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Abstract. An algebraic ordinary differential equation (AODE) is a polynomial relation
between the unknown function and its derivatives. This polynomial defines an alge-
braic hypersurface, the solution surface. Here we consider AODEs of order 1. From
rational parametrizations of the solution surface, we can decide the rational solvability
of the given AODE, and in fact compute the general rational solution. This method de-
pends crucially on curve and surface parametrization and the determination of rational
invariant algebraic curves.

Transforming the ambient space by some group of transformations, we get a clas-
sification of AODEs, such that equivalent equations share the property of rational
solvability. In particular we discuss affine and birational transformation groups.

We also discuss the extension of this method to non-rational parametrizations and

solutions.
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1. Introduction – The Problem

An algebraic ordinary differential equation (AODE) is given by

F (x, y, y′, . . . , y(n)) = 0 ,

where F is a differential polynomial in K[x]{y} with K being a differential field
and the derivation ′ being d

dx . Such an AODE is autonomous if F ∈ K{y}.
∗This research has been carried out jointly with L.X.Châu Ngô, J.Rafael Sendra, and Georg
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The radical differential ideal {F} can be decomposed as

{F} = ({F} : S)
︸ ︷︷ ︸

general component

∩ {F, S}
︸ ︷︷ ︸

singular component

,

where S is the separant of F ; i.e., the derivative of F w.r.t. y(n) (cf. [11]).
If F is irreducible, then {F} : S is a prime differential ideal, and therefore it
has a generic zero. This generic zero is called a general solution of the AODE
F (x, y, y′, . . . , y(n)) = 0. Gröbner basis methods for implicit descriptions of
general solutions are discussed in [5].

There are no general methods for determining symbolic solutions of AODEs.
We present a method which allows to decide whether a given AODE of order
1 has a rational solution, and if so, will produce all of them. Transforming
the ambient space by some group of transformations, we get a classification of
AODEs, such that equivalent equations share the property of rational solvability.
In particular we discuss affine and birational transformation groups. We also hint
at a generalization of this method towards the construction of radical and even
transcendental symbolic solutions.

Here we consider AODEs of order 1. More precisely, we deal with the follow-
ing problem:

Problem AODE1-RatSol

given: an AODE F (x, y, y′) = 0, F irreducible in ℚ[x, y, y′]

decide: does this AODE have a non-singular rational solution ?

find: if so, find all of them; i.e., find the rational general solution.

Example 1.1. [9] Consider the AODE of order 1 defined by

F ≡ y′2 + 3y′ − 2y − 3x = 0 .

This AODE indeed has non-singular rational solutions, and the rational general
solution is y = 1

2 ((x + c)2 + 3c), where c is an arbitrary constant.

The separant of F is S = 2y′+3. So the singular solution of F is y = − 3
2x− 9

8 .

In the sequel we will explain how to arrive at this general solution.

So an AODE of order 1 is defined by a polynomial relation F (x, y, y′) between
x, y, and y′. Neglecting the differential aspect of the problem, we arrive at
a surface in 3-space, defined by F (x, y, z) = 0. Every rational solution of the
problem is a rational curve (x, y(x), y′(x)) on this solution surface. We divide the
problem into two phases: first we decide whether the solution surface contains
rational curves, and then we try to find a rational curve also satisfying the
differential constraint. For this reason let us briefly recall some relevant facts
about rational parametrizations of hypersurfaces.
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2. Rational Parametrizations

An algebraic variety V is the zero locus of a (finite) set of polynomials F , or of
the ideal I = ⟨F ⟩. A rational parametrization of V is a rational map P from a
full (affine, projective) space covering V ; i.e. V = im(P), the Zariski closure of
the image of P . A variety having a rational parametrization is called unirational;
and rational if P has a rational inverse.

Example 2.1. The singular cubic y2 − x3 − x2 = 0 has the rational, in fact
polynomial, parametrization x(t) = t2 − 1, y(t) = t3 − t. This parametrization
can be inverted by t = y/x. So this singular cubic is a rational curve.

