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Abstract

Let M be a given positive integer and r = (rδ)δ|M a sequence indexed by the positive divisors
δ of M . In this paper we present an algorithm that takes as input a generating function of the
form

∑∞
n=0 ar(n)q

n :=
∏

δ|M

∏∞
n=1(1−qδn)rδ and positive integers m, N and t ∈ {0, . . . ,m−1}.

Given this data we compute a set Pm,r(t) which contains t and is uniquely defined by m, r and
t. Next we decide if there exists a sequence (sδ)δ|N indexed by the positive divisors δ of N , and
modular functions b1, . . . , bk on Γ0(N) (where each bj equals the product of finitely many terms
from {qδ/24

∏∞
n=1(1− qδn) : δ|N}), such that:

q
α
∏

δ|N

∞∏

n=1

(1− q
δn)sδ ×

∏

t′∈Pm,r(t)

∞∑

n=0

a(mn+ t
′)qn = c1b1 + · · ·+ ckbk

for some c1, · · · , ck ∈ Q and α :=

∑

δ|N
δsδ

24
+

∑
t′∈Pm,r(t)

24t′+
∑

δ|M
δrδ

24m
. Our algorithm builds

on work by Rademacher [9], Newman [7], and Kolberg [5].
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Introduction and Basic Notions

Let p(n) denote the number of partitions of n. Ramanujan [12] discovered that for all
n ∈ N = {0, 1, 2, . . .}:

p(5n+ 4)≡ 0 (mod 5), (1)

p(7n+ 5)≡ 0 (mod 7), (2)

p(11n+ 6)≡ 0 (mod 11). (3)

⋆ The research was supported by the strategic program “Innovatives OÖ 2010 plus” by the Upper
Austrian Government in the frame of project W1214-N15-DK6 of the Austrian Science Fund (FWF).
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Congruence (1) follows from Ramanujan’s “most beautiful” identity (cf. Hardy [14, xxi-
xxxvi]) eq. (17) in [11]:

∞∑

m=0

p(5m+ 4)qm = 5

∞∏

n=1

(1− q5n)5

(1− qn)6
. (4)

Congruence (2) follows from another identity of Ramanujan, eq. (18) in [11]:

∞∑

m=0

p(7m+ 5)qm = 7
∞∏

n=1

(1− q7n)3

(1− qn)4
+ 49q

∞∏

n=1

(1− q7n)7

(1− qn)8
. (5)

Our algorithm finds such identities automatically. To the best of our knowledge, so far
there exists no identity similar to (4) and (5) from which (3) follows. But our algorithm
enables an automatic derivation of such an identity; see Section 4.

For N ∈ N∗ = {1, 2, . . .}, we define R(N) to be the set of integer tuples (rδ)δ|N indexed
by the positive divisors δ of N .

For r = (rδ)δ|N ∈ R(N) we define

w(r) :=
∑

δ|N

rδ, σ∞(r) :=
∑

δ|N

δrδ, σ0(r) :=
∑

δ|N

N

δ
rδ,

and

Π(r) :=
∏

δ|N

δ|rδ|.

We define for i, j, k, l ∈ N,

R(N, i, j, k, l) :=







r ∈ R(N) :

w(r) = i,

σ∞(r) ≡ j (mod 24),

σ0(r) ≡ k (mod 24),
√

l Π(r) ∈ N.







and

R∗(N) := R(N, 0, 0, 0, 1).

As usual, we denote by η(τ) the Dedekind eta function for which

η(τ) = q
1
24

∞∏

n=1

(1− qn), (q = e2πiτ ). (6)

Define a set of eta quotients by

E(N) :=
{

q
1
24σ∞(r)

∏

δ|N

∞∏

n=1

(1− qδn)rδ : (rδ)δ|N ∈ R∗(N)
}

.

Note that

E(N) =
{∏

δ|N

ηrδ(δτ) : (rδ)δ|N ∈ R∗(N)
}

.

Denote by 〈E(N)〉Q the vector space over Q generated by the elements of E(N). Note
that the constant functions are elements of this space i.e.; 1 ∈ 〈E(N)〉Q. For r ∈ R(N)
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we define the sequence (ar(n))n≥0 of integers by:

∞∑

n=0

ar(n)q
n =

∏

δ|N

∞∏

n=1

(1− qδn)rδ .

We call (A,B) a Ramanujan identity, if there exist M,N ∈ N∗, r = (rδ)δ|M ∈ R(M),
s = (sδ)δ|N ∈ R(N), integers m > t ≥ 0 with 24t+ σ∞(r) ≡ 0 (mod m) such that:

• A = q
σ∞(s)

24 +
24t+σ∞(r)

24m

∏

δ|N

∏∞
n=1(1− qδn)sδ

∑∞
n=0 ar(mn+ t)qn;

• B ∈ 〈E(N)〉Q;
• A = B.
With this notation it is easily seen that after multiplying (4) by q

∏∞
n=1(1− q5n) on both

sides, we obtain a Ramanujan identity. Similarly, multiplying (5) by q
∏∞

n=1(1− q7n) we
obtain a Ramanujan identity. We will present in Section 4 a Ramanujan identity (A,B)
with

A = q−14
∞∏

n=1

(1− qn)10(1− q2n)2(1− q11n)11

(1− q22n)22

∞∑

n=0

p(11n+ 6)qn,

where s = (10, 2, 11,−22) ∈ R(22) and r = (−1) ∈ R(1).
Kolberg [5] proved that

( ∞∑

m=0

p(5m+ 1)qm
)( ∞∑

m=0

p(5m+ 2)qm
)

= 2
∞∏

n=1

(1− q5n)4

(1− qn)6
+ 25q

∞∏

n=1

(1− q5n)10

(1− qn)12
,

(7)

and
( ∞∑

m=0

p(5m)qm
)( ∞∑

m=0

p(5m+ 3)qm
)

=3

∞∏

n=1

(1− q5n)4

(1− qn)6
+ 25q

∞∏

n=1

(1− q5n)10

(1− qn)12
.

(8)

We call (A,B) a Ramanujan-Kolberg identity, if there exist M,N ∈ N∗, r = (rδ)δ|M ∈
R(M), s = (sδ)δ|N ∈ R(N) and integers m > t ≥ 0 such that
• A has the form:

A = qα(m,t,r,s)
∏

δ|N

∞∏

n=1

(1− qδn)sδ
∏

t′∈Pm,r(t)

∞∑

n=0

ar(mn+ t)qn, (9)

where, with the definition of the set Pm,r(t) as in (32),

α(m, t, r, s) :=
σ∞(s)

24
+

∑

t′∈Pm,r(t)

24t′ + σ∞(r)

24m
;

• B ∈ 〈E(N)〉Q;
• A = B.
One may easily verify that (7) and (8) can be viewed as Ramanujan-Kolberg identities. As
we will see from definition (32), a Ramanujan identity is a special case of a Ramanujan-
Kolberg identity.
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In this paper we present an algorithm that takes as input M,N ∈ N∗, r ∈ R(M) and

integers m > t ≥ 0. If there exist s ∈ R(N) and B ∈ 〈E(N)〉Q such that A = B where A,

defined as in (9), is a modular function for Γ0(N) (see Definition 1), then the algorithm

output will be (s,B). If no such (s,B) exists, then the algorithm will stop and return no

output.

The organization of this article is as follows: In Section 1 we present the general

notions needed in the paper. In Section 2 we describe an algorithm that computes a

module basis for the ring generated by some given modular functions having only poles

at infinity. In Section 3 we present our main theorem and the algorithm that solves the

problem described above. Furthermore, at the end of Section 3 we give a counterexample

to a conjecture by Morris Newman related to eta quotients. In Section 4 we give examples

of infinite product identities that can be found and proved with the algorithm in this

paper. In Section 5 we describe an algorithm, obtained as a by-product, that computes

all relations among given eta quotients m1, . . . ,ms ∈ E(N).

1. Further Preliminaries and Definitions

We need the groups

SL2(Z) :=










a b

c d



 | a, b, c, d ∈ Z, ad− bc = 1






,

SL2(Z)∞ :=










1 h

0 1



 | h ∈ Z






,

and for N ∈ N∗,

Γ0(N) :=










a b

c d



 ∈ SL2(Z) | N |c






;

in addition, we define the subset

Γ0(N)∗ :=










a b

c d



 ∈ Γ0(N)|a > 0, c > 0, gcd(a, 6) = 1






.

Note that SL2(Z)
∗ = Γ0(1)

∗.

Let H := {τ ∈ C : Im(τ) > 0}. We need two standard group actions of SL2(Z): for

γ =




a b

c d



 ∈ SL2(Z) and τ ∈ H we define γτ := aτ+b
cτ+d ; for f : H → C we define

f |γ : H → C by (f |γ)(τ) := f(γτ).

Definition 1. A modular function for the group Γ0(N) is a function f : H → C with

the properties:

(i) f is holomorphic on H;

(ii) f |γ = f for all γ ∈ Γ0(N);
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(iii) for all γ =




a b

c d



 ∈ SL2(Z) there exists an expansion

(f |γ)(τ) =

∞∑

n=nγ

aγ(n)e
2πinτ gcd(c2,N)/N , τ ∈ H (10)

where aγ(nγ) 6= 0. We define ordNγ (f) := nγ . If ord
N
id(f) < 0, then one says f has a pole

of order − ordNid(f) at infinity.

We will write (10) in the form

(f |γ)(τ) =

∞∑

n=nγ

aγ(n)q
n gcd(c2,N)/N ,

where q := e2πiτ , and we refer to this unique Laurent expansion of (f |γ)(τ) in powers of

qgcd(c
2,N)/N as the q-expansion of f |γ.

The next fact is not difficult to prove.

Lemma 2. For γ1, γ2 ∈ SL2(Z) such that γ1 ∈ Γ0(N)γ2SL2(Z)∞ and f a modular

function for Γ0(N):

ordNγ1
(f) = ordNγ2

(f).

