
Automated Reasoning in Reduction Rings
using the Theorema System?

Alexander Maletzky

Doctoral College “Computational Mathematics” and RISC
Johannes Kepler University Linz, Austria

alexander.maletzky@dk-compmath.jku.at

Abstract. In this paper we present the computer-supported theory ex-
ploration, including both formalization and verification, of a theory in
commutative algebra, namely the theory of reduction rings. Reduction
rings, introduced by Bruno Buchberger in 1984, are commutative rings
with unit which extend classical Gröbner bases theory from polynomial
rings over fields to a far more general setting.
We review some of the most important notions and concepts in the the-
ory and motivate why reduction rings are a natural candidate for being
explored with the assistance of a software system, which, in our case, is
the Theorema system. We also sketch the special prover designed and
implemented for the purpose of semi-automated, interactive verification
of the theory, and outline the structure of the formalization.
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1 Introduction

Automated reasoning, or, more precisely, computer-supported mathematical the-
ory exploration, aims at the systematic creation of machine-checked, formal
mathematics, either entirely by or at least with extensive support of software
systems, where the meaning of “formal mathematics” may range from individ-
ual theorems over whole theories up to huge structured knowledge bases. In this
paper, we demonstrate how a non-trivial theory in the realm of commutative
algebra, namely the theory of reduction rings and Gröbner bases, can be for-
mally developed in the Theorema software system, including semi-automated,
interactive verification. Up to our knowledge, this is the first time this theory
is the subject of computer-supported theory exploration in any software sys-
tem, although it has to be mentioned that Gröbner bases in the classical setting
(i. e. in polynomial rings over fields) have already undergone formal treatment
in various flavors [15,11,5,6,7].
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The theory of reduction rings, to be presented in more detail in Section 2, is
a natural candidate for computer-supported exploration: a good deal of the no-
tions and concepts involved have rather lengthy and technical definitions, which
quite often leads to comparatively technical proofs with many case distinctions,
subgoals, etc. Although the correctness of all results has already been established
more than 20 years ago using “pencil and paper”, the theory has hardly been
extended and generalized since then (e. g. to non-commutative rings; see also
Section 6), which is clearly a non-trivial task, but perhaps also due the afore-
mentioned manifold of complicated (from the formal point of view) definitions.
Further developing the theory, finally, is the main motivation and the long term
goal of the project.

Before this goal can be achieved, however, the existing part has to be for-
malized and formally verified first, which is what will be presented in the rest
of the paper. Still, one must also mention that the exploration of reduction
ring theory in Theorema was started only recently and thus many things have
not been completed yet: although the formal representation of the theory by
means of a structured Theorema document is mostly finished, only a few results
have been mechanically proved so far. Nevertheless, the completed proofs (one of
them being sketched in Section 5) give a good impression of how semi-automated
theorem proving in Theorema usually proceeds.

The structure of this paper is as follows: Section 2 very briefly reviews reduc-
tion rings and their relation to Gröbner bases. Section 3 contains an overview
of the Theorema system, and Section 4 presents the special prover designed
and implemented for the computer-supported verification of the formalization
of reduction ring theory in Theorema. Afterward, Section 5 describes the out-
line of this formalization and demonstrates how computer-supported theorem
proving in Theorema usually proceeds, by means of a concrete example. Finally,
Section 6 summarizes the contents of this paper and provides an outlook over
possible extensions of the work presented here.

