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In this paper, we consider a special kind of overconstrained 6R closed linkage which we call
angle-symmetric 6R linkage. These are linkages with the property that the rotation angles are
equal for each of the three pairs of opposite joints. We give a classification of these linkages. It
turns out that there are three types. First, we have the linkages with line symmetry. The second
type is new. The third type is related to cubic motion polynomials.
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1. Introduction

Movable closed 6R linkages have been considered bymany authors (see [1–6]). In this paper, we give the complete classification of
a certain class of such linkages, whichwe call angle-symmetric. Thismeans that the rotation angles at the three pairs of opposite joints
are equal for all possible configurations, or at least for infinitely many configurations (it could be that a certain linkage has two
components, where only one of them is angle-symmetric). It is well-known that the line symmetric linkage of Bricard [4] is
angle-symmetric. A second family is new; it can be characterized by the presence of three pairs of parallel rotation axes. This family
and a curious new family [7] fill a gap in [8], Section 3.8. A third family was discovered in [9,10] using factorizations of cubic motion
polynomials.

Our main tool is the λ-matrix of a linkage, to be defined in Section 2, and its rank r. Intuitively speaking, the configuration set
can be described as the vanishing set of r equations in three variables, namely the cotangents of the half of the rotation angles. We
will show that r is either 2, 3, or 4. If r = 2, then the linkage is line symmetric. If r = 3, then we get the new linkage with three
pairs of parallel axes. If r = 4, then we obtain the linkage described in [9,10] using motion polynomials.

We use Study's description of Euclidean displacements by the algebra DH of dual quaternions (see [9,10]).

1.1. Structure of the paper

The remaining part of the paper is set up as follows. In Section 2, we give the definition of the λ-matrix. We also show that the
rank of this matrix is 2, 3, or 4. Section 3 contains the main result and examples.

2. The λ-matrix

In this section we define, for a given linkage, a matrix whose rows are related to an algebraic system defining the configuration
space. In the next section, we will see that the rank of this matrix is the basic criterion for classifying angle-symmetric linkages.
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The set of all possible motions of a closed 6R linkage is determined by the position of the six rotation axes in some fixed initial
configuration. (The choice of the initial configuration among all possible configurations is arbitrary. In some later steps in the
classification, we will occasionally change the initial configuration.)

The algebra DH of dual quaternions is the 8-dimensional real vector space generated by 1, �, i, j, k, �i, �j, �k (see [9,10]).
Following [9,10], we can represent a rotation by a dual quaternion of the form cot ϕ

2ð Þ−hð Þ, where ϕ is the rotation angle and h is a
dual quaternion such that h2 = −1 depending only on the rotation axis. We use projective representations, which means that
two dual quaternions represent the same Euclidean displacement if and only if one is a real scalar multiple of the other.

Let L be a 6R linkage given by 6 lines, represented by dual quaternions h1,…,h6 such that hi
2 = −1 for i = 1,…,6. A

configuration (see [9,10]) is a 6-tuple t1,…,t6, such that the closure condition
t1−h1ð Þ t2−h2ð Þ t3−h3ð Þ t4−h4ð Þ t5−h5ð Þ t6−h6ð Þ∈Rn 0f g

The configuration parameters ti – the cotangents of the rotation angles – may be real numbers or ∞, and in the second case
holds.
we evaluate the expression (ti − hi) to 1, the rotation with angle 0. The set of all configurations of L is denoted by KL.

There is a subset of KL, denoted by Ksym, defined by the additional restrictions t1 = t4, t2 = t5, t3 = t6. We assume that Ksym is a
one-dimensional set, i.e. the linkage has an angle-symmetric motion. Mostly, we will assume, slightly stronger, that there exists
an irreducible one-dimensional set for which none of the ti is fixed. Such a component is called a non-degenerate component. We
also exclude the case dimC Ksym≥2. Linkages with mobility ≥ 2 do exist, but they are well understood.