Definition 3. We denote the set of all modular functions for Γ0(N) by K(N). By

K∞(N) we denote the set of modular functions having a (multiple) pole, if any, at

infinity only; this is the set of all f ∈ K(N) such that

ordNγ (f) ≥ 0 for all γ ∈ SL2(Z) \ Γ0(N). (11)

Remark 4. Note that to prove that f : H → C is in K(N), it suffices to prove (i)-(ii) of

Definition 1 and the existence of a κγ ∈ N∗ such that

(f |γ)(τ) =

∞∑

n=mγ

bγ(n)e
2πinτ

κγ , (12)

for all γ =




a b

c d



 ∈ SL2(Z). This implies (iii): first, observe that (f |γ)(τ+N/ gcd(c2, N)) =

(f |γ)(τ) (which is a consequence of (ii)); this, together with (i) implies that (f |γ)(τ) has

a Laurent expansion in powers of q
gcd(c2,N)

N . Finally, by (12) and uniqueness of Laurent

expansion, this Laurent expansion has a finite principal part (as required by (iii)). As

we will see later in the proof of our main theorem it is more convenient for us to prove

that (f |γ)(τ) is a Laurent series in powers of q1/κγ with finite principal part (for some

κγ), rather than to prove that (f |γ)(τ) is a Laurent series in powers of q
gcd(c2,N)

N with

finite principal part.

Lemma 5. Let f ∈ K(N) such that ordNγ (f) ≥ 0 for all γ ∈ SL2(Z). Then f is constant.
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Proof. Let γ1, . . . , γn (with γ1 the identity) be a complete set of representatives of the

right cosets of Γ0(N) in SL2(Z). Let ci be defined by γi =




∗ ∗

ci ∗



. Define ai(n) by

f(γiτ) =

∞∑

n=ni

ai(n)q
n/ti ,

where ti := N/ gcd(c2i , N). Since ordNγ (f) ≥ 0 (by assumption) it follows that ni ≥ 0.
Set g(τ) := f(τ)− a1(0).

Then F (τ) :=
∏n

i=1 g(γiτ) satisfies F (γτ) = F (τ) for all γ ∈ SL2(Z). Furthermore,

F (τ) =
∑∞

n=1 a(n)q
n, because of ordNγ1

(g) > 0 by construction. Hence F ∈ K(1). By [15,

Ch. VII, Th. 3] it follows that if F 6= 0 then ordNid(F ) ≤ 0. This gives a contradiction to

ordNid(F ) > 0. Therefore F = 0, and consequently g(γiτ) = 0 for i from 1 to n. Hence
g(τ) = f(τ)− a1(0) = 0. ✷

Corollary 6. Let f ∈ K∞(N) such that ordNid(f) ≥ 0, then f is constant.

2. An Algorithm for Describing 〈E(N)〉Q ∩K
∞(N) as a Finitely Generated

Q[t]-Module

2.1. Algorithms for Finding Bases

The functions in K(N), resp. K∞(N), form a commutative ring with 1. Since these
rings contain all constant functions, they are also vector spaces over C. In this section
we describe an algorithm that computes a module basis for the ring generated by some
given modular functions having only poles at infinity.

Definition 7. For f ∈ K(N) we define the pole order at infinity as pord(f) := − ordNid(f).

Definition 8. We call the sequence z1, . . . , zr ∈ K∞(N) “reduced” iff

0 < pord(z1) < · · · < pord(zr).

Definition 9. We call the sequence z1, . . . , zr ∈ K∞(N) reduced with respect to a
nonzero t ∈ K∞(N)” (in short: “t-reduced”) iff it is reduced and for all i, j ∈ {1, . . . , r},
i 6= j:

pord(zi) 6≡ pord(zj) (mod pord(t))

and
pord(zi) 6≡ 0 (mod pord(t)).

Definition 10. Let R be a ring (with 1) and S a subring of R. For m1, . . . ,mr ∈ R we
define an S-module by

〈m1, . . . ,mr〉S := {s0 + s1m1 + · · ·+ srmr : s0, s1, . . . sr ∈ S}.

Definition 11. For f ∈ K∞(N) let
∑∞

n=m a(n)qn, a(m) 6= 0, be the q-expansion of f .
We define lc(f) := a(m).

Let c ∈ C. For f : H → C with f(τ) = c for all τ ∈ H we write f = c.

6



Lemma 12. Suppose the sequence z1, . . . , zr ∈ K∞(N) is reduced with respect to t ∈
K∞(N). Then M := 〈z1, . . . , zr〉C[t] is a free C[t]-module with basis 1, z1, . . . , zr. Fur-
thermore, for z0 := 1 and 0 6= u ∈ M with u =

∑r
i=0 pi(t)zi, pi(t) ∈ C[t], we have

that
pord(u) = pord(zi) + deg(pi) pord(t)

for some i ∈ {0, . . . , r}.

Proof. Let I := {i : pi 6= 0}. Note that for i ∈ I: pord(pi(t)zi) = pord(zi)+deg(pi) pord(t).
Since pord(zi) 6≡ pord(zj) (mod pord(t)), for all i, j ∈ {0, . . . , r} with i 6= j, it follows
that pord(pi(t)zi) 6= pord(pj(t)zj) for all i, j ∈ I with i 6= j. This implies that

pord(u) = max
i∈I

pord(pi(t)zi).

Now we prove that M is free with (1, z1, . . . , zr) as a module basis. This is equivalent
to showing that the polynomials p0(t), p1(t), . . . , pr(t) for u are unique. Assume that
u =

∑r
i=0 qi(t)zi. Then 0 =

∑r
i=0 hi(t)zi with hi(t) = pi(t) − qi(t). If there exists an i

such that hi(t) 6= 0, then by similar arguments as above,

pord(
r∑

i=0

hi(t)zi) > 0,

which is a contradiction to
∑r

i=0 hi(t)zi = 0. ✷

Algorithm MC (Membership Check)
Input: u, t ∈ K∞(N) and a t-reduced sequence z1, . . . , zr ∈ K∞(N).
Output: “True” if u ∈ 〈z1, . . . , zr〉Q[t] and “False” otherwise.
(1) z0 := 1;
(2) while there exists i ∈ {0, . . . , r} such that pord(u) ≡ pord(zi) (mod pord(t)) do

(a) j := pord(u)−pord(zi)
pord(t) ;

(b) if j ≥ 0 then u := u− zit
j lc(u)
lc(zitj)

;

Note 1. We used in Algorithm MC that by Lemma 12 0 6= u ∈ 〈z1, . . . , zr〉Q[t] only if
pord(u) ≡ pord(zi) (mod pord(t)) for some i ∈ {0, . . . , r}.

It is straightforward to refine the Algorithm MC.

Algorithm MW (Membership Witness)
Input: u, t ∈ K∞(N) and a t-reduced sequence z1, . . . , zr ∈ K∞(N).
Output: If Algorithm MC returns True, (p0, . . . , pr) ∈ Q[t]r+1 such that u =

∑r
i=0 pi(t)zi.

Remark 13. If we choose t to be nonzero constant, then Q[t] = Q and the Q[t]-module
turns into a Q-vector space 〈z1, . . . , zr〉Q(= 〈1, z1, . . . , zr〉Q).

More generally, we have the

Algorithm VB (Vector Space Basis)
Input: {m1, . . . ,ms} ⊂ K∞(N)
Output: A reduced sequence z1, . . . , zr ∈ K∞(N) which is a vector space basis such that
in the sense of Definition 10,

〈m1, . . . ,ms〉Q = 〈z1, . . . , zr〉Q.
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To obtain the desired output we carry out the same Gaussian elimination algorithm as
used for triangularization of a matrix M . In our setting, row j of the matrix M consists
of the coefficients of the principal part of the q-series of mj . The row i of the resulting
triangular matrix Z consists of the coefficients of the principal part of zi. If S is the
invertible matrix coding the elimination steps; i.e., S ·M = Z, then S(m1, . . . ,ms)

T =
(zr, . . . , z1, c1, . . . , cs−r

︸ ︷︷ ︸

s−r constants in C

)T .

Example 14. We apply the Algorithm VB to:

(m1,m2,m3) := (q−3 + q−1 + 2 +O(q), q−3 + q−2 + 3 +O(q), q−2 − q−1 + 8 +O(q)).

Then

M :=








1 0 1

1 1 0

0 1 −1








and by G. elim. algorithm S :=








1 0 0

−1 1 0

1 −1 1








;

so that

S ·M =








1 0 1

0 1 −1

0 0 0








and

S ·








m1

m2

m3








=








q−3 + q−1 + 2 +O(q)

q−2 − q−1 + 1 +O(q)

7








=








z2

z1

7








.

Lemma 15. Suppose that the sequence z1, . . . , zr ∈ K∞(N) is the output of Algorithm
VB on input {m1, . . . ,ms} ⊆ K∞(N). Then for i ∈ {1, . . . , r}:

pord(z1) ≤ pord(zi).

We use this minimality of pord(z1) in the Algorithm MB. More generally, we need a
module basis:

Algorithm MB (Module Basis)
Input: {m1, . . . ,ms} ⊂ K∞(N).
Output: t ∈ K∞(N) non-constant, and a t-reduced sequence z1, . . . , zr ∈ K∞(N) such
that

〈m1, . . . ,ms〉Q[t] = 〈z1, . . . , zr〉Q[t].

(1) Let L := {} and M := {m1, . . . ,ms};
(2) while M 6= L do

(a) apply Algorithm VB to M and let z1, . . . , zr be the output;
(b) L := {z1, . . . , zr}, M := L;
(c) t := z1; (in view of Lemma 15)
(d) for i, j ∈ {1, . . . , r} with j > i do

if pord(zi) ≡ pord(zj) (mod pord(t)), then

8



(A) v := zj −
lc(zj)

lc(zi) lc(t)k
zit

k, k :=
pord(zj)−pord(zi)

pord(t) ;

(B) M := L− {zj};
(C) if v 6= 0, then M := L ∪ {v};
(D) break the for loop;

(3) return z2, . . . , zr and t.

Algorithm AB (Algebra Basis)
Input: {m1, . . . ,ms} ⊂ K∞(N)
Output: t ∈ K∞(N) and a t-reduced sequence z1, . . . , zr such that

Q[m1, . . . ,ms] = 〈z1, . . . , zr〉Q[t].

(1) let L := {} and M := {m1, . . . ,mr};
(2) while L 6= M do

(a) apply Algorithm MB to M and let t and z1, . . . , zr be the output
(b) L := {z1, · · · , zr}, M := L;
(c) for i, j ∈ {1, . . . , r} do

if zizj 6∈ 〈z1, . . . , zr〉Q[t], then
(A) M := L ∪ {t, zizj};
(B) break the for loop;

(3) return L and t.

For an example of this algorithm see subsection 3.3.

Theorem 16. The Algorithms MB and AB terminate.

