypothesis we know the profile of p1, . . . , p5, then we know the angles

α = ]q1(p1, p2), β = ]q2(p1, p2) and γ = ]q3(p1, p2) (modulo π). Then one sees

that the angle ]p5
(p1, p2) is equal to β+γ−α, namely it is completely determined

by the profile. By symmetry, all angles ]pk
(pi, pj) are completely determined by

the profile, hence the solution is unique up to similarities.

If 4 points are collinear, and the 5th is not, then the above construction can

still be applied to obtain enough angles, allowing to reconstruct the points up to

similarity. �

Remark 3.2. For collinear target points, the situation is also quite clear: two

collinear tuples of measure points have the same profile if and only if they are

projectively equivalent.
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Lemma 3.3. If m ≥ 4, then the point identification problem from the co-profile

has a unique solution.

Proof. Let m ≥ 4 and let q1, . . . , qm be the measure points. Let p1 be a target point.

Assume that we know the co-profile surface S′ ⊂ Pm
C of ~q = (q1, . . . , qm) and p1.

Choose four points on S′ with affine coordinates on the complex unit circle, general

with respect to this property. Then the affine coordinates are the measurements

of four additional target points p2, p3, p4, p5; by generality assumptions, we may

assume that there is no cyclic cubic curve passing through all target and measure

points and that the target points are neither collinear nor cocircular. The transpose

of the matrix consisting of the four coordinate vectors is now considered as an input

for profile interpolation. Since m = 4, profile interpolation is uniquely solvable; let

S ⊂ P3
C be the result. By Proposition 3.1, the profile determines p1, . . . , p5 uniquely

(up to similarity). The points q1, . . . , qm can then be obtained by the resection map

(see the proof of Proposition 1.4). �

Proposition 3.4. If t = 4, then the point identification problem for the profile has,

in general, two solutions.

Proof. Assume that p1, . . . , p4 are unknown target point in general position with

a known profile surface S ⊂ P3
C. As in the previous proof, we choose four points

on S with affine coordinates on the complex unit circle, general with respect to

this property. Their affine coordinates are the measurements from four unknown

measurement points q1, . . . , q4. We transpose the matrix consisting of these four

coordinate vectors and get an input for the co-profile interpolation problem. By

Proposition 2.5, we get two solutions S′ and S′′ in P3
C. For each of these two, using

Lemma 3.3 we can then identify the points ~q = (q1, . . . , qm) and p1 uniquely, up to

similarity; by permuting target points, we can get also the remaining target points

for both cases. �

Notation. For more fluent language, we call a sequence of pairwise distinct 4

points a quadrilateral, and the second solution to its point identification problem

its twin (which is determined up to similarity).

Remark 3.5. Here is a geometric construction for the twin quadrilateral. If the

vertices of a quadrilateral V are cocircular, then V is its own twin (in other words, it

can be recognized uniquely by point identification). Otherwise, the twin is obtained

by constructing the centers of the circles that are circumscribed to the four triangles

formed by the vertices of V and taking the a reflection of this quadrilateral (see

Figure 4).

The proof of this statement is computational: we compute the profile for a

quadrilateral with symbolic coordinates, and compare with the profile for the mid-

points of the four circles above. This was done using the computer algebra system

Maple, see http://www.risc.jku.at/people/jschicho/pub/twinmaple.html.

We summarize the results we obtained so far about point identification in the

following theorem.
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p1

p2

p3

p4

p′3
p′2

p′4

p′1

Figure 4. Construction of the twin quadrilateral: given p1, p2, p3

and p4 we consider the four circles passing through 3 out of the 4

points. The centers of these circles give the vertices p′1, p
′
2, p
′
3 and

p′4 of the mirrored twin quadrilateral.

Theorem 3.6. Assume that (t−3)(m−2) ≥ 2. The problem of identifying unknown

target points p1, . . . , pt and measure points q1, . . . , qm from a given double angle

matrix M~p,~q is uniquely solvable unless we are in the following cases:

· t = 4 (here there are, in general, two solutions);

· m = 3 (here there are, in general, two solutions);

· all target and measure points lie on a cyclic cubic curve;

· at least 5 target points are cocircular or collinear;

· at least 4 measure points are cocircular or collinear.

4. Ambiguities for Directed Angles

In this last section we give a closer study of the case of 4 target points, and in

particular we try to highlight some properties relating a quadrilateral to its twin.

The complex entries of the double angle matrix M~p,~q give conditions on the lines

through pi and qj for i ∈ {1, . . . , t} and j ∈ {1, . . . ,m}, but they do not include

information on the directions, i.e. on which of the two rays the point pi is lying.

In a situation where we have two solutions for the point identification problem,

it may still be possible to tell the right solution by taking direction information

into account. However our final result (see Theorem 4.4) will make explicit that if

measurements are taken from points in some prescribed region of the plane, then a

quadrilateral cannot be distinguished from its twin even if we take directions into

account.

Remark 4.1. If the point identification has infinitely many solutions, then there are

always ambiguities even if we take direction information into account, because the

direction information only allows to tell finitely many cases apart.