2 Reduction Rings

The notion of reduction ring was introduced by Bruno Buchberger [1] in 1984
and later generalized and extended by Sabine Stifter [12,13]. In short, a reduction
ring R is a commutative ring with unit, where in addition a Noetherian order
relation ≺ and, for each ring element c, a subsetMc ⊆ R are defined. TheMc are
the sets of multipliers, i. e. they consist of those elements c may be multiplied
with when reducing an arbitrary ring element modulo c. If ≺ and Mc have
certain properties, and thus R is a reduction ring, then Gröbner bases of finitely
generated ideals in R can be computed algorithmically from any given finite ideal
basis. Moreover, if R is a reduction ring, then also R[X] (the polynomial ring
in indeterminates X = {x1, . . . , xn} over R) and Rn (the n-fold direct product
of R) can be made reduction rings by defining ≺ and Mc appropriately. This
already indicates that reduction rings do not necessarily have any polynomial
structure. Furthermore, reduction rings not even have to be free of zero divisors;



for instance, ZZm, the ring of residue classes modulo m, constitutes a reduction
ring for any (not necessarily prime) m. Other examples of reduction rings are
ZZ, all fields, and thus also ZZn, K[X] (for fields K), etc.

It has to be remarked that many other generalizations of Gröbner bases
theory, both in the commutative and non-commutative case, have been proposed
by various authors (see, e. g., [1] for a review of commutative generalizations),
and that the term “reduction ring” could thus also be understood in a broader
sense, simply as a ring where a “reduction operation” is defined (in whatever
way). However, the term “reduction ring” will always refer to reduction rings
according to [13] in this paper.

2.1 Gröbner Bases in Reduction Rings

Many different characterizations of Gröbner bases exist in the literature, where
most of them turn out to be equivalent if restricted to certain domains. For
instance, in the classical setting of polynomials over a field, Gröbner bases can
be characterized as sets G such that

(G1) every leading power-product of polynomials in 〈G〉 (i. e. the ideal generated
by G) is a multiple of the leading power-product of at least one polynomial
in G, or

(G2) the reduction relation modulo G is Church-Rosser, or
(G3) All S-polynomials of elements in G can be reduced to 0 modulo G.

It is clear that in reduction rings there is no analogue of (G1): elements of
reduction rings, in general, cannot be decomposed into a “leading part” and into
a “rest”. Hence, the only candidates remaining are (G2) and (G3), and actually
(G2) is taken as the definition of Gröbner bases in reduction rings. In the sequel,
R is always assumed to be a reduction ring.

Definition 1 (Gröbner basis). Let G ⊆ R be finite. G is a Gröbner basis of
the ideal it generates iff the reduction relation modulo G, i. e. →G, is Church-
Rosser.

Definition 1 provides an algebraic characterization of Gröbner bases, but not
an algorithmic one: given a finite set B ⊆ R, it is in general not possible to find
out algorithmically whether B is a Gröbner basis or not, and furthermore, to
compute a Gröbner basis G of the ideal generated by B (if it exists, which is
not yet clear either). Hence, what is needed is an analogue of (G3) in reduction
rings, and indeed there is one.

Theorem 1 (Main Theorem). Let G ⊆ R be finite. Then G is a Gröbner
basis of the ideal it generates iff for all g1, g2 ∈ G (not necessarily distinct),
all i, j ∈ Ig1 , and all non-trivial common reducibles a of g1 and g2 w. r. t. (i, j)
there exists a critical pair (b1, b2) for g1 and g2 w. r. t. a and (i, j), such that
b1 ↔≺aG b2.



Unfortunately, due to the space limitations imposed on this paper, we cannot
go further into the details of Theorem 1, nor provide the formal (and slightly
technical) definitions of non-trivial common reducibles, critical pair, →G and
↔≺aG ; the interested reader is referred to [1,12,13] instead. Constructing a com-
pletely formal Theorema proof of Theorem 1 is one of the goals of the formal
treatment of reduction ring theory described in this paper.

As in the classical setting of polynomials over a field, Theorem 1 provides
both an algorithmic criterion for deciding whether a given set G is a Gröbner
basis, and also for computing a Gröbner basis for the ideal generated by G in
case it is not. The algorithm is almost exactly the same critical-pair/completion
algorithm as Buchberger’s algorithm in the classical setting, with three minor
modifications:

– Not only pairs of distinct elements g1, g2 of G have to be considered, but
also pairs where both constituents are identical.