A rational parametrization of a variety is a generic point or generic zero of
the variety; i.e. a polynomial vanishes on the variety if and only if it vanishes
on this generic point. Only irreducible varieties can be rational. A rationally
invertible parametrization P is called a proper parametrization. Every rational
curve or surface has a proper parametrization (theorem of Lüroth, Castelnuovo);
but not so in higher dimensions. From the degree of a defining polynomial of
a curve we can give a precise degree of a proper parametrization. This degree
bound will be essential in the algorithm for determining rational solutions of the
corresponding AODE.

Theorem 2.2. [12, Theorem 5] Let C be a rational affine curve defined by
f(x, y) = 0, and let P(t) = (p1(t), p2(t)) be a rational parametrization of C.
Then P(t) is proper if and only if deg(P) = max{degx(f), degy(f)}. Further-
more, if P is proper, then deg(p1) = degy(f), and deg(p2) = degx(f).

If we know a proper parametrization, we can get any other parametrization
by applying a rational map. Proper parametrizations can be transformed into
each other by rational maps of degree 1. For details on parametrizations of
algebraic curves we refer to [13].

3. Construction of Rational Solutions

Let us first consider the autonomous case, i.e., an AODE of the form F (y, y′) = 0.
A rational solution of F (y, y′) = 0 corresponds to a rational parametrization of
the algebraic curve F (y, z) = 0. Indeed, if y = y(x) is a rational solution of
the AODE, then (y(x), y′(x)) is a rational parametrization of the curve defined
by F (y, z) = 0. Using the strict degree bounds for proper parametrizations of
curves developed in [12] (see Theorem 1), one can show that a rational solution
of the AODE determines a proper parametrization of the corresponding curve.

Conversely, from a proper rational parametrization (y(x), z(x)) of the curve
F (y, z) = 0 we get a rational solution of F (y, y′) = 0 if and only if there is a
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linear rational function T (x) such that y(T (x))′ = z(T (x)). If such a T (x) exists,
then a rational solution of F (y, y′) = 0 is given by y = f(T (x)). The rational
general solution of F (y, y′) = 0 is y = f(T (x + c)), where c is an arbitrary
constant.

This idea for deciding the existance of rational solutions, and in the positive
case determining the rational general solution, has been developed by R. Feng
and X.-S. Gao in [2, 3].

But what if our given AODE is non-autonomous? Can we modify the method
so that it also applies to the general case F (x, y, y′) = 0? It is now natural to
assume that the solution surface F (x, y, z) = 0 is a rational algebraic surface,
i.e. rationally parametrized by P(s, t) = (�1(s, t), �2(s, t), �3(s, t)). Then P(s, t)
creates a rational solution of F (x, y, y′) = 0 if and only if we can find two rational
functions s(x) and t(x) which solve the following associated system:

s′ =
f1(s, t)

g(s, t)
, t′ =

f2(s, t)

g(s, t)
, (1)

where f1(s, t), f2(s, t), g(s, t) are rational functions in s, t and defined by

f1(s, t) =
∂�2(s, t)

∂t
− �3(s, t) ⋅

∂�1(s, t)

∂t
,

f2(s, t) =�3(s, t) ⋅
∂�1(s, t)

∂s
− ∂�2(s, t)

∂s
,

g(s, t) =
∂�1(s, t)

∂s
⋅ ∂�2(s, t)

∂t
− ∂�1(s, t)

∂t
⋅ ∂�2(s, t)

∂s
.

The construction of the associated system and the construction of rational solu-
tions via this associated system can be found in [6, 7].

Theorem 3.1. There is a one-to-one correspondence between rational solutions
of the algebraic differential equation F (x, y, y′) = 0, which is parametrized by
P(s, t), and rational solutions of its associated system with respect to P(s, t).
The analogous statement holds for rational general solutions.

The associated system (1) has the following useful properties:

(i) it is of order 1, so the order is not worse than the order of the original
AODE,

(ii) it is of degree 1 in the derivatives of the parameters, whereas the original
AODE could be of any degree in the derivative y′,

(iii) but most importantly it is autonomous, whereas the original AODE was
non-autonomous.