Proof. We prove termination of Algorithm MB. Because of pord(t) > 0, after a finite
number of steps we reach a minimal k > 0 such that pord(t) = k. We define

vs(L, k) := min{pord(f) : f ∈ L, pord(f) ≡ s (mod k)}.

The only thing that prevents the algorithm from terminating is that M 6= L. However,
if this is the case, then for some s ∈ {1, . . . , k − 1}, vs(L, k) has decreased. Because of
Corollary 6 we have vs(L, k) ≥ 0. This implies that after a finite numbers of steps for each
given s, vs(L, k) will no longer change which implies that M = L and hence Algorithm
MB will terminate. The proof that Algorithm AB terminates is analogous. ✷

2.2. Applying the Basis Algorithms to Eta Products

Lemma 17. For all δ ∈ N∗ with δ|N ,
(

η(δτ)
η(τ)

)24

∈ K(N).

Proof. By [15, Ch. VII, Th. 6] we have

η24
(aτ + b

cτ + d

)

= (cτ + d)12η24(τ) (13)

for all




a b

c d



 ∈ SL2(Z). Let




a b

cN d



 ∈ Γ0(N). Then

η24
(

δ
aτ + b

cNτ + d

)

= η24
( a(δτ) + δb

cN
δ (δτ) + d

)

= (
cN

δ
(δτ) + d)12η(δτ)24. (14)

9



This implies that

η
(

δ aτ+b
cNτ+d

)24

η
(

aτ+b
cNτ+d

)24 =
η(δτ)24

η(τ)24
.

Noting that the η function has no zeros or poles in H implies that
(

η(δτ)
η(τ)

)24

is analytic

on H. This proves property (ii) of Definition 1.
In order to prove property (iii) of Definition 1 we need to show that for γ ∈ SL2(Z)

there exists k ∈ N∗ such that the function
(

η(δγτ)
η(γτ)

)24

can be expressed as a Laurent

series in powers of q1/k with finite principal part. We may write δγτ = Aτ where A
is an integer matrix with determinant δ. Furthermore, one may write A = γ′T where
γ′ ∈ SL2(Z) and T is a triangular matrix. Then

(η(δγτ)

η(γτ)

)24

=
(η(Aτ)

η(γτ)

)24

=
(η(γ′Tτ)

η(γτ)

)24

= c
(η(Tτ)

η(τ)

)24

︸ ︷︷ ︸

because of (13)

for some c ∈ C. Because of the triangular shape of T , T =




u v

0 w



 say, then η(Tτ) can be

expressed as a Laurent series (with finite principal part) in powers of q
1

24w ; consequently

so can c
(

η(Tτ)
η(τ)

)24

. ✷

Lemma 17 is a special case of a much more general result of Gordon, Hughes, and
Newman [8, Thm. 1.64].

Lemma 18. Let a, b ∈ N with a, b ≥ 2 and a 6= b. Let A :=
(

η(aτ)
η(τ)

)24(b−1)

and B :=
(

η(bτ)
η(τ)

)24(a−1)

. Then we have

gcd(pord(A−B), pord(A)) = 1.

Proof. We have

A = q(a−1)(b−1)
∞∏

n=1

(
1− qan

1− qn

)24(b−1)

= q(a−1)(b−1)(1 + 24(b− 1)q +O(q2))

and, by symmetry,
B = q(a−1)(b−1)(1 + 24(a− 1)q +O(q2)).

In particular,
A−B = q(a−1)(b−1)(24(b− a)q +O(q2)).

This implies pord(A−B) = −(a− 1)(b− 1)− 1 and pord(A) = −(a− 1)(b− 1). ✷

Definition 19. For N ∈ N∗ we consider the multiplicative monoid of eta quotients
contained in K∞(N) and denoted by

E∞(N) := E(N) ∩K∞(N).
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Lemma 20. For each N ∈ N∗ there exists µ ∈ E∞(N) such that ordNγ (µ) > 0 for all

γ ∈ SL2(Z) \ Γ0(N).

Proof. The case N square free has been proven by Newman [6]. In case N is not square

free letM be the largest square free integer dividing N , and let µ∗ ∈ E∞(M) be such that

ordMγ (µ∗) > 0 for all γ ∈ SL2(Z) \ Γ0(M). Then one can verify that µ(τ) := µ∗(Nτ/M)

satisfies the desired property. ✷

Corollary 21. Let N be a positive integer which is not a prime. Then there exist F,G ∈

〈E∞(N)〉Q such that

gcd(pord(F ), pord(G)) = 1.

Proof. By Lemma 20 there exists a function µ ∈ E∞(N) such that

ordNγ (µ) > 0 for all γ ∈ SL2(Z) \ Γ0(N). (15)

Since N is not a prime there exists a, b dividing N with a, b ≥ 2 and a 6= b. Then by

Lemma 17 the functions A :=
(

η(aτ)
η(τ)

)24(b−1)

and B :=
(

η(bτ)
η(τ)

)24(a−1)

are in K(N), and

by Lemma 18 they satisfy gcd(pord(A−B), pord(A)) = 1. Furthermore, because of (15)

one can choose k ∈ N∗ sufficiently big such that

Aµ−k pord(A), Bµ−k pord(A) ∈ E∞(N).

Setting F := Aµ−k pord(A) − Bµ−k pord(A) implies gcd(pord(F ), pord(A)) = 1. Applying

the same reasoning again we see that there exists a j ∈ N∗ such that Aµj pord(F ) ∈

E∞(N). Defining G := Aµj pord(F ) we have gcd(pord(F ), pord(G)) = 1. ✷

Lemma 22. For N ∈ N∗ and every γ =




a b

c d



 ∈ SL2(Z) there exists γN =




A B

Nx y



 ∈

Γ0(N) such that γNγ =




∗ ∗

δ ∗



, where δ := gcd(N, c).

Proof. We need to find x, y ∈ Z and A,B ∈ Z such that




A B

Nx y



 ∈ Γ0(N) and




A B

Nx y








a b

c d



 =




∗ ∗

δ ∗



 .

This means that we need to solve the equation

aNx+ cy = δ.

This equation always has a solution (x0, y0) because gcd(aN, c) = δ. The general solution

is of the form

(x, y) = (x0, y0) + (kc/δ,−kNa/δ).
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One can prove that k can be chosen appropriately such that gcd(Nx, y) = 1. When

this condition is satisfied there exist A,B ∈ Z such that Ay − BNx = 1, implying that



A B

Nx y



 ∈ Γ0(N). ✷

As as a consequence of Lemma 22, given f ∈ K(N), to know ordNγ (f), γ ∈ SL2(Z),

we can restrict to consider γ =




a b

c d



 where c|N . It is easy to see that w.l.o.g. we can

additionally assume that a and c are positive integers. If f ∈ E(N) there is a well-known

formula, usually named after Ligozat; see e.g. [8, Th. 1.64].

Theorem 23. Let f ∈ E(N) with f =
∏

δ|N η(δτ)rδ where (rδ)δ|N ∈ R∗(N). Let γ =



a b

c d



 ∈ SL2(Z) with c > 0 and c|N . Then

ordNγ (f) =
N/c

24 gcd(N/c, c)

∑

δ|N

rδ
gcd(c, δ)2

δ
.

Lemma 24. We have:

E∞(N) =
{∏

δ|N

(
η(δτ)

η(τ)

)rδ

: (rδ) ∈ R∗(N)
}

,

and for all positive c|N , c 6= 1:

c

24 gcd(c,N/c)

∑

δ|N

rδ
gcd2(δ,N/c)− δ

δ
≥ 0

}

,

Proof. It is easy too see that any f ∈ E(N) can be written in the requested form.

Because of E(N) ⊆ K(N) ([8, Th. 1.64]) we only need to check the non-negativity of the

orders ordNγ (f) for all γ ∈ SL2(Z)\Γ0(N); this means, for all γ =




a b

c d



 with c > 0,

c|N and c 6= N . But this is implied by Theorem 23 taking c/N instead of c. The proof is

completed by noting that then then the condition c 6= N turns into c 6= 1. ✷

Lemma 25. The set E∞(N) is a finitely generated monoid.

Proof. Let δ1, . . . , δn be the divisors of N greater than 1. Define

AN := (a(i, j)) 1≤i≤n

1≤j≤n

,

where

a(i, j) :=
δi

24 gcd(δi, N/δi)

gcd2(δj , N/δi)− δj
δj

.
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Then Lemma 24 may be expressed as:

E∞(N) =
{∏

δ|N

(
η(δτ)

η(τ)

)rδ

: r = (rδ) ∈ R∗(N), AN (rδ1 , . . . , rδn)
T ≥ 0

}

.

Since Newman [6] proved that AN is invertible we may write:

E∞(N) =







n∏

j=1

(
η(δjτ)

η(τ)

)rδj

:

(−
∑n

i=1 rδi , rδ1 , . . . , rδn) ∈ R∗(N) s.t.

∃(x1, . . . , xn) ∈ Nn with

(rδ1 , . . . , rδn)
T = A−1

N (x1, . . . , xn)
T .







. (16)

Given such a matrix AN , we can choose κi ∈ N∗ big enough (to make κiA
−1
N an integer

matrix and, if needed, to have them as multiples of 24)

(r
(i)
δ1
, . . . , r

(i)
δn
)T := κiA

−1
N ei, we have

r(i) := (−

n∑

i=1

r
(i)
δi
, r

(i)
δ1
, . . . , r

(i)
δn
) ∈ R∗(N).

where ei is the i-th column in the n× n identity matrix. Consequently, owing to (16),

Fi :=

n∏

j=1

(
η(δjτ)

η(τ)

)r
(i)

δj

∈ E∞(N).

From (16) we see that we have a one to one correspondence between the monoid

consisting of (x1, . . . , xn) satisfying the conditions in (16) and the monoid consisting of

the elements of E∞(N). Hence we need to find the generating set of the monoid

SN :=
{

(x1, . . . , xn) ∈ Nn :
∃(−

∑n
i=1 rδi , rδ1 , . . . , rδn) ∈ R∗(N)

s.t. (rδ1 , . . . , rδn)
T = A−1

N (x1, . . . , xn)
T

}

.

Note that (κiei)
T ∈ SN , and if a, b ∈ SN and a − b ≥ 0, then a − b ∈ SN . This implies

that if for a ∈ SN there exists ci ∈ Z such that b := a−
∑N

i=1 ci(κiei)
T ≥ 0, then b ∈ SN .

This implies that any a = (a1, . . . , an) can be reduced to a b = (b1, . . . , bn) where bi < κi.