The closure condition is equivalent to
t1−h1ð Þ t2−h2ð Þ t3−h3ð Þ ¼ λ t3 þ h6ð Þ t2 þ h5ð Þ t1 þ h4ð Þ;

λ is a nonzero real value depending on t1, t2, t3. By taking norm on both sides, we get λ2 = 1, i.e. λ = ± 1. By multiplying
where
both sides with (t1 + h1) from the left and with (t1 + h4) from the right, and afterwards dividing by (t12 + 1), we obtain the
equation
t2−h2ð Þ t3−h3ð Þ t1−h4ð Þ ¼ λ t1 þ h1ð Þ t3 þ h6ð Þ t2 þ h5ð Þ:
Similarly, we obtain
t3−h3ð Þ t1−h4ð Þ t2−h5ð Þ ¼ λ t2 þ h2ð Þ t1 þ h1ð Þ t3 þ h6ð Þ;
t1−h4ð Þ t2−h5ð Þ t3−h6ð Þ ¼ λ t3 þ h3ð Þ t2 þ h2ð Þ t1 þ h1ð Þ;
t2−h5ð Þ t3−h6ð Þ t1−h1ð Þ ¼ λ t1 þ h4ð Þ t3 þ h3ð Þ t2 þ h2ð Þ;
t3−h6ð Þ t1−h1ð Þ t2−h2ð Þ ¼ λ t2 þ h5ð Þ t1 þ h4ð Þ t3 þ h3ð Þ:
We may divide Ksym into two disjoint subsets Ksym
+ and Ksym

− , according to whether λ is equal to +1 or −1 in the equations
above. Any irreducible component of Ksym is either contained in Ksym

+ or in Ksym
− . Note that ∞3 is an element of Ksym

+ .

Remark 1. When we want to study some component K0 ⊂ Ksym, we may proceed in the following way: we take a configuration
τ ∈ K0, which defines a set of rotations around the joint axes. Then we apply these rotations, obtaining new positions for the 6
lines. In the transformed linkage, the component corresponding to K0 contains ∞3. So we will always assume that λ = 1.

When λ = 1, after moving the right parts of the above equations to the left, we get an equation
M†X ¼ 0;

X = [t1t2, t1t3, t2t3, t3, t2, t1, 1]T. If we denote h6 + h3, h5 + h2, h4 + h1 by g3, g2, g1 respectively, then the coefficient
where
matrix M† is
g3; g2; g1; h5h4−h1h2; h6h4−h1h3; h6h5−h2h3; h6h5h4 þ h1h2h3
g3; g2; g1; h1h5−h2h4; h1h6−h3h4; h6h5−h2h3; h1h6h5 þ h2h3h4
g3; g2; g1; h2h1−h4h5; h1h6−h3h4; h2h6−h3h5; h2h1h6 þ h3h4h5
g3; g2; g1; h2h1−h4h5; h3h1−h4h6; h3h2−h5h6; h3h2h1 þ h4h5h6
g3; g2; g1; h4h2−h5h1; h4h3−h6h1; h3h2−h5h6; h4h3h2 þ h5h6h1
g3; g2; g1; h5h4−h1h2; h4h3−h6h1; h5h3−h6h2; h5h4h3 þ h6h1h2

2
6666664

3
7777775
:

Note thatM† is a 6 × 7 matrix with entries in dual quaternions. We also consider M† to be a 48 × 7 matrix with real entries. It
can be decomposed into submatrices M1

† , ⋯, M6
† , where Mi

† is the real 8 × 7 matrix – or the row vector with 7 dual quaternion
entries – corresponding to the i-th equivalent formulation of the closure condition above, for i = 1, …, 6.

Our classification is based on the following theorem which gives the bounds for the rank of M†.

Theorem 1. Assume that Ksym contains a non-degenerate component of dimension 1. Then r := rank(M†) ∈ {2,3,4}.

Before we prove Theorem 1, we give a lemma.
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Lemma 1. Assume that K
sym

contains a non-degenerate component K
0
of dimension 1 such that ∞3 ∈ K

0
, and r ≥ 4. Then there exists a

polynomial of the form
This fo
bt1 þ ct2 þ d;

b; c;d∈R and bc ≠ 0, which vanishes on K
sym

, maybe after some permutation of the variables t
1
, t

2
, t

3
. Moreover, we can define
where

a matrix N† of rank ≥ r − 2 such that the projection of K
sym

to (t
1
,t
3
) is defined by
N†X′ ¼ 0; ð1Þ

X′ = [t
1
2, t

1
t
3
, t

1
, t

3
, 1]T.
where

Proof. As r ≥ 4, we have at least four independent equations in three variables (t1,t2,t3) of tridegree at most (1,1,1). We denote
four of them by F1,F2,F3,F4.