Such systems of algebraic differential equations have been well studied. The
important concept here are so-called invariant algebraic curves, i.e., curves
G(s, t) = 0 satisfying

Gs ⋅ f1 ⋅ g +Gt ⋅ f2 ⋅ g ∈ ⟨G⟩ , (2)



Algebraic Differential Equations 157

where Gs, Gt denote the derivatives of G w.r.t. s and t, respectively.

Theorem 3.2. Every non-trivial rational solution of the associated system (1)
corresponds to a rational invariant algebraic curve G(s, t) = 0 of this system.

In the generic case in which the system (1) has no dicritical singularities,
there is an upper bound for the degree of irreducible invariant algebraic curves
given in [1]. So these invariant curves can be determined.

Finally, as in the autonomous case, we have to decide whether the candidates
lead to a solution of the differential problem. I.e., whether we can find a linear
transformation to a solution curve.

Theorem 3.3. Let G(s, t) = 0 be a rational invariant algebraic curve of the
associated system (1) such that G ∤ g. Let (s(x), t(x)) be a proper rational
parametrization of G(s, t) = 0. W.l.o.g. assume s′(x) ∕= 0.

Then (s(x), t(x)) creates a rational solution of the associated system if and
only if there is a linear rational function T (x) such that

T ′ =
1

s′(T )
⋅ N1(s(T ), t(T ))

M1(s(T ), t(T ))
.

In this case, (s(T (x)), t(T (x))) is a rational solution of the associated system.

Invariant algebraic curves may come in families depending on parameters.
Such families give rise to rational general solutions.

Theorem 3.4. Let ℛ(x) = (s(x), t(x)) be a non-trivial rational solution of the sys-
tem (1). Let H(s, t) be the monic defining polynomial of the curve parametrized
by ℛ(x).

Then ℛ(x) is a rational general solution of the system (1) if and only if the
coefficients of H(s, t) contain a transcendental constant.

So now we are ready for presenting an algorithm for deciding whether a given
AODE of order 1 has a rational solution, and in the positive case determining
the general rational solution.

Algorithm RATSOLVE
Input: a parametrizable AODE of order 1 F (x, y, y′) = 0;
Output: a rational general solution, if there is one.

1. Compute a proper rational parametrization P(s, t) = (�1, �2) of the solu-
tion surface F (x, y, z) = 0;

2. Compute the associated system w.r.t P(s, t);

3. Compute the set ℐ of irreducible invariant algebraic curves of the associated
system;
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4. If ℐ contains an irreducible invariant algebraic curve G(s, t) = 0 with a
transcendental coefficient, then check whether G(s, t) = 0 is a rational
curve;

5. If G(s, t) is a rational curve, then parametrize this curve to find a rational
general solution (s(x), t(x)) of the system; compare Theorem 4;

6. Compute c = �1(s(x), t(x)) − x;

7. Return y = �2(s(x− c), t(x − c)).

Example 3.5. [8] Let us come back to Example 1.1 in Section 1, and consider
again the differential equation

F (x, y, y′) ≡ y′2 + 3y′ − 2y − 3x = 0 .

The solution surface z2 + 3z − 2y − 3x = 0 has the parametrization

P(s, t) =

(
2s+ ts+ t2

x2
, −3x+ t2

s2
,
t

s

)

.

This is a proper parametrization and its associated system is

s′ = st, t′ = s+ t2 .

Irreducible invariant algebraic curves of the system are:

G(s, t) = s, G(s, t) = t2 + 2s, G(s, t) = s2 + ct2 + 2cs .

The third invariant algebraic curve, s2 + ct2 + 2cs = 0, depends on a transcen-
dental parameter c. It can be parametrized by

Q(x) =

(

− 2c

1 + cx2
, − 2cx

1 + cx2

)

.

Running Step 5 in RATSolve, the differential equation defining the reparame-
trization is T ′ = 1. Hence T (x) = x. So the rational solution in this case
is

s(x) = − 2c

1 + cx2
, t(x) = − 2cx

1 + cx2
.

