
Groebner Bases in Theorema?

Bruno Buchberger1 and Alexander Maletzky2

1 RISC, Johannes Kepler University, Linz, Austria
bruno.buchberger@risc.jku.at,

http://www.risc.jku.at/home/buchberg
2 Doctoral College “Computational Mathematics” and RISC,

Johannes Kepler University, Linz, Austria
alexander.maletzky@dk-compmath.jku.at,

https://www.dk-compmath.jku.at/people/alexander-maletzky

Abstract. In this talk we show how the theory of Groebner bases can
be represented in the computer system Theorema, a system initiated by
Bruno Buchberger in the mid-nineties. The main purpose of Theorema
is to serve mathematical theory exploration and, in particular, auto-
mated reasoning. However, it is also an essential aspect of the Theorema
philosophy that the system also provides good facilities for carrying out
computations. The main difference between Theorema and ordinary com-
puter algebra systems is that in Theorema one can both program (and,
hence, compute) and prove (generate and verify proofs of theorems and
algorithms). In fact, algorithms / programs in Theorema are just equa-
tional (recursive) statements in predicate logic and their application to
data is just a special case of simplification w. r. t. equational logic as part
of predicate logic.
We present one representation of Groebner bases theory among many
possible “views” on the theory. In this representation, we use functors to
construct hierarchies of domains (e. g. for power products, monomials,
polynomials, etc.) in a nicely structured way, which is meant to be a
model for gradually more efficient implementations based on more refined
and powerful theorems or at least programming tricks, data structures,
etc.

Keywords: Groebner basis, Buchberger algorithm, mathematical the-
ory exploration, Theorema

1 Introduction

After Bruno Buchberger introduced the concept of Groebner bases and an al-
gorithm for computing them in his 1965 PhD thesis [1, 4], there has ever since
been a lot of effort to implement his algorithm in various programming languages
(Buchberger’s thesis already contains an implementation in a version of FOR-
TRAN and in machine language). Nowadays, there are many different computer

? This research was funded by the Austrian Science Fund (FWF): grant no. W1214-
N15, project DK1

2 B. Buchberger - A. Maletzky

systems that have either been partially inspired by or are devoted especially
to the computation of Groebner bases, among them particularly successful sys-
tems such as CoCoA [8], Magma [9], Maple [10], Mathematica [11], Sage [12],
Singular [13] and many others.

In our talk we want to focus on our Theorema system: Theorema [16, 7] is a
system which was initiated by Bruno Buchberger and developed in his Theorema
group at RISC since the the mid-nineties. It uses the computer algebra system
Mathematica [11] as software frame. Its user-interface is currently re-designed
and -implemented (Theorema Version 2.0).

The main difference between Theorema and other computer algebra systems
(like the ones mentioned above) is that in Theorema one can both compute and
prove within one single system, at exactly the same level: There is no need to
first implement programs and then lift them to some level of abstraction for
reasoning about them, or vice versa, but programs in Theorema are themselves
just formulas. This works because the language and internal logic of Theorema
is an elegant version of (higher-order) predicate logic, where computation is
realized by repeated simplification w. r. t. equational theories.

We will present our view on how (an algorithmic treatment of) Groebner
bases theory, but also mathematics in general, can be developed in a structured,
generic, machine-checked, but nonetheless natural and intuitive way following
the philosophy of domains, functors and categories in Theorema. Also, we will
of course dedicate a big part to explaining how computations can effectively be
carried out in Theorema.

2 Domains, Functors and Categories in Theorema

Before explaining the presentation of Groebner bases theory in Theorema we will
briefly explain the Theorema view of domains, functors and categories for a hier-
archical build-up of mathematics (introduced in [3], supplementary information
can also be found in [17, 5]).

One of many possible ways to represent domains in Theorema is by consid-
ering them as interpretations of (operator) symbols, mimicking the concept of
“interpretation” in model theory. This means that, unlike in most algebra books,
a domain is not characterized by a carrier set and a set of operations. Rather, a
domain is simply a mapping that maps symbols to operators (i. e. functions and
predicates). In Theorema, interpretations of operators in domains are indicated
by underscripts, e. g. consider a domain D that maps the symbol f to a concrete
function that is applied to arguments:

f
D
[x, y]

After having introduced the concept of domains in Theorema, the role of
functors can be explained in a few words: Functors, in our view, map domains
to domains by defining the meaning of symbols in the new domain by formulas
involving the meaning of symbols in the given domain(s). A simple example of

Groebner Bases in Theorema 3

a functor is the functor that maps a domain D to its two-fold Cartesian product,
denoted by N: N consists of all pairs of elements of D, and the symbol “+” might
be interpreted in N as component-wise addition in D of such pairs:

〈x1, x2〉 +
N
〈y1, y2〉 := 〈x1 +

D
y1, x2 +

D
y2〉

The significance of functors in mathematical theory exploration is:

– Building up algorithmic mathematics in a generic way: The formulation
(programs for the operations) of a new domain has to be given only once
independent of the domains from which the new domain is built.