Hence a finite generating set for SN is given by






(x1, . . . , xn) ∈ Nn :

∃(−
∑n

i=1 rδi , rδ1 , . . . , rδn) ∈ R∗(N)

s.t. (rδ1 , . . . , rδn)
T = A−1

N (x1, . . . , xn)
T

and xi < κi for all 1 ≤ i ≤ n







∪ {κ1e1, . . . , κnen}.

✷

Remark 26. We observe that in the above proof we also obtain an explicit algorithm

on how to produce the generating set in question. There are more general algorithms to

solve this problem, e.g. see [4] or methods from discrete geometry [2].
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Example 27. Let p ≥ 5 be a prime. The matrix Ap2 in Lemma 25 above is given by

Ap2 =
p− 1

24




1 0

−p −(p+ 1)



 .

(Note that p2 − 1 is divisible by 24.) Then

A−1
p2 =

24

p2 − 1




p+ 1 0

−p −1





and we can choose κ1 = κ2 = p2−1
24 . This implies that κ1A

−1
p2 e1 = (p+1,−p), κ2A

−1
p2 e2 =

(0,−1) and r(1) = (−1, p + 1,−p) resp. r(2) = (1, 0,−1) are in R∗(p2). Next we need to

find all (x1, x2) ∈ N2 with 0 < x1, x2 < κ = p2−1
24 such that

A−1
p2




x1

x2



 =:




rp

rp2



 (17)

satisfies (−rp − rp2 , rp, rp2) ∈ R∗(p2). The relation (17) implies

(p2 − 1) | 24(p+ 1)x1, and (18)

(p2 − 1) | 24(px1 + x2). (19)

From (18) we obtain that x1 = k p−1
gcd(p−1,24) for some integer 0 < k < (p+1) gcd(p−1,24)

24 .

(Note that this upper bound for k is an integer.) Substituting into (19) we obtain x2 =

t p−1
gcd(p−1,24) for some integer 0 < t < (p+1) gcd(p−1,24)

24 . Substituting this form of x2 into

(19) we obtain that

t ≡ k (mod
(p+ 1) gcd(p− 1, 24)

24
).

In case (p+1) gcd(p−1,24)
24 = 1 we have no solutions to (18)-(19). In case (p+1) gcd(p−1,24)

24 > 1

we have the choices (k, t) = j(1, 1) for 0 < j < (p+1) gcd(p−1,24)
24 . This corresponds to the

solutions

(x1, x2) = j
p− 1

gcd(p− 1, 24)
(1, 1)

for which

A−1
p2




x1

x2



 = j





24
gcd(p−1,24)

− 24
gcd(p−1,24)



 .

We observe that
24

gcd(p− 1, 24)
(0, 1,−1) ∈ R∗(p2)

iff p 6≡ 1 (mod 24). Hence, in case p 6≡ 1 (mod 24) we have that

( p− 1

gcd(p− 1, 24)
,

p− 1

gcd(p− 1, 24)

)

∈ Sp2 .
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If p ≡ 1 (mod 24) we deduce that

2
( p− 1

gcd(p− 1, 24)
,

p− 1

gcd(p− 1, 24)

)

∈ Sp2 .

Summarizing, a set of generators for the additive monoid Sp2 is given by

{κe1, κe2}

if (p+1) gcd(p−1,24)
24 = 1; that is in case p = 5, 11. In this case the multiplicative monoid

E∞(p2) is generated by

{
ηp+1(pτ)

η(τ)ηp(p2τ)
,

η(τ)

η(p2τ)
}.

In case p 6≡ 1 (mod 24) and (p+1) gcd(p−1,24)
24 > 1 a set of generators for Sp2 is given by

{κe1, κe2,
p− 1

gcd(p− 1, 24)
(1, 1)}.

In this case E∞(p2) is generated by

{
ηp+1(pτ)

η(τ)ηp(p2τ)
,

η(τ)

η(p2τ)
,
( η(pτ)

η(p2τ)

) 24
gcd(p−1,24)

}.

Finally, in case p ≡ 1 (mod 24) and (p+1) gcd(p−1,24)
24 > 1 a set of generators for Sp2 is

given by

{κe1, κe2,
2(p− 1)

gcd(p− 1, 24)
(1, 1)}.

In this case E∞(p2) is generated by

{
ηp+1(pτ)

η(τ)ηp(p2τ)
,

η(τ)

η(p2τ)
,
( η(pτ)

η(p2τ)

) 48
gcd(p−1,24)

}.

✷

Our goal is to find a basis of the Q[t]-module E := 〈E∞(N)〉Q, because the set E

viewed as a Q-module does not have a finite basis. For this reason we view it as a Q[t]-

module for some t ∈ E, then the Q[t]-module E indeed has a finite basis. We construct

this finite basis in the following way. First we find a finite set of generators x1, . . . , xn of

the monoid E∞(N) (this is guaranteed by Lemma 25). Then E = Q[x1, . . . , xn]. Next

applying the Algorithm AB we obtain finitely many generators of E viewed as a Q[t]-

module for some t ∈ E produced by the algorithm. E can now be finitely described and,

most important we are now able to check membership in E by using the Algorithm MC.

More precisely we may check if a given element f ∈ K∞(N) may be expressed as a sum

of eta quotients from E∞(N). Our next goal is to decide whether f ∈ K∞(N) belongs

to 〈E(N)〉Q ∩ K∞(N); i.e., if f ∈ K∞(N) may be expressed as a sum of eta quotients

from E(N).

We do not know if in general

〈E(N)〉Q ∩K∞(N) = 〈E∞(N)〉Q?

However we will show the following lemma:
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Lemma 28. Given µ(τ) ∈ E∞(N) as in Lemma 20. Then there exists a positive integer
k such that

µk(τ)
(
〈E(N)〉Q ∩K∞(N)

)
⊆ 〈E∞(N)〉Q.

Furthermore, k is computable in finitely many steps.

Before we prove Lemma 28 we need the following lemma:

Lemma 29. Assume that

〈z1, . . . , zr〉Q[t] = 〈E∞(N)〉Q

where the sequence z1, . . . , zr is reduced with respect to t ∈ 〈E∞(N)〉Q. Let µ ∈ E∞(N) be
as in Lemma 20. Let ν := pord(µ)− 1. Then there exist x1, . . . , xν ∈ 〈E∞(N)〉Q reduced

with respect to µ such that

〈x1, . . . , xν〉Q[µ] = 〈z1, . . . , zr〉Q[t] (20)

and for i ∈ {1, . . . , ν}

pord(xi) ≡ i (mod ν + 1). (21)

Proof. Set z0 := 1. Because of Corollary 21 we observe that for each 0 ≤ i ≤ ν there
exists unique (a, b) ∈ {0, . . . , r} × N such that pord(zat

b) is minimal with the property
pord(zat

b) ≡ i (mod ν + 1). We define xi := zat
b. Set x0 := 1. Then for every a ∈

{0, . . . , r} and b ∈ N, there exists i ∈ {0, . . . , ν} and j ∈ N such that pord(zat
b) =

pord(xiµ
j). By construction xi ∈ 〈z1, . . . , zr〉Q[t] for all i ∈ {1, . . . , ν} and since µ ∈

E∞(N) ⊂ 〈z1, . . . , zr〉Q[t] it follows that

〈x1, . . . , xν〉Q[µ] ⊆ 〈z1, . . . , zr〉Q[t] = 〈E∞(N)〉Q.

To prove the other direction let

f ∈ 〈z1, . . . , zr〉Q[t], f 6∈ 〈x1, . . . , xν〉Q[µ]

with pord(f) minimal. Then there exists zat
b and c ∈ Q such that pord(f) > pord(f −

czat
b). In particular there exists xiµ

j such that pord(zat
b) = pord(xiµ

j). This implies
that for some c′ ∈ Q we have pord(f) > pord(f−c′xiµ

j). This contradicts the minimality
of pord(f). ✷

Proof of Lemma 28: Let m1, . . . ,ms be some generators of the monoid E∞(N).
We input these generators to the algorithm “Algebra Basis”. Let t, z1, . . . , zr be the

output of the algorithm. Let µ ∈ E∞(N) be as in Lemma 20. By Lemma 29 there exist
x1, . . . , xν ∈ 〈E∞(N)〉Q such that (20) and (21).

Assume that f ∈ (〈E(N)〉Q ∩ K∞(N))\〈E∞(N)〉Q. Then for some minimal positive
integer k we have fµk ∈ 〈E∞(N)〉Q.

Then there exists ai ∈ 〈x1, . . . , xν〉Q for i = 0, 1, . . . , d such that

fµk = adµ
d + ad−1µ

d−1 + · · ·+ a0µ
0.

In particular since k ≥ 1 by assumption we have fµk−1 ∈ K∞(N). Furthermore,

fµk−1 = adµ
d−1 + ad−1µ

d−2 + · · ·+ a0µ
−1.
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implies that a0µ
−1 ∈ K∞(N). Note that a0 6= 0 because otherwise k is not minimal.

There exists xj such that

pord(xj) ≡ pord(a0µ
−1) (mod ν + 1).

We define

(x
(1)
1 , . . . , x

(1)
j , . . . , x(1)

ν ) := (x1, . . . , a0µ
−1, . . . , xν). (22)

Then there exists a
(1)
i ∈ 〈x

(1)
1 , . . . , x

(1)
ν 〉Q for i = 0, 1, . . . , d1 such that

fµk−1 = a
(1)
d1

µd1 + a
(1)
d1−1µ

d1−1 + · · ·+ a
(1)
0 µ0.

If k−1 ≥ 1 we divide µ out and we find that a
(1)
0 µ−1 ∈ K∞(N). Set j1 := pord(a

(1)
0 µ−1),

then
(x

(2)
1 , . . . , x

(2)
j1

, . . . , x(2)
ν ) := (x

(1)
1 , . . . , a

(1)
0 µ−1, . . . , x(1)

ν ).