Let ~p = (p1, . . . , p4) be a nondegenerated quadrilateral, i.e. a quadruple of points

such that no three are collinear. Then from what we saw at the end of Section 3
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there is a twin quadrilateral ~p′ = (p′1, . . . , p
′
4) and both ~p and ~p′ have the same

profile surface S ⊂ P3
C. We define the twin map:

ρ~p,~p′ : R2 \ {p1, . . . , p4} −→ R2,

q 7→ ρ~p,~p′(q) :=
(
f−1~p′
◦ f~p

)
(q).

If p1, . . . , p4 are cocircular, then the twin quadrilateral is similar to the original one

and the twin map is just a composition of a rotation, a dilation and a translation.

From now on, we assume that the points are not cocircular.

Algebraically, the twin map can be extended to a birational automorphism

of P1
C × P1

C. The exceptional curves partition the real plane minus the exceptional

locus into open connected regions. Each open region is mapped homeomorphically

to its image region. These image regions are the result of an analogous partition

by the exceptional curves of ρ~p′,~p. This strongly motivates our interest in the ex-

ceptional curves of the twin map. They are described in the next proposition.

Proposition 4.2. The exceptional curves of ρ~p,~p′ are the four circles passing

through three of the points p1, . . . , p4.

Proof. The base locus of the twin map is equal to the set {p1, . . . , p4}. Because the

image is a smooth surface, the exceptional curves are in (−1)-classes of the blowing

up Y of P1
C × P1

C at p1, . . . , p4. The class group of Y is freely generated by the

class L1 of bidegree (1, 0), the class L2 of bidegree (0, 1), and the four exceptional

classes E1, E2, E3, E4 of the blowing up map. Here is the list of all (−1)-classes in

the class group of Y:

· E1, . . . , E4, corresponding to the four base points;

· L1 −E1, . . . , L1 −E4, L2 −E1, . . . , L2 −E4, corresponding to the fibers of

the two projections passing through the base points;

· L1 +L2−E2−E3−E4, . . . , L1 +L2−E1−E2−E3, corresponding to the

circles passing through three of the four base points.

This list is very well known, since the blow up of P1
C × P1

C at four points is iso-

morphic to the blow up of P2
C at five points. Hence Y is a Del Pezzo surface of

degree 4, and it contains exactly the 16 (−1)-classes listed before (for a reference,

see [6], Theorems 24.3, 24.4 and 24.5, or [3], Chapter 8 and in particular the re-

mark following Lemma 8.2.22). In the factorization of ρ~p,~p′ into blowing ups and

blowing downs, we have four blowing ups, so we also need to have four blowing

downs. The only choice of four (−1)-classes not containing the exceptional classes

of the blowing up which is symmetric under permutations of E1, . . . , E4 and under

permutations of L1 and L2 is the choice of the four circles. �

We denote by C1, . . . , C4 the four circles mentioned in Proposition 4.2, where Ci

is the circle that does not pass through pi, for i ∈ {1, . . . , 4}. We call them the

fundamental circles of ~p.

The following proposition is not really needed; we just mention it because it is

a nice description of the structure of the partition by fundamental circles.
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Proposition 4.3. The complement of the fundamental circles of a quadrilateral ~p

has 10 connected components. Four of them are delimited by three circles, and the

other 6 are delimited by two circles. The boundary of the unique unbounded region

is constituted by 2 arcs if and only if the quadrilateral is convex (see Figure 5).

p1

p2

p3

p4

(a)

p1

p2 p3

p4

(b)

Figure 5. The 10 regions forming the complement of the funda-

mental circles of a quadrilateral: in the convex case (a) the bound-

ary of the unbounded region is given by 2 arcs, while in the concave

case (b) the boundary is given by 3 arcs.

If ~p is convex, then the unique region containing the intersection of the inner

diagonals is called the inner region. It is important to observe that the twin of a

convex quadrilateral is again convex, and the twin map maps the inner region to

the inner region.

Theorem 4.4. Let ~p be a nondegenerate convex quadrilateral and assume that all

measure points q1, . . . , qm (where m is arbitrary) are contained in the inner region.

Let ~p′ be the twin quadrilateral of ~p and set q′i = ρ~p,~p′(qi) for i ∈ {1, . . . ,m}. Then

we have

]qj (p1, pi) = ]q′j
(p′1, p

′
i)

for all i ∈ {2, . . . , t} and j ∈ {1, . . . ,m}.

Proof. The construction guarantees that M~p,~q = M~p′,~q′ . Hence for all i ∈ {2, . . . , t}
and j ∈ {1, . . . ,m} we have the equality

(
]qj (p1, pi)

)2
=
(
]q′j

(p′1, p
′
i)
)2

, where we

represent angles by complex numbers, so that doubling the angle corresponds to

squaring the complex representation. Hence the quotient of left hand side and right

hand side is ±1. We consider this quotient as a function φ from the complement

of the fundamental circles to {1,−1}. It is easy to see that this map is continuous,

therefore constant on any region, since they are connected. At the intersection of

the inner diagonals the map φ assumes the value 1, therefore it is constantly equal

to 1 on the whole inner region. From this the thesis follows. �
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