First, we assume that the F1 is irreducible. The resultants of F1 and Fi, i = 2,3,4 with respect to the last variable t3 are denoted
by F12,F13,F14. The bidegrees of them are at most (2,2). All these polynomials vanish on Ksym. If one of them is 0, such as F12 = 0,
then F1 and F2 must have a non-trivial common factor. This can only be F1, since F1 is irreducible. Then the tridegree of F1 is less
then (1,1,1). Because F1 vanishes on the non-degenerate component K0, it must contain at least two variables, and so F1 is a
polynomial of degree (1,1,0), maybe after some permutation of variables.

If none of the three resultants vanishes, then let G = gcd(F12,F13,F14). The bidegree of G is in the set {(2,2),(2,1),(1,1)}, up to
permutation of variables t1, t2. If it is (1,1), then G can be considered as a polynomial of tridegree (1,1,0) that vanishes on K0. If the
bidegree of G is (2,2) or (2,1), then we write F12 = GU2, F13 = GU3, F14 = GU4 with suitable polynomials U2,U3,U4. The
bidegrees of U2,U3,U4 are at most (0,1), hence U2,U3,U4 are linear dependent, which means that there are three real numbers
λ2,λ3,λ4 such that
λ2 F12 þ λ3 F13 þ λ4 F14 ¼ 0
As a consequence, we have
Res F1;λ2 F2 þ λ3 F3 þ λ4 F4ð Þ ¼ 0;

Res denotes the resultant. Then we can continue as in the case F12 = 0 above. Again we get a polynomial of degree (1,1,0),
where
maybe after some permutation of variables.

Second, if F1 is reducible, then it has two factors with degree (1,1,0) and (0,0,1), up to permutation of variables t1,t2,t3. Again, F1
vanishes on the non-degenerate component K0, and so it must contain at least two variables, and so it is a polynomial of degree
(1,1,0), maybe after some permutation of variables.

In all cases above, we have a polynomial of tridegree (1,1,0) vanishing on K0. Since ∞3 is in Ksym, it is of the form

bt1 + ct2 + d = 0, with b; c;d∈R and bc ≠ 0, as stated in the lemma. We can use it to eliminate t2: on K0, we have t2 ¼ − bt1 þ d
c

.

The equations for the projection of K0 to the (t1,t3)-plane can be obtained by substitution. We get the equation N†X′ = 0,
where N† := M†L, and
L ¼

−b
c

0
−d
c

0 0
0 1 0 0 0

0
−b
c

0
−d
c

0
0 0 0 1 0

0 0
−b
c

0
−d
c

0 0 1 0 0
0 0 0 0 1

2
6666666666664

3
7777777777775

:

llows from the fact that on K0, we can replace X by LX′. Because (L) = 5, we also get rankN† ≥ rank(M†) − 2.
Proof of Theorem 1. r ≥ 2: Assume, indirectly, that r ≤ 1. Then the system M†X = 0 is equivalent to zero or only one single
equation in three variables, and it will have at least a two-dimensional complex configuration set, which contradicts our assumption.

r ≤ 4: Assume, indirectly, that r ≥ 5. Then from Lemma 1, the projection of Ksym to (t1,t3) is defined by
N†X′ ¼ 0; ð2Þ

r1: = rank(N†) ≥ r − 2 ≥ 3. Eq. (2) is equivalent to a system of r1 polynomial equations of bidegree at most (2,1). Because
where
Ksym is a curve and has non-degenerate components, the r1 polynomials have a common factor with bidegree at least (1,1). Then
r1 ≤ 2 which contradicts to r1 ≥ 3.
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3. Classification

This section contains three parts. First, we show that the existence of a line symmetry implies r = 2. Second, we show that
r = 2 or r = 3 implies a line symmetry or another geometric consequence which we call the “parallel property”. Third, we relate
the case r = 4 to a linkage described in [9,10].