– For a given pair (g1, g2), all minimal non-trivial common reducibles a (for
all indices i 6= j ∈ Ig1 if g1 = g2) have to be considered, not just one. Still,
there are only finitely many, and considering only one critical pair (b1, b2)
for g1 and g2 w. r. t. a and (i, j) is sufficient.

– Instead of reducing the difference b1 − b2 of b1 and b2 to normal form, both
b1 and b2 have to be reduced separately to normal form. If the two normal
forms are not identical, their difference has to be added to the basis.

Of course, the algorithm is only an algorithm relative to the computability of
the basic ring operations, as well as the computability of normal forms and mini-
mal non-trivial common reducibles. This can either be required by the axioms of
reduction rings, as it is done in [1,12,13], or left as an additional degree of free-
dom. In the latter case, which is how it is done in the Theorema-formalization
underlying this paper, one then has to distinguish between algorithmic and non-
algorithmic reduction rings. All examples of reduction rings mentioned at the
beginning of this section, however, are algorithmic, and furthermore being an
algorithmic reduction ring carries over from R to R[X] and to Rn.

3 The Theorema System – A Short Overview

Theorema [4,19] is a system for computer-supported mathematical theory ex-
ploration, conceived in the mid-90s by Bruno Buchberger and now developed
under his guidance at RISC. One of the major goals of the project has ever
since been the seamless integration of proving, computing and solving within one
single software system, and thus supporting the working mathematician in his
everyday life.

Recently, a completely new version of Theorema was released, called Theo-
rema 2.0 [18]. Although the main design principles have not changed, and it is
still based onMathematica [20], the software was entirely redesigned and reimple-
mented from scratch, with substantial improvements compared to the previous
version at all levels of its architecture. Since the research presented in this paper



was entirely carried out in Theorema 2.0, here and henceforth Theorema will
always refer to Theorema 2.0 unless explicitly stated otherwise.

Besides the formal treatment of the theory of reduction rings presented in this
paper, there are also other theories in the area of computer algebra developed
with Theorema, which are worth being mentioned here in order to illustrate the
capabilities of the system. All of them were developed in Theorema 1, but can
easily be updated to function under the new version as well: the symbolic treat-
ment of linear boundary problems by means of Green’s functions and Green’s
operators, for instance, was developed by Markus Rosenkranz [10] with (at least
partial) support from Theorema, and moreover, the resulting algorithm was im-
plemented in the system in a generic, highly-structured way (following the The-
orema-functor approach), see [14]. A second example of a non-trivial problem
solved with Theorema is the problem of automatically synthesizing Buchberger’s
algorithm for computing Gröbner bases only from its specification, following the
principle of Lazy Thinking [3,5].

An important concept in Theorema is the concept of domains – functors –
categories [17,2]. In order for no confusion to arise, it must be pointed out al-
ready here that the terms functor and category have a slightly different meaning
than in classical category theory, to be explained below. Also, the term domain
does not necessarily refer to a ring without zero divisors (as usually in algebra),
but rather to a general algebraic structure formed by a carrier together with
operations defined on it.
In Theorema, a functor is essentially a function mapping domains (and possibly
other entities) to domains, where in turn a domain is characterized by a car-
rier and operations. Hence, a functor typically takes as input a domain A and
constructs a new domain B, by defining B’s carrier and operations in terms of
A’s carrier and operations. Moreover, in order to make things more compact,
the carrier of a domain is usually not represented as a set, but as a further op-
eration, namely a unary decision predicate that decides for any given object x
whether x belongs to the respective domain or not. One of the simplest exam-
ples of a functor is the functor DP which takes as input two domains D1 and
D2 and constructs the direct product P of D1 and D2, where all operations of
P are defined component-wise in terms of the operations of the Di. Categories,
finally, are classes of domains sharing common properties, e. g. the category of
all commutative rings with unit, the category of all fields, and so on.