– Constructing towers of domains in a structured way.
– Transforming (non-) algorithmic properties of the input domains to (non-)

algorithmic properties of the output domain.

Please also note that arguments of functors are not restricted to domains. For
instance, one can define a functor that maps a domain D and a natural number
n to the polynomial ring in n indeterminates over D.

Finally, categories (in Theorema) describe properties of domains. Since do-
mains are completely characterized by the interpretations they give to symbols,
properties of domains are in fact properties of those interpretations: For in-
stance, the category of Abelian groups would possibly require domains to have
an interpretation of symbol “+” with all the well-known properties (associativity,
commutativity, etc.).

There are many interesting interrelations between functors and categories;
Some of the most important ones are so-called conservation theorems: If domains
D1, . . . , Dk are in categories C1, . . . , Ck, and F is a functor, then one may try to
prove that the domain F[D1, . . . , Dk] is in category C. In all areas of mathematics,
many of the theorems are exactly of that kind, as they describe precisely the
essence of a functor.

3 Reduction- and Groebner Rings

In our approach for representing and formalizing Groebner bases in Theorema
we strove to be as generic as possible: Neither do we want to only treat poly-
nomial rings over fields, nor do we even want to restrict ourselves to one single
representation of the individual components of Groebner bases theory (such as
power products, monomials, polynomials, . . .). Although this might sound very
ambitious, thanks to the powerful concept of functors in Theorema, it turns out
to be quite natural and intuitive.

The theoretical foundations for a generic development of Groebner bases
theory were laid in [2, 14, 15]. Also in the present elaboration, we follow this
approach. This means that the elementary domains under consideration are so-
called reduction rings: Reduction rings are unitary commutative rings with some
additional properties; In particular, they have to be equipped with

– a Noetherian partial order relation <,

4 B. Buchberger - A. Maletzky

– a binary function rdm (read: “reduction multiplier”), and
– a binary function lcrd (read: “least common non-trivial reducible”)

that have to be related in some non-trivial way to each other.
If a domain provides all these operations (together with the usual ring oper-

ations), then all the remaining operations needed for an algorithmic treatment
of Groebner bases (S-polynomial, total reduction, etc.) can be defined in terms
of them3.

3.1 The Functor-Approach to a Generic Treatment of Groebner
Bases

Presenting Groebner bases theory in a generic way as described above fits nicely
into the functor paradigm of Theorema: One basically only needs one single
functor, GroebnerExtension, which maps a domain D to the Groebner ring of
D. A Groebner ring is a reduction ring providing in addition also a function Gb

for computing Groebner bases (of ideals in) D by means of the rdm- and lcrd

functions. The Theorema-definition of function Gb according to our present work
can be found in figure 1 in section 5.

Here it is important to note that in a structured development of mathematics
in Theorema, in our view, it is not the task of functors to check whether their
input domains satisfy all required properties; In particular, in our case of the
GroebnerExtension functor, the input domain D might not even be a ring, leav-
ing functions like +

D
undefined. If some operators are undefined, other operations

defined in terms of them (like Gb) will simply not behave as expected.
The interesting cases, however, are those where the input domains do sat-

isfy the required properties, i. e. in our case the input domains are reduction
rings. Since correctness of an algorithm is always relative to the validity of the
input anyway, statements of correctness of algorithms of a functor are typically
conservation theorems (see section 2). In our case of the GroebnerExtension

functor:

If domain D is in category ReductionRing, then domain
GroebnerExtension[D] is in category GroebnerRing.

ReductionRing and GroebnerRing are the categories of reduction rings and
Groebner rings, respectively. Proving statements like the one above can then
be done using the automated proving facilities of Theorema, and after having
established the validity of one such statement, correctness of a whole class of
algorithms follows (one algorithm for each instantiation of the input domain).

Another integral part of a generic presentation of Groebner bases theory are
conservation theorems of the form

If D is a reduction ring, then so is F[D].

3 “S-polynomial” is meant to refer to the respective object in reduction rings (where
the S-polynomial is not necessarily a polynomial

Groebner Bases in Theorema 5

where F is yet another functor, for instance a functor that maps a domain R

to the univariate polynomial ring over R. Examples of functors that satisfy the
above statement can be found in [15].