3.1. Line symmetric linkages

We now describe line symmetric 6R linkages in terms of dual quaternions. A 6R linkage L = [h1,h2,h3,h4,h5,h6] is line
symmetric if and only if there is a line represented by a dual quaternion l such that l2 = −1 and
where
h1 ¼ lh4l
−1

; h2 ¼ lh5l
−1

; h3 ¼ lh6l
−1

; ð3Þ

ll−1 = 1. Geometrically, the rotation around l by the angle π takes hi to hi + 3 for i = 1,2,3.
Proposition 1. If L is line symmetric, then r = 2.

Proof. As the norm of l is equal to 1, it follows l−1 = − l and we write Eq. (3) as
h1 ¼ −lh4l; h2 ¼ −lh5l; h3 ¼ −lh6l: ð4Þ
We define a map α from dual quaternion to itself as
α : DH→DH; h↦ hþ l h
*

l;

h denotes the conjugate of h in dual quaternion. It is true that all entries of M1
† are in Im(α). For instance, we
where

have α(h1) = h1­lh1l = h1 + h4 = g1, α(h5h4) = h5h4 + lh4h5l = h5h4 − (lh4l)(− lh5l) = h5h4 −h1h2, α(h6h5h4) = h6h5h4 −
lh4h5h6l = h6h5h4 + (− lh4l)(− lh5l)(− lh6l) = h6h5h4 + h1h2h3. It is not difficult to prove that α is a R-linear map. If we consider
M1

† to be an 8 × 7 matrix with real entries, then r2: = rank(M1
†) is less or equal to the dimension of Im(α). W.l.o.g. we assume l = i.

We compute Im(α) as α(1) = 1 + ii = 1 − 1 = 0, α(∈) = ∈ + ∈ ii = 0, α(i) = i − iii = 2i, α(j) = j − iji = 0, α(k) =
k − iki = 0, α(∈i) = ∈ i −∈ iii = 2 ∈ i, α(∈j) = ∈ j − ∈ iji = j = 0, α(∈k) = ∈ k − ∈ iki = 0. Therefore, the dimension
of Im(α) is 2. So we have r2 ≤ 2.

The next step is to prove that allM1
† for i = 1,…,6 are equal. It is true that the first three columns are equal in allM1

† for i = 1,…,6.
As Im(α) is equal to i;∈ ih iR and g1, g2, g3,h6h5 − h2h3 ∈ Im(α) we obtain
g1 � g2 ¼ g1 � g3 ¼ g2 � g3 ¼ h6h5−h2h3ð Þ � g1 ¼ 0; ð5Þ

g × h denotes the cross product of purely vectorial dual quaternions g, h. The equalitiesMi
† = ⋯ = M6

† can be shown from Eq. (5).
where
For instance, h5h4 − h1h2 − (h1h5 − h2h4) = h5 × h4 − h1 × h2 − h1 × h5 + h2 × h4 = g2 × h4 − h1 × g2 = g2 × g1 =0, h1h5 −
h2h4 − (h4h2 − h5h1) = h1h5 − h2h4 + h1h5−h2h4ð Þ ¼ 0 or h6h5h4 + h1h2h3 −(h1h6h5 + h2h3h4) = −〈h6,h5〉h4 + 〈h2,h3〉
h4 − 〈h2,h3〉h1 + 〈h6,h5〉h1 + (h6 × h5) × h4 + h1 × (h2 × h3) − h1 × (h6 × h5)-(h2 × h3) × h4 = (h6 × h5 + h3 × h2) × g1 =
(h6h5 − h2h3) × g1 = 0, where 〈g,h〉 denotes the inner product of purely vectorial dual quaternions g, h. As a consequence, we
have r = r2 ≤ 2. But we have r2 ≥ 2 by Theorem 1, so r = 2. □

Remark 2. The well-known fact that line symmetric linkages are movable can also be obtained as a corollary from Theorem 1.
When r = 2, then the configuration set is defined by 2 equations in 3 variables.