The formal development of reduction ring theory presented in this paper also
follows the functor approach. Natural candidates for functors are, of course, the
POLY functor that constructs the ring of multivariate polynomials over a given
coefficient domain and power-product domain. The most important category
then, obviously, is the category of reduction rings as described in Section 2.

4 The ReductionRingProver Special Prover

As many other systems for mathematical theory exploration, Theorema is not
specialized to work only in one single mathematical domain, e. g. in algebra or



geometry, but its design allows for completely arbitrary mathematical content,
formulated in the language of higher-order predicate logic and set theory, to
be treated by the system. Still, this does not mean there is no specialization
at all, but the specialization happens at a different level: an important aspect
of the philosophy behind Theorema, and one that distinguishes it from other
systems, is the idea that exploring a theory does not only happen at the object
level, but also at the meta level. This means that when working in a certain
theory T one should not have to fall back to the very elementary and general
proving techniques of predicate logic all the time, but rather use more advanced
techniques that eventually lead to more elegant and shorter proofs which ideally
even resemble the way human mathematicians would proceed. These advanced
techniques, however, might only be correct in T but not in general.

A concrete example for a theory T and special proving techniques is given by
geometric theorem proving, i. e. where T can be thought of as the theory of real
numbers with addition and multiplication. It is a well-known fact that Gröbner
bases can be used for proving statements in T , simply by finding out whether
a certain polynomial identity follows from a system of algebraic equations or
not. Now, a mathematician working in this area most probably would like to
automate this process, or more precisely, type in the statement he wants to
prove into a computer system that internally automatically uses the method of
Gröbner bases for proving or disproving it – and this is possible in Theorema
by creating a special prover for geometric theorem proving. Such a prover will
directly use Gröbner bases on the inference level and hence prove theorems in
geometry automatically in a short and elegant way, precisely as desired by the
human mathematician.

It has to be pointed out that a geometry-prover of the form sketched above
does not yet exist in Theorema 2.0 (it was available in the old version of the sys-
tem, though; see [8,9]). Instead, in the sequel another Theorema special prover,
created for the treatment of the theory of reduction rings, is presented.

In Theorema, a prover consists of two parts which are mainly independent of
each other: a collection of inference rules and a proving strategy. The inference
rules describe how a certain proof situation, characterized by a set of assumptions
and a proof goal, can be transformed into one or more simpler proof situations.
The proving strategy guides the application of the inference rules, i. e. it spec-
ifies in which order the rules are tried, what to do if more than one rules are
applicable, etc.

The proving strategy used for verifying the theory of reduction rings is a fully
interactive strategy. This means that in each step the human operator has full
control over the whole proof search: he decides which inference to perform (and in
which way) and at which position in the proof to proceed. Nevertheless, if he feels
that the current proof situation is simple enough for Theorema to automatically
find a proof, it is still possible to trigger an automatic proof search as well.

Regarding inference rules, the ReductionRingProver actually does not
consist of that many inference rules being special in the sense that they can only



be used in the theory of reduction rings, but not elsewhere; they are presented
in the next two subsections.

One remark is still in place: Most functions and relations, e. g. ≺, are only
defined for arguments of a particular domain D. Since Theorema is not typed,
however, a proof situation may well contain functions/relations applied on argu-
ments not in that particular domain, leading to undefined expressions. Therefore,
in order to reason correctly, domain-membership of all terms involved in an in-
ference step must always be checked explicitly. In Theorema, membership of x
in D is usually denoted by ∈

D
[x], and ∈

D
[x1, . . . , xn] abbreviates

∧
i=1,...,n

∈
D

[xi].

4.1 Order Relations

One of the ubiquitous objects in the theory of reduction rings are order rela-
tions of all kinds: every reduction ring is ordered by an arbitrary partial order
relation, power products are ordered by admissible total orderings, and the divis-
ibility relation on power products is a monotonic (w. r. t. multiplication) partial
ordering. Moreover, some of the orderings have been defined as irreflexive and
asymmetric, others as reflexive and antisymmetric. Although both kinds of or-
der relations are more or less equivalent to each other (one can always make a
reflexive ordering out of an irreflexive one, and vice versa), from the point of
view of theorem proving it is desirable to be able to handle both kinds directly,
without the need for any conversion taking place beforehand.