Now fµk−2 = a
(2)
d2

µd2 + · · ·+ a
(2)
0 µ0 for some a

(2)
i ∈ 〈x

(2)
1 , . . . , x

(2)
ν 〉Q. Continuing this

procedure we obtain at the j-th step (with j ≤ k)

fµk−j = a
(j)
dj

µdj + a
(j)
dj−1µ

dj−1 + · · ·+ a
(j)
0 µ0

where a
(j)
i ∈ 〈x

(j)
1 , . . . , x

(j)
ν 〉Q. We must have a

(j)
0 6= 0 because in case not then

fµk−j = µ(a
(j)
dj

µdj + a
(j)
dj−1µ

dj−1 + · · ·+ a
(j)
1 µ0)

and by multiplying both sides by µj−1 we obtain

fµk−1 = (µja
(j)
dj

)µdj + (µja
(j)
dj−1)µ

dj−1 + · · ·+ (µja
(j)
1 )µ0

and µja
(j)
i ∈ 〈x1, . . . , xν〉Q[µ] because of µ

jx
(j)
i ∈ 〈x1, . . . , xν〉Q[µ]. Hence fµ

k−1 ∈ 〈E∞(N)〉Q
contradicting the minimality of k.

Note that if the old basis x
(j)
1 , . . . , x

(j)
ν satisfies

(pord(x
(j)
1 ), . . . , pord(x(j)

ν )) = (a1, . . . , aν),

then for some u ∈ {1, . . . , ν}, the new basis x
(j+1)
1 , . . . , x

(j+1)
ν satisfies

(pord(x
(j+1)
1 ), . . . , pord(x(j+1)

ν )) = (a1, . . . , au − pord(µ), . . . , aν).

Defining qi by the relation pord(xi) = qi pord(µ) + ri, with ri < pord(µ), it follows
that after at most

∑ν
j=1 qj steps this procedure must stop because for all i, j ∈ N:

x
(j)
i ∈ K∞(N). This implies that pord(x

(i)
j ) ≥ 0 because of Corollary 6. This proves that

k ≤
∑ν

j=1 qj . ✷

3. The Main Theorem and the Algorithm

In this section we present our main theorem and the algorithm that solves the problem
described in the abstract. Furthermore, at the end of this section we give a counterex-
ample to a conjecture by Morris Newman related to eta products.

Definition 30. For a ∈ Z and n an odd integer we denote by
(
a
n

)
the Legendre-Jacobi

symbol.
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Lemma 31. Let n > 0 be an odd integer, then the following relation holds for integers
a and b:

(a

n

)(
b

n

)

=

(
ab

n

)

. (23)

Proof. See [13], page 71. ✷

For γ ∈ SL2(Z)
∗ the following formula was proven by Newman:

η(γτ) = (−i(cτ + d))
1
2 ǫ(a, b, c, d)η(τ) (24)

where

ǫ(a, b, c, d) :=
( c

a

)

e−
aπi
12 (c−b−3). (25)

Lemma 32 (Newman). Let N ∈ N∗, and f : H → C be a function such that for all

γ =




a b

c d



 ∈ Γ0(N)∗ we have f(γτ) = f(τ). Then for all γ =




a b

c d



 ∈ Γ0(N) we

have f(γτ) = f(τ).

Definition 33. For m,M ∈ N∗, t ∈ {0, . . . ,m− 1} and r = (rδ) ∈ R(M) we define:

f(τ, r) :=
∏

δ|M

∞∏

n=0

(1− qδn)rδ =

∞∑

n=0

ar(n)q
n, (26)

and

gm,t(τ, r) := q
24t+σ∞(r)

24m

∞∑

n=0

ar(mn+ t)qn. (27)

We will sometimes write gm,t(τ) instead of gm,t(τ, r).

Definition 34. We denote by ∆ the set of all (m,M,N, (rδ)) ∈ (N∗)3×R(M) such that
for every prime p:

p|m implies p|N, (28)

and such that for every δ|M with rδ 6= 0,

δ|M implies δ|mN.

Definition 35. We denote by ∆∗ the set of all (m,M,N, t, r = (rδ)) with (m,M,N, (rδ)) ∈
∆ and t ∈ {0, . . . ,m− 1} such that for κ := gcd(1−m2, 24), κ ≥ 1:

κ
mN2

M
σ0(r) ≡24 0;

κNw(r) ≡8 0;
24m

gcd(κ(−24t− σ∞(r)), 24m)
| N ;

and
if 2|m, then (κN ≡4 0 and 8|Ns) or (2|s and 8|N(1− j)) ,

where j, s ∈ Z, j odd, are such that
∏

δ|M δ|rδ| = 2sj.

18



Definition 36. Let m,M ∈ N∗ and r = (rδ) ∈ R(M). Define the operation ⊙r :

Γ0(N)∗ × {0, . . . ,m − 1} 7→ {0, . . . ,m − 1}, (γ, t) 7→ γ ⊙r t, where for γ =




a b

c d



 the

image γ ⊙r t is uniquely defined by the relation

γ ⊙r t ≡ ta2 +
a2 − 1

24
σ∞(r) (mod m). (29)

Theorem 37 ([10], Th. 2.14). Let (m,M,N, t, r = (rδ)) ∈ ∆∗, γ =




a b

c d



 ∈ Γ0(N)∗

and define

β = β(γ, r) :=
∏

δ|M

(
mcδ

a

)|rδ|

e−
πia
12 (mc

M
σ0(r)−mbσ∞(r)−3w(r)), (30)

then the following formula holds for all γ =




a b

c d



 ∈ Γ0(N)∗:

gm,t (γτ) = β (−i(cτ + d))
w(r)

2 e2πi
ab(1−m2)(24t+σ∞(r))

24m · gm,γ⊙rt(τ). (31)

Definition 38. Let γ =




a b

c d



 ∈ SL2(Z), m,M ∈ N∗ and r = (rδ) ∈ R(M), then we

define

p(γ, r) := min
λ∈{0,...,m−1}

1

24

∑

δ|M

rδ
gcd2(δ(a+ kλc),mc)

δm
,

and for N ∈ N∗, s = (sδ)δ|N ∈ R(N):

p∗(γ, s) :=
1

24

∑

δ|N

sδ gcd
2(δ, c)

δ
.

By [10, Lem. 3.4 and Lem. 3.5]:

Theorem 39. Let (m,M,N, r = (rδ)) ∈ ∆, t ∈ {0, . . . ,m − 1}, s = (sδ)δ|N ∈ R(N),

γ0 ∈ SL2(Z), O a subset of {0, . . . ,m − 1}, (nt′) a sequence of nonnegative integers

indexed by the elements t′ of O. Let γ ∈ Γ0(N)γ0SL2(Z)∞ and g : H → C defined by

g(τ) :=(cτ + d)
−( 1

2 (
∑

t′∈O
nt′ )w(r)+ 1

2w(s))

·q
−
(∑

t′∈O
nt′

)
p(γ0,r)+p∗(γ0,s)

∏

t′∈O

g
nt′

m,t′(γτ, t)
∏

δ|N

ηsδ(δγτ),

for all τ ∈ H. Then g(τ) has a Fourier expansion in (nonnegative) powers of e2πiτ/k for

some k ∈ N∗.

Definition 40. Let n be a positive integer. For x ∈ Z we denote by [x]n the residue
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class of x modulo n. We define

Z∗
n := {[x]n ∈ Zn | gcd(x, n) = 1},

and
Sn := {y2 | y ∈ Z∗

n}.

Definition 41. For m ∈ N∗, r = (rδ) ∈ R(N) and t ∈ {0, . . . ,m− 1} we define the map
⊙r : S24m × {0, . . . ,m− 1} → {0, . . . ,m− 1} where [s]24m⊙rt is uniquely determined by
the relation

[s]24m⊙rt ≡m ts+
s− 1

24
σ∞(r).

Definition 42. For m,M ∈ N∗, r ∈ R(M) and t ∈ {0, . . . ,m− 1} we define

Pm,r(t) := {γ ⊙r t|γ ∈ Γ0(N)∗}, (32)

and

χm,r(t) :=
∏

t′∈Pm,r(t)

e2πi
(1−m2)(24t′+σ∞(r))

24m . (33)

Lemma 43 ([10], Lem. 3.11). Given m,M,N ∈ N∗, γ =




a b

c d



 ∈ SL2(Z), r = (rδ) ∈

R(M) and t ∈ {0, . . . ,m− 1} such that (28) holds. Then:
(i) γ ⊙r t = [a2]24m⊙rt;
(ii) For [s]24m ∈ S24m we have Pm,r(t) = {[s]24m⊙rt

′|t′ ∈ Pm,r(t)};

(iii) χm,r(t) = e
2πiν
24 for some integer ν.

Definition 44. Given m, M , N ∈ N∗, t ∈ {0, . . . ,m − 1}, r = (rδ) ∈ R(M) and
s = (sδ)δ|N ∈ R(N), we define

F (s, r,m, t)(τ) :=
∏

δ|N

ηsδ(δτ)
∏

t′∈Pm,r(t)

gm,t′(τ, r).

We are ready to state our main theorem:

Theorem 45 (“Main Theorem”). Let (m,M,N, t, r = (rδ)) ∈ ∆∗, s = (sδ) ∈ R(N) and

ν an integer such that χm,r(t) = e
2πiν
24 . Then F (s, r,m, t) ∈ K(N) iff all the conditions

(34)-(37) hold:
|Pm,r(t)|w(r) + w(s) = 0; (34)

ν + |Pm,r(t)|mσ∞(r) + σ∞(s) ≡ 0 (mod 24); (35)

|Pm,r(t)|
mN

M
σ0(r) + σ0(s) ≡ 0 (mod 24); (36)




∏

δ|M

(mδ)|rδ|





|Pm,r(t)|

Π(s) is a square. (37)

Proof. Let β be as in Theorem 37 and define

ξ := β|Pm,r(t)|χab
m,r(t)e

−πia
12 ( c

N
σ0(s)−bσ∞(s)−3w(s))

∏

δ|N

(
c/δ

a

)sδ

.
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For γ =




a b

c d



 ∈ Γ0(N)∗ holds:

F (s, r,m, t)(γτ)

=




∏

t′∈Pm,r(t)

gm,t′(γτ)




∏

δ|N

ηsδ(δγτ)

=(−i(cτ + d))
|Pm,r(t)|w(r)+w(s)

2 ξ
∏

t′∈Pm,r(t)

gm,γ⊙rt′(τ) ·
∏

δ|N

ηsδ(δτ)

(because of the relation (14) and (η(δγτ) = (−i(cτ + d))
1
2 ǫ(a, δb, c

δ , d)η(δτ), γ ∈ Γ0(δ)
∗,

by (24), together with Theorem 37)

=(−i(cτ + d))
|Pm,r(t)|w(r)+w(s)

2 ξ




∏

t′∈Pm,r(t)

gm,t′(τ)




∏

δ|N

ηsδ(δτ)

(because of (i)-(ii) in Lemma 43).