4 Structure of the Formalized Theory

After having described the main functor GroebnerExtension which maps re-
duction rings to Groebner rings, the next question is how reduction rings can
be created in Theorema, and the answer is the same as before: Using functors.
Whenever one is given some domain D which possesses all the necessary proper-
ties in order to be turned into a reduction ring, one can do so using a functor
that maps the domain to a new domain where <, rdm and lcrd are interpreted
properly. This does not only work for single domains, but also for whole cate-
gories: Every field K, for instance, can always be turned into a reduction ring
[2].

Following our paradigm of a systematic development of Groebner bases the-
ory, fields provide a good starting point for moving to the “next level” by con-
sidering polynomial rings. Constructing the polynomial ring over some domain
R is again achieved by a functor, called reductionPolynomials. This functor
does not only construct (one particular representation of) univariate polynomial
rings (viewed as reduction rings), but is much more sophisticated: In addition to
the coefficient domain it takes a second input domain which is meant to be the
domain of power products, in arbitrarily many indeterminates. This means that
for the functor it is completely irrelevant how power products are represented,
as long as they provide operations like divisibility, multiplication, and an order
relation. The advantage of such an approach is obvious: One single functor (and
one single conservation theorem) is sufficient for dealing with all the infinitely
many different representations of power products, and this is exactly the purpose
of working with functors!

In our elaboration, we decided to represent polynomials as tuples of pairs,
where each pair constitutes a monomial: The first component of each pair is a
non-zero coefficient taken from the coefficient domain, and the second compo-
nent is a power product taken from the domain of power products. It is clear
that this representation is only one among infinitely many isomorphic ones,
which are all indistinguishable from the algebraic point of view, but it proved
to be quite convenient from the algorithmic point of view. Also do we provide
one particular representation of power products as tuples of exponents, where
x1

e1 · · ·xn
en is represented as 〈e1, . . . , en〉. Still, we allow an arbitrary number of

indeterminates and also provide several built-in order relations: Lexicographic,
degree-lexicographic and degree-reverse-lexicographic. Other order relations and
other representations of polynomials and power products, e. g. where the order
relation is given by weight matrices, can easily be added as well.

It has to be mentioned that apart from fields and polynomial rings over fields
there are several other reduction rings, too. Most notably, Z and Zm (quotient
ring of integers modulo m) can be made reduction rings [14], even if m is non-

6 B. Buchberger - A. Maletzky

prime. Z is already included in the present state of the formalization, whereas
adding Zm is work in progress. Due to the properties of reduction rings and our
implementation of functor reductionPolynomials, Z[X] (and, in the future,
Zm[X]) can be dealt with as well without any further effort.

5 Computations

The computing-facility of Theorema builds upon the fact that (higher-order)
equational predicate logic can be regarded a rewrite mechanism: In order to
perform a computation, successively replace equals by equals (in a directed way)
until no more such replacements are possible. Computations, hence, are sim-
ply transformations of syntactic expressions. The equations (and equivalences)
that give rise to such rewrite rules are once again just formulas that can be en-
tered by the user, and programs are eventually given by collections of formulas.
An example can be found in figure 1, where an implementation of function Gb

in Groebner rings is shown. This implementation follows Buchberger’s original
critical-pair/completion algorithm.

Fig. 1. Implementation of function Gb by means of predicate logic formulas

Please note the following regarding notions and notation in figure 1:

– Since the whole definition is inside a functor (GroebnerExtension), most
of the operations that appear need to refer to the output domain; This is
accomplished by adding the domain underscript N4.

– Tuples (denoted by angle brackets) are used rather than sets for representing
the input basis, the collection of critical pairs that still have to be considered,
as well as the output basis. This allows us to have control over the order of
elements.

4 Further details are omitted here for the sake of simplicity

Groebner Bases in Theorema 7

– pairs is a function that computes all pairs of elements of a tuple.

– p... is a so-called sequence variable, i. e. a variable that can be instantiated
by any sequence of expressions.

– trd
N

is an auxiliary function defined by functor GroebnerExtension, which

totally reduces its first argument modulo its second argument (making use
of function rdm of the underlying reduction ring).

– cpd
N

is an auxiliary function defined by functor GroebnerExtension, which

computes the critical pair - difference of its arguments (making use of func-
tions lcrd and rdm of the underlying reduction ring).

– Xk refers to the k-th element of tuple X, |X| denotes the length of tuple X.

– x and on denote appending an element to a tuple and concatenating two
tuples, respectively.

If the functor is applied to some concrete domain which provides (algorith-
mic) interpretations for the three symbols <, rdm and lcrd, then function Gb is
also algorithmic in the sense that it computes some tuple of elements for each
input tuple. If the underlying domain, in addition to giving interpretation to
the aforementioned symbols, really is a reduction ring (i. e. has all the necessary
properties), then the tuples computed by function Gb are indeed Groebner bases
of the ideals generated by the tuples given as input to the function.