3.2. Linkages with Ranks 2 and 3

In this subsection, we show that r = 2 or 3 implies either a line symmetry or another property, defined as follows. We say that
L = [h1,…, h6] has the parallel property if h1 ∥ h4, h2 ∥ h3, h5 ∥ h6, maybe after some cyclic permutation of indices. In this section,
we always assume that the rank of the λ-matrix of L is 2 or 3.

In the following, we use the technique of generic points of algebraic curves. This simplifies the analysis a lot. Let C be an
irreducible algebraic curve. Let F be a field such that C can be defined by equations over F (for instance F, Q). Following [11],
Section 93, we say that some point p ∈ C is generic if it fulfills no algebraic conditions defined by polynomials with coefficients in
F, except those that are a consequence of the equations of C. The existence of generic points is shown in [11], Section 93; typically,
the coordinates of a generic point are transcendental numbers.

Let K0 ⊂ Ksym
+ be an irreducible non-degenerate component of the linkage L = [h1,…,h6], and let τ0 = t ′1; t ′2; t ′3ð Þ be a generic

point of K0. The configuration τ0 corresponds to a set of rotations around the joint axes. When we apply these rotations, we get
new positions for the 6 lines, and we define the transformed linkage by L′¼ h′1; h′2; h′3;h′4;h′5;h′6½ �. Note that L and L′ represent
really the same linkage, just in different initial positions.
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Lemma 2. If primal g ′1ð Þ ¼ 0, then L has the parallel property. Here primal(h) denotes the primal part of the dual quaternion h. More
precisely, we will have h

1
∥ h

4
, h

2
∥ h

3
, h

5
∥ h

6
, in all configurations in K

0
.

Proof. Assume that primal g ′1ð Þ ¼ 0: The parallelity of the first and fourth axes can be expressed as a set of polynomial equations
in the configuration parameters (t1,t2,t3). These equations are fulfilled for the generic point τ0. By a well-known property of
generic points it follows that they are fulfilled for all points in K0. For this reason, the first and fourth axes are parallel at all
positions.

Let S = [p1,p2,p3,p4,p5,p6], where pi ¼ primal h′ið Þ for i = 1, …, 6. Then S is a spherical linkage with the first and fourth axes
coinciding at all positions. We can separate S into two 3R linkages S1 = [p1,p2,p3] and S2 = [p4,p5,p6]. A 3R linkage is necessarily
degenerate: either some angles are constant or some axes coincide. Since t2 is not a constant in K0, we obtain p2 = ± p3 or
p1 = ± p2. Since t3 is not a constant in K0, we obtain p2 = ± p3 or p1 = ± p3. If p2 ≠ ± p3, then we have p1 = ± p2 and
p1 = ± p3, a contradiction. So we obtain p2 = ± p3. Similarly, we also have p5 = ± p6.

Therefore, we get a linkage with h′1∥h′4; h′2∥h′3; h′5∥h′6: Since the parallel property is fulfilled for the generic point of the
configuration curve, it is fulfilled for all points in K0. In particular, the original linkage L has the parallel property. □

There is no i such that g′i ¼ 0 for i = 1,2,3 because if g ′i ¼ 0would be true, then the lines h′ i and h′iþ3 would be equal; the initial
configuration was chosen generically, so the lines hi and hi + 3 would be equal for all configurations in K0, and this is not possible.
Moreover, it is not possible that two of gi for i = 1,2,3 have 0 primal parts. In order to prove this, we assume indirectly primal
g ′2ð Þ ¼ 0 and primal g ′3ð Þ ¼ 0: By Lemma 2, we get h2 ∥ h5, h3 ∥ h4, h1 ∥ h6 and h3 ∥ h6, h4 ∥ h5, h1 ∥ h2. It follows that L is a planar 6R
Linkage which has mobility more than one.

Before the main theorem, we give several lemmas in the following.

Lemma 3. Let a,b be two purely vectorial dual quaternions. If a × b = 0, then there is a dual number α such that b = αa or a = αb,
or the primal parts of a and b both vanish.