(38)

Assume (34)-(37). Then because of (34), the last line of (38) reduces to

ξ




∏

t′∈Pm,r(t)

gm,t′(τ)




∏

δ|N

ηsδ(δτ).

Next we prove ξ = 1.

First we note that for arbitrary positive integers N and δ with δ|N and γ =




a b

c d



 ∈

Γ0(N)∗ one has

(
c/δ

a

)

=

(
c/δ

a

)(
δ2

a

)

=

(
cδ

a

)

. (39)

This follows from (23). We have that

ξ =




∏

δ|M

(
mcδ

a

)|rδ|

e−
πia
12 (mc

M
σ0(r)−mbσ∞(r)−3w(r))





|Pm,r(t)|

× e
2πiabν

24 e−
πia
12 ( c

N
σ0(s)−bσ∞(s)−3w(s))

∏

δ|N

(
cδ

a

)sδ
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(by (30), and by χab
m,r(t) = e

2πiabν
24 )

=e−
πia
12 (|Pm,r(t)|

mc
M

σ0(r)+
c
N

σ0(s))

× e
πiab
12 (ν+|Pm,r(t)|mσ∞(r)+σ∞(s))

× e
πia
4 (|Pm,r(t)|w(r)+w(s))

×




∏

δ|M

(
mcδ

a

)|rδ|




|Pm,r(t)|
∏

δ|N

(
cδ

a

)sδ

=




∏

δ|M

(
mcδ

a

)|rδ|




|Pm,r(t)|
∏

δ|N

(
cδ

a

)sδ

(by (34), (35) and (36))

=
( c

a

)|Pm,r(t)|w(r)+w(s)






(
∏

δ|M mδ|rδ|
)|Pm,r(t)|

Π(s)

a






(by (23), and because
(
i
j

)k
=

(
i
j

)|k|
for all integers i, j, k, with gcd(i, j) = 1 and such

that
(
i
j

)
is defined. )

=1

(by (37) and (34)).

Since we have proved that F (γτ) = F (τ) for all γ ∈ Γ0(N)∗, we have F (τ) = F (γτ)

for all γ ∈ Γ0(N) because of Lemma 32.

So we have proved condition (ii) of Definition 1. Condition (iii) follows from Theorem

39 and Remark 4. Condition (i), follows from the fact that η(τ) is analytic on H and

that F (τ) generated by finite products and sums of terms of the form η((Aτ + B)/C)

which are also analytic on H.

Now assume that F (τ) ∈ K(N). Taking both sides of (38) to the 24-th power we

obtain

F 24(γτ) = (cτ + d)
12

(

|Pm,r(t)|w(r)+w(s)

)

F 24(τ).

Since F (γτ) = F (τ) (by assumption) it follows that

(cτ + d)
12

(

|Pm,r(t)|w(r)+w(s)

)

= 1,
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for all γ =




a b

c d



 ∈ Γ0(N)∗ and τ ∈ H. This implies (34) because there exists γ ∈

Γ0(N)∗ with c 6= 0 for example γ =




1 1

N N + 1



.

Consequently, ξ = ξ(a, b, c, d) reduces to:

ξ =




∏

δ|M

(
mcδ

a

)|rδ|

e−
πia
12 (mc

M
σ0(r)−mbσ∞(r))





|Pm,r(t)|

· e
2πiabν

24 e−
πia
12 ( c

N
σ0(s)−bσ∞(s))

∏

δ|N

(
cδ

a

)sδ

.

(40)

Taking γ =




1 1

24N 24N + 1



 in (40) and using ξ(1, 1, 24N, 24N + 1) = 1 because of

F (τ) = F (γτ) for γ =




1 1

24N 24N + 1



, we find (35) must hold and consequently for

general ξ = ξ(a, b, c, d):

ξ =




∏

δ|M

(
mcδ

a

)|rδ|

e−
πia
12

mc
M

σ0(r)





|Pm,r(t)|

e−
πia
12

c
N

σ0(s)
∏

δ|N

(
cδ

a

)sδ

(41)

Taking γ =




1 1

N N + 1



 in (41) and using ξ(1, 1, N,N +1) = 1, we find that (36) must

hold and consequently

ξ =
∏

δ|M

(
mcδ

a

)|Pm,r(t)||rδ| ∏

δ|N

(
cδ

a

)sδ

,

which together with (34) implies that

ξ =
∏

δ|M

(
mδ

a

)|Pm,r(t)||rδ| ∏

δ|N

(
δ

a

)sδ

,

=






(
∏

δ|M (mδ)|rδ|
)|Pm,r(t)|

Π(s)

a




 = 1.

Next we observe that for each a > 0, with gcd(a, 6N) = 1, there exist b, c, d ∈ Z such

that γ =




a b

c d



 ∈ Γ0(N)∗. Therefore to prove (37), and thus our main Theorem 45, it

is enough to prove the following Lemma.
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Lemma 46. Suppose x ∈ Z. If
(
x
a

)
= 1 for all a ∈ Z with gcd(a, 6N) = 1, a ≡ 5

(mod 8), then x is a square.

Proof. Assume that x is not a square. Write x uniquely as x = 2αy, where gcd(2, y) = 1.
Then

1 =
(x

a

)

=

(
2

a

)α (y

a

)

= (−1)α
a2−1

8

(y

a

)

=(−1)α(−1)
y−1
2

a−1
2

(
a

y

)

= (−1)α
(
a

y

)

.

(42)

If y is a square, then by (42) α ≡ 0 (mod 2), consequently x is a square. Now assume
that y is not a square. Let y0 be the square free part of y. Assume that y0 = p1 · · · pk.
Let q1, . . . , qn be the primes dividing N and not dividing 6y0. Then there exists d ∈

{0, 1, . . . , p1 − 1} such that
(

d
y

)

= (−1)α+1. By Chinese remaindering we can solve the

system

a≡ 5 (mod 8),

a≡ d (mod p1),

a≡ 1 (mod pi), for i = 2, . . . , k,

a≡ 1 (mod qi), for i = 1, . . . , n,

and if p1 6= 3, a ≡ 1 (mod 3).
Hence gcd(a, 6N) = 1 and

(
x
a

)
= −1, a contradiction to (42). ✷

Consequently x must be a square and (37) is proven. ✷

We do the order estimation in view of Lemma 2 together with (11).

Theorem 47. Let (m,M,N, (rδ)) ∈ ∆ and s = (sδ) ∈ R(N). Assume for F (s, r,m, t)
as in Definition 44 that F (s, r,m, t) ∈ K(N). Let p and p∗ be as in Definition 38.
Let {γ0, . . . , γn} ⊆ SL2(Z) be a complete set of representatives of the double cosets
Γ0(N)\SL2(Z)/SL2(Z)∞ with γ0 = id.

Then for i = 0, . . . , n,

ordNγi
(F (s, r,m, t)) ≥

N

gcd(c2, N)

(

|Pm,r(t)|p(γi, r) + p∗(γi, s)
)

.

Proof. Let γ =




a b

c d



 ∈ Γ0(N)γiSL2(Z)∞, 1 ≤ i ≤ n. By Theorem 39

q−{|Pm,r(t)|p(γ,r)+p∗(γ,s)}(cτ + d)−( 1
2 |Pm,r(t)|w(r)+ 1

2w(s))F (s, r,m, t)(γτ)

is a Laurent series in powers of q1/k with 0 principal part, for some k ∈ N∗. Noting
1
2 |Pm,r(t)|w(r) +

1
2w(s) = 0 because of (34), the desired estimate follows. ✷

.
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3.1. The Algorithm

Given m, M , N ∈ N∗, t ∈ {0, . . . ,m− 1} and r = (rδ) ∈ R(M), we want to decide if

there exists s = (sδ) ∈ R(N) such that

F (s, r,m, t) ∈ 〈E(N)〉Q. (43)

We solve this problem by splitting in two cases.

First case: (m,M,N, t, (rδ)) ∈ ∆∗:

Note that by [8, Thm. 1.64] 〈E(N)〉Q ⊆ K(N). By Theorem 45 we know that there

exists an s = (sδ)δ|N ∈ R(N) such that F (s, r,m, t) ∈ K(N) iff the conditions (34)-(37)

are satisfied. By Lemma 20 there exists a modular function µ(τ) :=
∏

δ|N ηµδ (δτ) such

that ordNγ (µ) > 0 for all γ ∈ SL2(Z) \ Γ0(N). Then by Theorem 47 we have that

ordNγ (F (s, r,m, t)) ≥
N

gcd(c2, N)
(|Pm,r(t)|p(γ, r) + p∗(γ, s)),

and, consequently, for k ∈ N,

ordNγ (µkF (s, r,m, t)) ≥ k ordNγ (µ) +
N

gcd(c2, N)
(|Pm,r(t)|p(γ, r) + p∗(γ, s)), (44)

for all γ ∈ SL2(Z) \ Γ0(N).

Next we find a complete set of double coset representatives R := {γ0, γ1, . . . , γn} for

the double cosets Γ0(N)\SL2(Z)/SL2(Z)∞. We choose the k such that for each γ ∈ R,

γ 6∈ Γ0(N), the right hand side of the expression (44) is positive. In this way

µkF (s, r,m, t) ∈ K∞(N).

Next we use Lemma 25 to compute a finite set of generators m1, . . . ,ms for E∞(N).

That is

E∞(N) = {mα1
1 mα2

s · · ·mαs
s : (α1, . . . , αs) ∈ Ns}.

Next we input m1, . . . ,ms to Algorithm AB to obtain a t and z1, . . . , zr such that

〈z1, . . . , zr〉Q[t] = 〈E∞(N)〉Q. By Lemma 28 there exists a k′ (which is constructed as

in the proof of Lemma 28) such that µk′

〈E(N)〉Q ⊆ 〈E∞(N)〉Q. Next we apply the Al-

gorithm MC in order to see if µk+k′

F (s, r,m, t) ∈ 〈z1, . . . , zr〉Q[t]. In case this is true we

apply the Algorithm MW to compute c1(t), . . . , cr(t) ∈ Q[t] such that

µk+k′

F (s, r,m, t) = c1(t)z1 + c2(t)z2 + · · ·+ cr(t)zr.

This implies that

F (s, r,m, t) = µ−(k+k′){c1(t)z1 + c2(t)z2 + · · ·+ cr(t)zr} ∈ 〈E(N)〉Q.