Apparently, the implementation of function Gb is certainly not the most ef-
ficient one, but it is not the purpose of our talk to present highly sophisticated,
fine-tuned methods for computing Groebner bases anyway, but just to illustrate
how all this can be done in principle in Theorema. Since, in Theorema, algo-
rithms and theorems can be formulated within the same language and, also,
proving and computing is basically the same (computing is a special case of
proving), one now can proceed to prove theorems about Groebner bases auto-
matically or semi-automatically, for example the correctness of the algorithm for
computing Groebner bases under certain assumptions on the domain in which
Groebner bases are considered or, for example, theorems on the complexity of
Groebner bases computation or theorems on the functors that construct new
domains from domains in which Groebner bases exist. Some progress on this
has been made, see the companion paper “Complexity Analysis of the Bivariate
Buchberger Algorithm in Theorema” in the session on Mathematical Theory
Exploration, in which we give a completely formal and semi-automated proof of
a complexity result on Groebner bases.

Properties of the polynomial functor (in particular the existence of Groebner
bases in the domain generated by the polynomial functor under the existence of
Groebner bases in the coefficient domain) have been proved completely formal
in [2, 14, 15] as a preparation to what should be possible in Theorema in a semi-
automated way. We also had a completely formal proof for the correctness of
the Groebner bases algorithm quite early (see [2]), and we are now working on
building up appropriate provers for this in Theorema.

The most significant progress along the intention of the Theorema project so
far was the automated synthesis of the Groebner bases algorithm, see [6]. More

8 B. Buchberger - A. Maletzky

about this will be presented in the invited talk “Soft Math / Math Soft” by
Buchberger at this conference.

References

1. Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Find-
ing the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Poly-
nomial Ideal). PhD thesis, Mathematical Institute, University of Innsbruck, Austria,
1965. English translation in J. of Symbolic Computation, Special Issue on Logic,
Mathematics, and Computer Science: Interactions. Vol. 41, Number 3-4, Pages 475-
511, 2006.

2. Bruno Buchberger. A Critical-Pair/Completion Algorithm in Reduction Rings.
RISC Report Series 83-21, Research Institute for Symbolic Computation (RISC),
University of Linz, Schloss Hagenberg, 4232 Hagenberg, Austria, 1983.

3. Bruno Buchberger. Mathematica as a Rewrite Language. In T. Ida, A. Ohori and
M. Takeichi, editors, Functional and Logic Programming (Proceedings of the 2nd
Fuji International Workshop on Functional and Logic Programming, November 1-4,
1996, Shonan Village Center), pages 1-13. Copyright: World Scientific, Singapore -
New Jersey - London - Hong Kong, 1996.

4. Bruno Buchberger. Introduction to Groebner Bases. London Mathematical Society
Lectures Notes Series 251. Cambridge University Press, April 1998.

5. Bruno Buchberger. Groebner Rings in Theorema: A Case Study in Functors and
Categories. Technical Report 2003-49, Johannes Kepler University Linz, Spezial-
forschungsbereich F013, November 2003.

6. Bruno Buchberger. Towards the Automated Synthesis of a Groebner Bases Algo-
rithm. RACSAM - Revista de la Real Academia de Ciencias (Review of the Spanish
Royal Academy of Science), Serie A: Mathematicas, 98(1):65-75, 2004.

7. Bruno Buchberger, Adrian Crǎciun, Tudor Jebelean, Laura Kovcs, Temur Kutsia,
Koji Nakagawa, Florina Piroi, Nikolaj Popov, Judit Robu, Markus Rosenkranz and
Wolfgang Windsteiger. Theorema: Towards Computer-Aided Mathematical Theory
Exploration. Journal of Applied Logic, 4(4):470-504, 2006.

8. CoCoA system. cocoa.dima.unige.it
9. Magma Computational Algebra System. magma.maths.usyd.edu.au/magma/
10. Maple system. www.maplesoft.com/products/Maple/
11. Wolfram Mathematica. www.wolfram.com/mathematica/
12. Sage system. www.sagemath.org
13. Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister and Hans Schönemann.

Singular 3-1-6 — A computer algebra system for polynomial computations.
www.singular.uni-kl.de, 2012.

14. Sabine Stifter. A Generalization of Reduction Rings. Journal of Symbolic Compu-
tation, 4(3):351-364, December 1988.

15. Sabine Stifter. The Reduction Ring Property is Hereditary. Journal of Algebra,
140(89-18):399-414, 1991.

16. Theorema system. www.risc.jku.at/research/theorema/description/
17. Wolfgang Windsteiger. Building Up Hierarchical Mathematical Domains Using

Functors in THEOREMA. In A. Armando and T. Jebelean, editors, Electronic Notes
in Theoretical Computer Science, volume 23 of ENTCS, pages 401-419. Elsevier,
1999.