Proof. Straightforward. □

In the next two proofs, we use the following argument from linear algebra. Let 1 ≤ i1 b ⋅ ⋅ ⋅ b ir b ir + 1 b ⋅ ⋅ ⋅ b is ≤ 7 be
integers. Let A := a1M1

† + ⋅ ⋅ ⋅ + a6M6
† be some linear combination of the matrices M1

† , …, M6
† , where a1;…; a6 ∈R. If the vector

space generated by the columns (i1, …,is) of M† is already generated by the columns (i1, …,ir) of M†, then the vector space
generated by the columns (i1, …,is) of A is also generated by the columns (i1, …,ir) of A.

Lemma 4. If g ′3 � g′1 ¼ g′2 � g ′1 ¼ 0; then g ′2 � g′3 ¼ 0:

Proof. We distinguish two cases.

Case I. primal g ′1ð Þ≠ 0: By Lemma 3, there exist α2;α3 ∈D such that g′2 ¼ α2g′1 and g ′3 ¼ α3g ′1; and it follows that
g ′2 � g ′3 ¼ 0:

Case II. primal g′1ð Þ ¼ 0: Then primal g′2ð Þ≠ 0 and primal g′3ð Þ≠ 0: If there exists α∈D such that g ′3 ¼ αg ′2 , then g′2 � g ′3 ¼ 0.
Otherwise, g ′1 is a dual multiple of g2 but g′3 is not, so g′1; g ′2; g ′3 are linearly independent. Then the first three columns generate the
column space ofM†. By linear algebra, the first three columns of A := M1

† + M4
† − M3

† − M6
† also generate the column space of A.

But
A ¼ 0;0;0;0;2g′3 � g ′1;2g′3 � g ′2; �½ � ð6Þ

o not care about the last entry denoted by *), and it follows that g ′2 � g ′3 ¼ 0: □
(we d

Lemma 5. We have g′3 � g ′1 ¼ g ′2 � g ′1 ¼ g ′2 � g ′3 ¼ 0:

Proof. Let r3 be the dimension of the vector space generated by g ′1; g′2; g ′3: If r3 = 1, then it follows that g ′3 � g′1 ¼ g ′2 � g ′1 ¼
g ′2 � g ′3 ¼ 0: If r3 = 2 or r3 = 3, then the vector space V generated by the first 6 columns of M† is already generated by the
first three and one of the other three columns.

Assume, for instance, that V is generated by columns (1,2,3,6). By linear algebra, the corresponding columns also generate the
space of the first six columns of
M†
1 þM†

4−M†
2−M†

5 ¼ 0;0;0;2g ′2 � g ′1;2g ′3 � g ′1;0; �½ �:

plies g ′3 � g ′1 ¼ g ′2 � g ′1 ¼ 0; and by Lemma 4, we also get g′2 � g ′3 ¼ 0:
This im
If V is generated by columns (1,2,3,4), then the above linear algebra argument shows g′1 � g ′3 ¼ g ′2 � g′3 ¼ 0: The equality

g ′2 � g ′1 ¼ 0 follows again from by Lemma 4, applied to the linkage [h3,h4,h5,h6,h1,h2]. The third case, when V is generated by
columns (1,2,3,5), is also similar. □

Lemma 6. If primal g ′ið Þ≠ 0 for i = 1, 2, 3, then L′ is line symmetric.
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Proof. By Lemma 3, there exists a dual quaternion u and invertible dual numbers α1,α2,α3, such that g ′i ¼ αiu for i = 1,2,3. Let
β :¼ uu∈D. Because the primal part of u is nonzero, the primal part of β is positive, and 1ffiffiffi

β
p is defined.We set l′ :¼ 1ffiffiffi

β
p u:Then l′2 = −1

and g′ih′i ¼ h′i
2 þ h′iþ3h′i ¼ h′iþ3

2 þ h′iþ3h′1 ¼ h′iþ3g ′i, hence h′iþ3 ¼ g ′ih′ig′i
−1 ¼ l′h′il′

−1 for i = 1, 2, 3. □

Theorem 2. If r = 2 or 3, then L has a line symmetry or the parallel property.