In this case the algorithm succeeds. In case the Algorithm MC returns “False”, then

F (s, r,m, t) 6∈ 〈E(N)〉Q.

Second case: (m,M,N, t, (rδ)) 6∈ ∆∗: We decide the existence of a suitable s ∈ R(N)

by checking 24 cases: For each fixed j ∈ {0, . . . , 23} we examine whether there exists

s = (sδ)δ|N ∈ R(N) with σ0(s) ≡ j (mod 24) such that

F (s, r,m, t) ∈ 〈E(N)〉Q ⊆ K(N). (45)
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Let N ′ be minimal such that (m,M,N ′, t, (rδ)) ∈ ∆∗. (Note that such N ′ always exists.)
Given x ∈ R(N), we define x = (xδ) ∈ R(lcm(N,N ′)) by

xδ :=







xδ, if δ|N

0, otherwise

In particular, if (45), then F (s, r,m, t) ∈ K(lcm(N,N ′)). By Theorem 45, (sδ)δ|N
satisfies (34)-(37). By solving (34)-(37), for s ∈ R(lcm(N,N ′)) with σ0(s) ≡ j (mod 24)
and sδ = 0 if δ ∤ N , we determine s uniquely up to addition by an element u, where
u = (uδ) ∈ R(N, 0, 0, 0, 1). But we know that

∏

δ|N ηuδ(δτ) ∈ E(N). So in order to prove

the existence of s = (sδ) such that F (s, r,m, t) ∈ K(N) it is sufficient to determine it up
to addition by an element in R(N, 0, 0, 0, 1).

Following the steps in the previous case we obtain by Theorem 47,

ordlcm(N,N ′)
γ (F (s, r,m, t))

≥
lcm(N,N ′)

gcd(c2, lcm(N,N ′))

(

|Pm,r(t)|p(γ, r) + p∗(γ, s)
)

.

Let µ ∈ K∞(N) be as in Lemma 20. Then

ordlcm(N,N ′)
γ (µkF (s, r,m, t))

≥k ordlcm(N,N ′)
γ (µ) +

lcm(N,N ′)

gcd(c2, lcm(N,N ′))

(

|Pm,r(t)|p(γ, r) + p∗(γ, s)
)

.
(46)

Next we find a complete set of double coset representatives R := {γ1, . . . , γn} for the
double cosets

Γ0(lcm(N,N ′))\SL2(Z)/SL2(Z)∞.

We choose the k in (46) such that for all γ ∈ R∩(SL2(Z)\Γ0(N)): ordlcm(N,N ′)
γ (µkF (s, r,m, t))

is positive. Then
µkF (s, r,m, t) ∈ K∞(N).

Finally one needs to check if

µkF (s, r,m, t) ∈ 〈E∞(N)〉Q, (47)

which can be verified analogously to Case 1. If (47) is false for each j ∈ {0, . . . , 23}, then
F (s, r,m, t) 6∈ 〈E(N)〉Q.

3.2. A Necessary Condition Regarding the Existence of Certain Ramanujan-Kolberg
Identities

Given M ∈ N∗, r ∈ R(M) and integers m > t ≥ 0, we show that there exists N ∈ N∗

and s = (sδ) ∈ R(N) such that

A := qα(m,t,r,s)
∏

δ|N

∞∏

n=1

(1− qδn)sδ
∏

t′∈Pm,r(t)

∞∑

n=0

ar(mn+ t)qn ∈ K(N),

where

α(m, t, r, s) :=
σ∞(s)

24
+

∑

t′∈Pm,r(t)

24t′ + σ∞(r)

24m
.

The existence of such (s,N) is a necessary condition for the existence of B ∈ 〈E(N)〉Q
such that (A,B) is a Ramanujan-Kolberg identity.
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Lemma 48. Given x1, x2, x3, d ∈ N∗. Let p1, . . . , pk be the odd primes dividing d. Let
N ∈ N∗ be such that N ≡ 0 (mod 24p1 · · · pk). Then there exists (sδ) ∈ R(N,−x1,−x2,−x3, d).

Proof. Noting that s1 = −x1−
∑

δ|N
δ 6=1

sδ we need to find (sδ)δ|N,δ 6=1 such that d
∏

δ|N δsδ

is a rational square and

x2 − x1 +
∑

δ|N
δ 6=1

(δ − 1)sδ ≡ 0 (mod 24),

x3 −Nx1 +
∑

δ|N
δ 6=1

(
N

δ
−N)sδ ≡ 0 (mod 24)

which because of N ≡ 0 (mod 24) may be rewritten as:

x2 − x1 +
∑

δ|N
δ 6=1

(δ − 1)sδ ≡ 0 (mod 24), (48)

x3 +
∑

δ|N
δ 6=1

N

δ
sδ ≡ 0 (mod 24). (49)

By the Chinese remainder theorem it is sufficient to define (sδ)δ|N,δ 6=1 modulo 8 and

modulo 3. Assume that d = 2v0pv1
1 · · · pvk

k and 2φ|N , 2φ+1 ∤ N . Then we choose sδ ≡ 0
(mod 8) if δ 6∈ {2, 4, 2φ, p1, . . . , pk}. We choose spj

≡ vj (mod 8) for j ∈ {1, . . . , k}. Then
d
∏

δ|N δsδ is a square if

s2 + φs2φ ≡ 0 (mod 8). (50)

We see that s2, s4 and a2φ must satisfy

y1 + s2 + 3s4 + (2φ − 1)a2φ ≡ 0 (mod 8), (51)

y2 +
N

2
s2 +

N

4
s4 +

N

2φ
a2φ ≡ 0 (mod 8) (52)

where

y1 := x2 − x1 +
∑

δ|N

δ 6∈{1,2,4,2φ}

(δ − 1)sδ,

y2 := x3 +
∑

δ|N

δ 6∈{1,2,4,2φ}

N

δ
sδ.

There exists a solution (s2, s4, s2φ) to the equations (50)-(52) because of
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 φ

1 3 2φ − 1

N
2

N
4

N
2φ

∣
∣
∣
∣
∣
∣
∣
∣
∣

≡

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 φ

1 1 1

0 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

≡ 1 (mod 2).
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Next we need to specify (sδ)δ|N,δ 6=1 modulo 3 such that (48)-(49) are satisfied. We choose
sδ ≡ 0 (mod 3) if δ 6= 2, N . Then we have

x2 − x1 + s2 − sN ≡3 0,

x3 +
N

2
s2 + sN ≡3 0.

Since N
2 ≡3 0 because of 24|N we see that this system has the solution (s2, sN ) =

(x1 − x2 − x3,−x3) modulo 3. ✷

Corollary 49. For all (m,M,N, t, r = (rδ)) ∈ ∆∗ with 24|N there exists s = (sδ)δ|N ∈
R(N) such that F (s, r,m, t) ∈ K∞(N).

Proof. Lemma 48 implies that if 24|N we may always find a solution s ∈ R(N) to (34)-
(37). The function that corresponds to this solution is then multiplied by a high enough
power of a µ ∈ K∞(N) as in Lemma 20 such that the result will be in K∞(N). ✷

Remark 50. We note that Corollary 49 implies that if 24|N and (m,M,N, (rδ), t) ∈ ∆∗,
then we can find a Ramanujan-Kolberg identity, whenever 〈E∞(N)〉Q = K∞(N). That
this is the case was conjectured by Newman [6, 7]. Assuming Newman’s conjecture we
thus could always find Ramanujan-Kolberg identities. But this conjecture is not true in
general, as shown in the next subsection.

3.3. A Counterexample to a Conjecture by Newman

We want to find generators of z1, z2, . . . , zn and t ∈ E∞(49) such that every element
x ∈ 〈E∞(49)〉Q is expressible as

x = c0(t) + c1(t)z1 + · · ·+ cn(t)zn, ci(x) ∈ Q[x].

We know from Example 27 that E∞(49) is generated by

X1 :=
η(τ)

η(49τ)

X2 :=
( η(7τ)

η(49τ)

)4

X3 :=
η8(7τ)

η(τ)η7(49τ)
.

We apply the Algorithm AB to the input {X1, X2, X3}. Following the algorithm we start
with L := {} and M := {X1, X2, X3}. Since L 6= M we apply the Algorithm MB to M .
The output is then z1 := X2 and t := X1 because of

X3 =X6
1 + 7X5

1 + 21X4
1 + 49X3

1

+ (147 + 7X2)X
2
1 + (343 + 35X2)X1 + 49X2 + 343.

(53)

Set L := {z1}, M := L. At the next step we have to check if z21 = X2
2 ∈ 〈z1〉Q[t]. We find

that

X2
2 =X7

1 + 7X6
1 + 21X5

1 + 49X4
1

+ (147 + 7X2)X
3
1 + (343 + 35X2)X

2
1 + (49X2 + 343)X1.

(54)
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Consequently, z21 = X2
2 ∈ 〈z1〉Q[t] and the algorithm stops returning {z1} = {X2} and

t = X1.
Using (54) one finds

(X2 − 49X1 − 49)2 = (X2
1 + 7X1 + 7)2(X3

1 − 7X2
1 + 56X1 − 49)

+ (X2
1 + 7X1 + 7)(7X1 − 14)(X2 − 49X1 − 49).

Dividing the above equation by (X2
1 +7X1+7)2 and setting Z := X2−49X1−49

X2
1+7X1+7

we obtain:

Z2 = Z(7X1 − 14) + X3
1 − 7X2

1 + 56X1 − 49. This last equation implies that Z has
only poles at infinity because it is integral over Q[X1] and X1 has only poles at infinity.
Hence Z ∈ K∞(49). However using Algorithm MC we find that Z 6∈ 〈E∞(49)〉Q. This
contradicts Newman’s conjecture above.

4. Examples of Identities

4.1. A Ramanujan Identity Involving
∑

p(11n+ 6)qn

Given m = 11, t = 6 , M = 1, N = 22 and (r1) = (−1) ∈ R(1) we want to decide
if there exists (sδ) ∈ R(22) such that (43). We are in the “First case” of the algorithm
because (m,M,N, t, (rδ)) ∈ ∆∗. We have to solve (34)-(37) for s = (sδ)δ|N ∈ R(N):

−1 + w(s) = 0;

−11 + σ∞(s)≡ 0 (mod 24);

−242 + σ22
0 (s)≡ 0 (mod 24);

√

11Π(s) ∈ Z.

Next we need a function µ(τ) =
∏

δ|22 η
µδ (δτ) such that ord22γ (µ) > 0 for all γ ∈ SL2(Z).