Since G(s, t) contains a transcendental constant, the above solution is a rational
general solution of the associated system. Therefore, the rational general solution
of F (x, y, y′) = 0 is y = 1

2x
2+ 1

cx+
1

2c2 +
3
2c , which, after a change of parameter,

can be written as y = 1
2 (x

2 + 2cx+ c2 + 3c) .

4. Geometrical Classification of AODEs

This geometrical treatment of algebraic differential equations suggests the con-
sideration of groups of transformations leaving the associated system of an
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AODE invariant. Orbits w.r.t. such a transformation group contain AODEs
of equal complexity in terms of determining rational solutions. We study orbits
w.r.t affine and birational transformations. It turns out that being autonomous
is not an intrinsic property of an AODE.

The group Ga of affine transformations

L : A3(K) −→ A3(K)

v 7→

⎛

⎝

1 0 0
b a 0
0 0 a

⎞

⎠ v +

⎛

⎝

0
c
b

⎞

⎠

,

a ∕= 0, leaves the associated system of an AODE invariant, and therefore also
the rational solvability; cf. [9]. The group Ga defines a group action on AODEs
by

Ga ×AODE → AODE
(L, F ) 7→ L ⋅ F = (F ∘ L−1)(x, y, y′) .

Theorem 4.1. Let F be a parametrizable AODE, and L ∈ Ga. For every proper
rational parametrization P of the surface F (x, y, z) = 0, the associated system
of F (x, y, y′) = 0 w.r.t. P and the associated system of (L ⋅F )(x, y, y′) = 0 w.r.t.
L ∘ P are equal.

Example 4.2. Again we consider the differential equation

F (x, y, y′) ≡ y′2 + 3y′ − 2y − 3x = 0 .

We first check whether in the class of F w.r.t. affine transformations contains
an autonomous AODE. For this purpose, we apply a generic transformation L
to F to get

(L ⋅ F )(x, y, y′) =
1

a2
y′2 +

3

a
y′ − 2b

a2
y′ − 2

a
y +

2b

a
x− 3x− 3b

a
+

b2

a2
+

2c

a
.

Therefore, for every a ∕= 0 and b such that 2b − 3a = 0, we get an autonomous
AODE. In particular, for a = 1, b = 3/2, and c = 0 we get

L =

⎡

⎢
⎣

⎛

⎜
⎝

1 0 0
3

2
1 0

0 0 1

⎞

⎟
⎠ ,

⎛

⎜
⎝

0
0
3

2

⎞

⎟
⎠

⎤

⎥
⎦ ,

i.e., we obtain

F (L−1(x, y, y′)) ≡ y′2 − 2y − 9

4
= 0 .

Let us classify some well-known forms of differential equations w.r.t. affine
transformations:
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(i) Equations solvable for y: invariant w.r.t. affine transformations
equation: y = G(x, y′) for a rational G
proper parametrization of solution surface: (s, G(s, t), t)
associated system: s′ = 1, t′ = (t−Gs(s, t))/Gt(s, t)

(ii) Equations solvable for y′: invariant w.r.t. affine transformations
equation: y′ = G(x, y) for a rational G
proper parametrization of solution surface: (s, t, G(s, t))
associated system: s′ = 1, t′ = G(s, t)

(iii) Equations solvable for x: not invariant w.r.t. affine transf.
equation: x = G(y, y′) for a rational G
proper parametrization of solution surface: (G(s, t), s, t)
associated system: s′ = t, t′ = (1 − t ⋅Gs(s, t))/Gt(s, t)

So by a transformation in Ga we might transform an equation not solvable
for x into an equation solvable for x and thus make it amenable to well-known
solution methods.

Now we turn our attention to a wider class of geometrical transformations,
namely birational transformations; cf. [10]. The group Gb of birational transfor-
mations from K3 to K3 of the form

Φ(u1, u2, u3) =

(

u1,
au2 + b

cu2 + d
,

∂

∂u1

(
au2 + b

cu2 + d

)

+
∂

∂u2

(
au2 + b

cu2 + d

)

⋅ u3

)

,

where a, b, c, d ∈ K[u1] such that ad−bc ∕= 0, defines a group action on AODℰ by
Φ ⋅F = (F ∘Φ−1)(x, y, y′). These birational transformations leave the associated
system of an AODE invariant, and therefore also the rational solvability.