Let in the sequel ≺ always be defined on the domain D. The following are
the three ordering inference rules:

OrderingGoal If the proof goal is of the form x ≺ y or ¬x ≺ y, various attempts
for simplifying the goal are made, depending on whether the ordering ≺ is partial
or total, and whether it is reflexive or irreflexive. For instance, if ≺ is any order
relation, we have

K ` ∈
D

[x, y, z1, . . . , zn]

K, x ≺ z1, z1 ≺ z2, . . . , zn−1 ≺ zn, zn ≺ y ` x ≺ y

by transitivity. Similarly, if ≺ is asymmetric, we have

K ` ∈
D

[x, y]

K, y ≺ x ` ¬x ≺ y

All inferences of that kind are incorporated in the OrderingGoal inference rule
in the ReductionRingProver.

OrderingKB If the set of assumptions of the current proof situation contains a
formula of the form x ≺ x and ≺ is an irreflexive ordering, then the assumptions
are apparently contradictory, so the proof is finished. This gives rise to the



following two inferences, both incorporated in the OrderingKB inference rule in
the ReductionRingProver:

K ` ∈
D

[x]

K, x ≺ x ` Γ

if ≺ is irreflexive, and
K ` ∈

D
[x]

K,¬x ≺ x ` Γ

if ≺ is reflexive.

OrderingEqualGoal If the proof goal is of the form x = y and both x and y are
elements of a domain that is totally ordered by ≺, then it suffices to prove both
¬x ≺ y and ¬y ≺ x. Similarly, if ≺ is antisymmetric, it suffices to prove both of
x ≺ y and y ≺ x. This gives rise to the following two inferences, both incorpo-
rated in the OrderingEqualGoal inference rule in the ReductionRingProver:

K ` ∈
D

[x, y] K ` ¬x ≺ y K ` ¬y ≺ x

K ` x = y

if ≺ is total, and

K ` ∈
D

[x, y] K ` x ≺ y K ` y ≺ x

K ` x = y

if ≺ is antisymmetric.

4.2 Commutative Rings with Unit

Since every reduction ring by definition is a commutative ring with unit, it
is desirable to have inference rules incorporating the logical axioms of the ring
operations + and · in a compact and easy-to-use way, such that it is not necessary
to fall back to the very definitions of commutativity and distributivity to prove
that, say, x ·y+y ·z and x · (z+y) are equal. Rather, all this should happen fully
automatically whenever the proof goal is an equality of two terms, where the
outermost function symbol of at least one of the terms is +, ·, − (the additive
inverse) or

∑
(since also sums over several ring elements play an important role

in reduction ring theory).
Fix now a commutative ring with unit R as the domain of discourse, i. e. +,

·, etc. are functions on R. The following are the two special inference rules for
commutative rings with unit (keep in mind that domain-membership in R of x
and y in x+ y is not guaranteed and always has to be checked explicitly):



MembershipCommRings1 If one has to prove membership of a certain term in
a commutative ring with unit, several properties of the functions +, ·, etc. are
used in order to simplify the proof goal. Examples of inferences are

K ` ∈
R

[x] K ` ∈
R

[y]

K ` ∈
R

[x+ y]

and
K ` a ∈ ZZ K ` b ∈ ZZ K ` ∀

i=a,...,b
∈
R

[f(i)]

K ` ∈
R

[
∑

i=a,...,b
f(i)]

All inferences of that kind are incorporated in the MembershipCommRings1
inference rule of the ReductionRingProver. In fact, since membership of
certain terms in commutative rings with unit has to be proved very often, this
is one of the most important special inference rules.