Note that if (sδ) satisfies (34)-(37) above then so does (sδ + kµδ). Furthermore, we have
µkF (s, r,m, t) = F (s + kµ, r,m, t) so that instead of constructing µ we solve directly
(44):

p(γ, r) + p∗(γ, s) ≥ 0, (55)

for all γ ∈ SL2(Z) \ Γ0(22). We can prove that in general

p(γ, r) = min
d|m

gcd(d,c)=1

1

24

∑

δ|M

rδ
dgcd2(δ, m

d c)

δm
d

. (56)

Since γ ∈ Γ0(22) iff 22|c, we find that (55) is equivalent to

(

min
d|m

gcd(d,c)=1

1

24

∑

δ|M

rδ
gcd2(δd,mc)

δm

)

+
1

24

∑

δ|N

sδ
gcd2(δ, c)

δ
≥ 0 (57)

for all c ∈ Z such that 22 ∤ c. From this new expression (56) of p(γ, r) we see that the
value of the expression is the same for c = c1 and c = c2 if gcd(c1, 22) = gcd(c2, 22).
Hence we only need to verify (57) for c ∈ {1, 2, 11}. In particular we find that

(sδ) = (s1, s2, s11, s22) = (10, 2, 11,−22)
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satisfies (57) and (34)-(37). Consequently,

F (τ) := q
13
24
η10(τ)η2(2τ)η11(11τ)

η22(22τ)

∞∑

n=0

p(11n+ 6)qn ∈ K∞(22).

In the next step we need to multiply the above expression by an appropriate power

of µ. In general, one can compute a suitable µ by solving a corresponding system of

Diophantine inequalities. But for reasons of space, we will try directly to see if the above

expression lies in 〈E∞(22)〉Q. Using the proof in Lemma 25 and removing the generators

that can be written in terms of other generators, we find that a set of generators of

E∞(22) is given by:

η8(2τ)η4(11τ)

η4(τ)η8(22τ)
,
η(2τ)η11(11τ)

η(τ)η11(22τ)
,
η7(τ)η3(11τ)

η3(2τ)η7(22τ)
,
η6(2τ)η6(11τ)

η2(τ)η10(22τ)
,

η4(2τ)η8(11τ)

η12(22τ)
,
η2(τ)η2(2τ)η10(11τ)

η14(22τ)
,
η4(τ)η12(11τ)

η16(22τ)
.

Applying Algorithm AB with this input we obtain t and {z1, z2} where

t :=
3

88

η7(τ)η3(11τ)

η3(2τ)η7(22τ)
+

1

11

η8(2τ)η4(11τ)

η4(τ)η8(22τ)
−

1

8

η(2τ)η11(11τ)

η(τ)η11(22τ)
,

z1 := −
5

88

η7(τ)η3(11τ)

η3(2τ)η7(22τ)
+

2

11

η8(2τ)η4(11τ)

η4(τ)η8(22τ)
−

1

8

η(2τ)η11(11τ)

η(τ)η11(22τ)
− 3,

z2 :=
1

44

η7(τ)η3(11τ)

η3(2τ)η7(22τ)
−

3

11

η8(2τ)η4(11τ)

η4(τ)η8(22τ)
+

5

4

η(2τ)η11(11τ)

η(τ)η11(22τ)
.

Using the Algorithm MW described we find that F (τ) ∈ 〈E∞(22)〉Q:

q
13
24
η10(τ)η2(2τ)η11(11τ)

η22(22τ)

∞∑

n=0

p(11n+ 6)qn

=1078t4 + 13893t3 + 31647t2 + 11209t− 21967

+ z1(187t
3 + 5390t2 + 594t− 9581)

+ z2(11t
3 + 2761t2 + 5368t− 6754).

(58)

Note that

88t = 3
η7(τ)η3(11τ)

η3(2τ)η7(22τ)
+ 8

η8(2τ)η4(11τ)

η4(τ)η8(22τ)
− 11

η(2τ)η11(11τ)

η(τ)η11(22τ)
.

Hence

88t ≡3
η7(τ)η3(11τ)

η3(2τ)η7(22τ)
+ 8

η8(2τ)η4(11τ)

η4(τ)η8(22τ)

≡3
η40(τ)

η80(2τ)
+ 8

η40(τ)

η80(2τ)
≡ 0 (mod 11).
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Similarly, using η8(τ)
η4(2τ) ≡ 1 (mod 8) we find

88t ≡3
η7(τ)η3(11τ)

η3(2τ)η7(22τ)
− 11

η(2τ)η11(11τ)

η(τ)η11(22τ)

≡3
η7(τ)η3(11τ)

η3(2τ)η7(22τ)
− 11

η7(τ)η3(11τ)

η3(2τ)η7(22τ)
≡ 0 (mod 8).

This implies that the q-expansion of t has integer coefficients. Analogously, one can

prove the same for z1 and z2. Consequently, (58) implies p(11n+6) ≡ 0 (mod 11) because

each coefficient on the right side of (58) is an integer divisible by 11.

4.2. A Ramanujan-Kolberg Identity Involving Broken 2-Diamonds

In [1] George Andrews and Peter Paule introduce a new kind of partitions called

broken k-diamond partitions which they denote by ∆k(n). In their paper they conjecture

that

∆2(25n+ 14) ≡ 0 (mod 5).

Chan [3] proved this conjecture and found and also proved the related congruence

∆2(25n+ 24) ≡ 0 (mod 5).

We will give a different proof of these two congruences here. From [1] we know that

∞∑

n=0

∆2(n)q
n =

∞∏

n=1

(1− q2n)(1− q5n)

(1− qn)3(1− q10n)
.

Let
∞∑

n=0

a(n)qn :=

∞∏

n=1

(1− qn)2(1− q2n)

(1− q10n)
.

Because of (1 − qn)5 ≡ 1 − q5n (mod 5) it follows that a(n) ≡ ∆2(n) (mod 5). Conse-

quently, it is sufficient to prove

a(25n+ 14) ≡ a(25n+ 25) ≡ 0 (mod 5). (59)

Given m = 25, t = 14 , M = 10, N = 10 and (rδ) = (2, 1, 0,−1) ∈ R(10) we want to

decide if there exists (sδ) ∈ R(10) such that (43). We are again in the “First case” of the

algorithm. Analogously to the previous example we find that

q3/2
η12(2τ)η10(5τ)

η6(τ)η20(10τ)

( ∞∑

n=0

a(25n+ 14)qn
)( ∞∑

n=0

a(25n+ 24)qn
)

∈ K∞(10).

The generators of E∞(10) are given by:

η3(τ)η(5τ)

η(2τ)η3(10τ)
,
η4(2τ)η2(5τ)

η2(τ)η4(10τ)
,
η(2τ)η5(5τ)

η(τ)η5(10τ)
.

We apply the Algorithm AB with this input and obtain

t =
η3(τ)η(5τ)

η(2τ)η3(10τ)
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and empty set {} for the generators z1, . . . , zr. Consequently 〈E∞(10)〉Q = Q[t]. By using
the algorithm in Note 1 we find:

q3/2
η12(2τ)η10(5τ)

η6(τ)η20(10τ)

( ∞∑

n=0

a(25n+ 14)qn
)( ∞∑

n=0

a(25n+ 24)qn
)

= 25(2t4 + 28t3 + 155t2 + 400t+ 400).

(60)

One can prove that if A and B are power series such that AB ≡ 0 (mod 25), then only
three cases may occur: Case 1 where A ≡ 0 (mod 25), Case 2 with B ≡ 0 (mod 25), and
Case 3 where A ≡ B ≡ 0 (mod 5). Since a(14) = 5 and a(24) = 10, it follows that we
are in Case 3. Consequently, we have proved (59).

Remark 51. For ∆2(n), instead of a(n), we could also find an identity similar to (60).
However, this identity turns out to be much bigger.

5. The Ideal of Relations Among Certain Eta Products

We note that given arbitrary eta quotients m1, . . . ,ms ∈ K(N) we can find generators
for the ideal generated by all possible relations among m1, . . . ,ms in the following way.
First we multiply m1, . . . ,ms by an eta quotient µ ∈ K∞(N) as in Lemma 20 such that
m1µ, . . . ,msµ ∈ K∞(N). We define m′

i := µmi, m
′
s+1 := µ. Note that every polynomial

relation f(m1, . . . ,ms) = 0 can be rewritten multiplying µk with a sufficiently large k
such that

µkf(m1, . . . ,ms) = F (m′
1, . . . ,m

′
s,m

′
s+1)

for some multivariate polynomial F .
Next we input m′

1, . . . ,m
′
s,m

′
s+1 to Algorithm AB.

Assume that the output is t and b1, . . . , br. In particular bibj ∈ 〈b1, . . . , br〉Q[t]. Conse-
quently, for every i, j ∈ {1, . . . , r} we have relations of the form

bibj = c1ij(t)b1 + · · ·+ crij(t)br (61)

for some c1ij(t), . . . , crij(t) ∈ Q[t]. These relations generate all relations among t, b1, . . . , br
because every other relation can be reduced using these relations to a relation of the form
c1(t)b1 + · · · + cr(t)br = 0. Since pord(tj1bi1) 6= pord(tj2bi2) whenever (i1, j1) 6= (i2, j2),
we find that such a relation can only exist iff c1(t) = · · · = cr(t) = 0.

Next we recall that there exist multivariate polynomials fi such that

m′
i = fi(t, b1, . . . , br) (62)

for i = 1, . . . , s+1. Computing a Gröbner basis S1 of the ideal generated by the relations
(61) and (62) with the order bs > · · · > b1 > t > m′

s+1 > m′
s > · · · > m′

1 we obtain
that S2 := S1 ∩C[m′

1, . . . ,m
′
s,m

′
s+1] generate all the relations among m′

1, . . . ,m
′
s,m

′
s+1.

We then substitute back m′
i = miµ and m′

s+1 = µ and view 〈S2〉 as an ideal in
Q[m1, . . . ,ms, µ]. The ideal of relations among m1, . . . ,ms is then given by

I := {f(m1, . . . ,ms) : ∃k∈Nµ
kf(m1, . . . ,ms) ∈ 〈S2〉}.

The generators of the ideal I are found by computing a Gröbner basis S3 of the ideal
〈S2 ∪ {1− µz}〉 with the order z > µ > ms > · · · > m1. Then I = 〈S3 ∩Q[m1, . . . ,ms]〉.
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