Example 4.3. Consider the first order AODE

F (x, y, y′)

= 25x2y′2 − 50xyy′ + 25y2 + 12y4 − 76xy3 + 168x2y2 − 144x3y + 32x4

= 0.

Using the transformation

Φ(u, v, w) =

(

u,
u− 3v

−2u+ v
,

−5v

(2u− v)2
+

5u

(2u− v)2
w

)

we get the autonomous equation

G(y, y′) = F (Φ−1(x, y, y′)) = y′2 − 4y = 0.

Observe that F cannot be transformed into an autonomous AODE by affine
transformations. The rational general solution y = (x + c)2 of G(y, y′) = 0 is
transformed into the rational general solution of F (x, y, y′) = 0, yielding

y =
x(2(x + c)2 + 1)

(x+ c)2 + 3
.
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W.r.t. birational transformations also the class of equations solvable for y
is not closed. So even more differential equations can be transformed into well-
studied forms.

5. Extension to Non-Rational Solutions

Recently G. Grasegger started to extend these ideas to the problem of computing
non-rational solutions of autonomous AODEs. Here we can only hint at his
methods; details are given in [4].

Suppose y is a solution of the autonomous AODE F (y, y′) = 0. Then
Py = (y(t), y′(t)) is a parametrization of the solution surface F (y, z) = 0.
For any parametrization P = (r(t), s(t)) of the solution surface we consider
AP = s(t)/r′(t). Assume the parametrization is of the form Pg = (r(t), s(t)) =
(y(g(t)), y′(g(t))), for unknown y and g. It turns out that APg

= 1/g′. If we
could find g, and its inverse g−1, we also could find y:

g′(t) =
1

APg

, g(t) =

∫

g′(t)dt, y(x) = r(g−1(x)) .

So we can determine a solution if we can compute the integral of g′ and the
inverse of g.

Example 5.1. By this approach we can determine the following non-rational
solutions of the respective AODEs.

(i) y8y′ − y5 − y′ = 0 :

parametrization: (1t ,
t3

1−t8 ), g(t) = 1+t8

4t4 ,

radical solution: y(x) = −
(

2(x+ c)−
√

−1 + 4(x+ c)2
)−1/4

(ii) 4y7 − 4y5 − y3 − 2y′ − 8y2y′ + 8y4y′ + 8yy′2 = 0 : (genus 1)

parametrization:
(

1
t ,

−4+4t2+t4

t(4t2−4t4−t6−
√
t12+8t10+16t8−16t4)

)

radical solution: y(x) = −
√
1+c+x√

1+(c+x)2

(iii) y3 + y2 + y′2 = 0 :
parametrization: (−1− t2, t(−1− t2)), g(t) = 2arctan(t),

trigonometric solution: y(x) = −1− tan
(

x+c
2

)2

(iv) y2 + y′2 + 2yy′ + y = 0 :

parametrization:
(

− 1
(1+t)2 ,− t

(1+t)2

)

g(t) = −2log(t) + 2log(1 + t)
exponential solution: y(x) = −e−x(−1 + ex/2)2.

6. Conclusion

Summarizing, let us recollect what we have achieved:
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(i) we can decide whether an AODE (autonomous or non-autonomous) of
order 1 has rational solutions; and if it has rational solutions, we can
determine the general rational solution;

(ii) we have a characterization of the affine and birational transformations of
the ambient space leaving the rational solvability of AODEs invariant; this
may lead to a simplification of the equation and to a form amenable to the
application of well-known solution methods;

(iii) we have described a general method for determining whether an autono-
mous AODE has a solution in a given class of functions (rational, radical,
transcendental); the method depends on the solvability of the problems
of integration and inversion in the class of functions; however, this is not
(yet) a complete method.

Acknowledgement. This paper is based on an invited plenary lecture of the
author at the conference ICMREA in Ho Chi Minh City, Vietnam, in December
2013.
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