CommRing1Equal If the proof goal is of the form a = b, where the outermost
function symbol of a or b is among +, ·, − and

∑
, both a and b are fully expanded

using associativity and distributivity of the functions involved, and then the
resulting terms are checked for being equal, further using commutativity of +
and ·. Of course, associativity/commutativity/distributivity of + and · may only
be exploited if the arguments of the respective functions belong to R, which is
checked analogously to the ordering-rules.

5 Formalized Reduction Rings

Theorema is a system for mathematical theorem exploration, opposed to isolated
theorem proving. Thus, working in Theorema usually proceeds by developing
a whole theory for what one wants to do, consisting of definitions, lemmas,
theorems, computations, etc., all included in one or more Theorema notebooks
and resembling the way how mathematical knowledge is presented in textbooks
and articles. The theorems can be proved using definitions, lemmas, and special
inference rules (see Section 4), and may then be used for carrying out sample
computations or proving other theorems (although no restrictions are imposed
on the order in which the theorems are proved: an unproved statement may well
serve as knowledge for proving another statement).

5.1 Structure of the Formalization

We developed a formal Theorema theory for the theory of reduction rings. For
this, we first introduced the category (in the sense of Section 3) Reduction-
Ring. Having this category it is already possible to define the notion of Gröbner
bases and state the Main Theorem of reduction ring theory, containing a finite
criterion for checking whether a given set is a Gröbner basis or not.



We also introduced the categories CommPPDomain of (commutative)
power-products and ReductionPolynomialDomain of polynomials over a co-
efficient domain R and a power-product domain, where objects like the Noethe-
rian ordering1 ≺ are defined in terms of the respective objects in R in such a
way that if R is a reduction ring, then so is the polynomial ring. Moreover, the
theorem containing this claim and the various lemmas needed for its proof are
already part of the formalization as well.

Complementing the purely theoretical concepts of categories and theorems,
the formalization consists of computational parts, too. In particular, it con-
tains several Theorema functors for constructing concrete reduction rings, e. g.
a functor that turns an arbitrary field into a reduction ring by endowing it with
a suitable Noetherian order relation ≺ and other objects needed in reduction
rings. Another example of a functor is the functor that turns a reduction ring R
and a power-product domain T into the polynomial ring over R and T , again
endowed with suitable reduction-ring-objects (note that the resulting domain
then belongs to category ReductionPolynomialDomain). Most importantly,
however, there is a functor GB that takes as input an algorithmic reduction ring
R and returns a new ring, where in addition also a function gb for computing
Gröbner bases is defined. gb, of course, implements the critical-pair/completion
algorithm sketched in Section 2.1 in terms of the operations of R.

Regarding the formal verification of the formalization, we decided to begin
with proving that if P is in category ReductionPolynomialDomain, the co-
efficient domain is in category ReductionRing, and the power-product domain
is in category CommPPDomain, then also P is in category ReductionRing.
Although this undertaking has been started only recently and, hence, it is not
finished yet, first results, namely completely formal, machine-generated proofs
of important lemmas, have already been achieved. One of them is presented in
the following subsection.

Of course, the ultimate goal is the formal verification of all of reduction ring
theory, not only of what is mentioned above. This is still future work.

5.2 Example: Noetherianity of ≺ in Polynomial Rings

As an example, we present here the formal statement of the theorem that ≺ in
domains belonging to ReductionPolynomialDomain is Noetherian, and also
sketch the main ideas behind its Theorema-generated proof.

Let in the sequel always R be a reduction ring, T a commutative power-
product domain, and P the polynomial ring over R and T . Since we have to refer
to ≺ in R, in T and in P, we denote the relations by ≺

R
, ≺
T

and ≺
P
, respectively,

according to syntactic conventions regarding domain operations in Theorema.
Before we can give the definition of ≺

P
, we need the auxiliary notions of H, lp

and lc. The following is their definition in Theorema notation:
1 Actually, the whole formalization is based upon the reverse relation �, but this
should not lead to any confusion.



Definition 2 (H, lp, lc).
∀
∈
P

[p]

∀
∈
T

[τ,σ]
C[ H[ p, τ ], σ] =

{
C[ p, σ]⇐ τ ≺

T
σ

0 ⇐ otherwise
(H)

p 6= 0⇒

lp[ p] := the
∈
T

[τ ]
(C[ p, τ ] 6= 0 ∧ ∀

∈
T

[σ]
τ ≺
T
σ ⇒ C[ p, σ] = 0) (lp)

lc[ p] := C[ p, lp[ p]] (lc)

Some remarks on Definition 2 are in place:

– C[ p, τ ] denotes the coefficient of polynomial p at power-product τ . It cannot
be defined in general for arbitrary polynomial domains, but rather has to be
defined in each concrete domain.

– H[ p, τ ] denotes the higher part of p w. r. t. τ , i. e. the sum of those monomials
of p whose power-product is strictly greater than τ . It is not defined explicitly,
but only implicitly in terms of C.

– lp[ p] denotes the leading power-product of p, given that p is non-zero. It is
defined using Theorema’s “the” quantifier.

– lc[ p], finally, denotes the leading coefficient of p.
– The first and the third line in the definition are so-called global declarations.

They are simply prepended to all subsequent formulas, in order to ease
reading and writing formulas in Theorema.

– Strictly speaking, not only the various versions of ≺ carry under-scripts in
the formalization, but also all of C, H, etc. are under-scripted with P, to
explicitly state that they belong to domain P. Here, these under-scripts are
omitted for better readability.

Now we are able to define ≺
P
, again in Theorema notation:

Definition 3 (≺
P
).

∀
∈
P

[p,q]

p ≺
P
q :⇔ ∃

∈
T

[τ ]
(H[ p, τ ] = H[ q, τ ] ∧ C[ p, τ ] ≺

R
C[ q, τ ]) (≺

P
)

In the theorem claiming that ≺
P

is Noetherian, one does not even need that
R is a reduction ring, but only that ≺

R
is a partial Noetherian ordering and that

≺
T

is a total Noetherian ordering (which is implied by R being a reduction ring
and T being a power-product domain, though).

Instead of presenting the theorem, which should be apparent, we present the
key lemma for proving it, together with its proof:



Lemma 1 (Lemma for proving Noetherianity of ≺
P
).

∀
∈
T

[τ ]
∀
∈

DomainSets[P]
[A]

(
A 6= {} ∧ ∀

p∈A
p 6= 0⇒ lp[p] ≺

T
τ

)
⇒ ∃

p∈A
isMin[ p,A,≺

P
] (1)

DomainSets is a general Theorema functor returning the domain of all sets
of elements belonging to the input domain D, without any operations other than

∈
DomainSets[D]

. isMin[ p,A,≺
P

] states that no element in A is strictly less than p

w. r. t. ≺
P
. Since its formal definition should be obvious, it is spared in this paper.

The Theorema-generated proof of Lemma 1 essentially proceeds by Noethe-
rian induction on the power-product τ (recall that ≺

T
is Noetherian), to be ex-

plained now step-by-step:

1. Perform Noetherian induction on τ , i. e. choose τ and A arbitrary but fixed,
assume

A 6= {} (A#1)

∀
p∈A

p 6= 0⇒ lp[p] ≺
T
τ (A#2)

∀
∈
T

[τ ]
τ ≺
T
τ ⇒ ∀

∈
DomainSets[P]

[A]
. . . (IH)

and prove
∃
p∈A

isMin[ p,A,≺
P

] (G#1)

Formula (IH) of course is the induction hypothesis. Note that the principle of
Noetherian induction does not have to be implemented as a special inference
rule, but can be stated as a higher-order formula on the object level and then
used like an inference rule on the meta level, thanks to the way how Theorema
employs certain kinds of formulas (e. g. universally quantified implications)
as rewrite-rules in proofs.

2. Distinguish two cases, based upon whether 0 ∈ A or not. If 0 ∈ A then 0
apparently witnesses the existential goal (G#1), so assume now 0 /∈ A. From
(A#2) we can readily infer

∀
p∈A

p 6= 0 ∧ lp[p] ≺
T
τ (A#3)

3. Consider the set P := {lp[p] |
p∈A
}. P apparently is the non-empty (due to

(A#2)) set consisting of all leading power-products of elements in A, and
therefore it contains a minimal element σ due to the Noetherianity of ≺

T
. We

know
isMin[ σ, P,≺

T
] (A#4)



as well as
σ ≺
T
τ (A#5)

from (A#3).
4. Consider the set C := {lc[p] |

p∈A
lp[p] = σ}. As can easily be seen, C is a

non-empty set consisting of elements of the coefficient domain R, and since
≺
R

is Noetherian, it contains a minimal element c. Thus we know

isMin[ c, C,≺
R

] (A#6)

5. Consider the set R := {p − c · σ |
p∈A

lp[p] = σ ∧ lc[p] = c}. R is again

non-empty, consists of polynomials, and moreover satisfies

∀
p∈R

p 6= 0⇒ lp[p] ≺
T
σ (A#7)

because all the leading monomials cancel by construction. This means that
we can now use our induction hypothesis (IH), instantiated by τ ← σ and
A← R, and infer

isMin[ p,R,≺
P

] (A#8)

from (A#5) and (A#7), for some p ∈ R.
6. Instantiate the existentially quantified goal (G#1) by p ← p + c · σ, and

prove
isMin[ p+ c · σ,A,≺

P
] (G#2)

which can be accomplished using Definition 3 together with (A#4), (A#6)
and (A#8) (we spare the details).

The proof was generated interactively with the assistance of Theorema, fol-
lowing the six steps sketched above. Furthermore, ordering-rules, as described
in Section 4.1, were used to abbreviate otherwise tedious inferences regarding,
e. g., transitivity of ≺

T
.

Please note that “interactive proving” in Theorema does not mean to write
down the proof in sufficient detail and afterward let the system check all infer-
ences and fill small gaps, but rather to initiate a proof attempt where the system
simply asks the human user for support whenever it does not know how to pro-
ceed, in a dialog-oriented manner. Nevertheless, as soon as the proof is finished
(either with success or with failure), a nicely-structured, human readable proof
document describing each single step is generated fully automatically, where for-
mal contents are interspersed with informal explanatory text in English (or any
other language). In other words, the proof outlined above is rather the output
than the input of interactive proving in Theorema.



6 Conclusion and Future Work

The preceding sections illustrated how the formal treatment of reduction ring
theory in Theorema can be conducted. On the object level, this consists of pro-
viding suitable definitions for all notions and concepts of the theory. On the
inference level, it is desirable to have specialized inference rules at one’s disposal
for efficiently proving statements about all kinds of order relations and equality
of terms in commutative rings with unit, such that the resulting proofs become
short and elegant.

One of the long-term goals of the project is to extend the theory of reduction
rings, but also of Gröbner bases in general, in several ways, making use of the
existing formalization:

– Introduce non-commutative reduction rings and prove an analogue of Theo-
rem 1.

– Find further basic reduction rings and functors that conserve the property
of being a reduction ring.

– Investigate the relation of Gröbner bases (in polynomial rings over fields)
and generalized Sylvester matrices, such that Gröbner bases can effectively
be computed by triangularizing coefficient-matrices [16].

These possible extensions are among the main motivations for a formal treat-
ment of reduction ring theory. Proofs in this theory tend to be lengthy, tedious
(with many case distinctions etc.) and very technical, but still comparatively
straightforward. Therefore, having a software system supporting the human
mathematician in all aspects of theory exploration, being in automatically prov-
ing simple lemmas, keeping track of cases still to be considered in long proofs,
or even carrying out test-computations with notions just introduced, certainly
is a great benefit.
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