Proof. Let K0 ⊂ Ksym
+ be an irreducible non-degenerate component and τ0 = (t1,t2,t3,t1,t2,t3) be a generic point of K0. We get

L′ ¼ h′1;h′2;h′3; h′4; h′5;h′6½ �, by applying the rotations specified in τ. By Lemmas 4, 5, and 6, we conclude that L′ has a line symmetry
or the parallel property. If a line symmetric linkage moves in an angle symmetric way, then the transformed linkage is also angle
symmetric. This implies that when L′ is line symmetric, then L is also line symmetric. On the other hand, if L′ has the parallel
property, then parallelity holds for all points in K0, in particular L has the parallel property. □

Theorem 3. If r = 2, then L is line symmetric.

Proof. By Theorem 1 and Theorem 2, we may assume that L has the parallel property and r = 2. Let L′ ¼ h′1;h′2; h′3; h′4;h′5;h′6½ � be
the linkage transformed by a generic position. Wemay assumeh′1 ∥ h′4,h′2 ∥ h′3,h′5 ∥ h′6. The primal part of g′1 is 0 and the primal parts
g ′2 and g′3 are not. We define l′ as 1ffiffiffiffiffiffiffiffi

g ′2g ′2
p g ′2. Then l′2 = −1. By Lemma 5, we also get h′2 ¼ −l′h′5l′ and h′3 ¼ −l′h′6l′ (see also the

proof of Lemma 6). Moreover,g′1 is a real multiple of �l′, andg ′1h′1 ¼ h′4g ′1. By the last equation, the primal part ofh′1 þ l′h′4l′ is zero.

The dual part ofh′1 þ l′h′4l′ is equal tou :¼ g′1−h′4 þ l′h′4l′. The vectorial part oful′ ¼ g′1l′−h′4l
′−lh′4 vanishes, so u is a multiple of l′.

On the other hand, the scalar product of uwith l′ also vanishes, hence u = 0 andh′1 ¼ −l′h′4l′. It follows that L′ and L are both line
symmetric. □

At the end of this subsection, we give a construction of angle-symmetric 6R linkage with parallel property. The construction is
based on the fact that we have a partially line symmetry taking h2 to h5 and h3 to h6 (see Lemma 3 and Lemma 5 above).

Construction 1. (Angle-symmetric 6R linkage with parallel property)

I. Choose a rotation axis u such that u2 = −1.
II. Choose another rotation axis h1 such that h12 = −1 and it is perpendicular to u.
III. Choose two parallel rotation axes h2 and h3 which are not perpendicular to u such that h22 = h3

2 = −1.
IV. Set h4 = − uh1u + r�u, where r is a random real number.
V. Set h5 = − uh2u and h6 = − uh3u.
VI. Our angle-symmetric 6R Linkage with parallel property is L = [h1, h2, h3, h4, h5, h6]. □

Example 1. (Angle-symmetric 6R linkage with parallel property) We set
u ¼ i;

h1 ¼ − 7
11

�iþ j;

h2 ¼ 2 −3
5

� �
i− 3

2
þ 4
5

� �
j−�k;

h3 ¼ −2�þ 3
5

� �
iþ 3

2
�þ 4

5

� �
jþ 2�k;

r ¼ 14
11

;

h4 ¼ 7
11

�i−j;

h5 ¼ 2�−3
5

� �
iþ 3

2
�þ 4

5

� �
jþ �k;

h6 ¼ −2�þ 3
5

� �
i− 3

2
�þ 4

5

� �
j−2�k:
It can be seen that the axes of h1, h4 are parallel, and the axes of h2,h3 and h5,h6, respectively, are parallel. Furthermore, the
configuration curve contains a non-degenerate component:
t1; t2; t3; t4; t5; t6ð Þ ¼ 5
4
t; t; t;

5
4
t; t; t

� �
:

Thus, we have an example of angle-symmetric 6R linkage with parallel property. The rank ofM† is 3. In Fig. 1, we present nine
configuration positions of this linkage produced by Maple. □

Remark 3. A random instance of Construction 1 produces a linkage where t1 is parametrized by a quadratic function in t = t2 = t3.
This example is special because t1 is linear in t. (There is a degenerate component of the configuration curve that is responsible for this
drop of the degree.)



Fig. 1. These nine pictures which are produced by Maple are different positions of the linkage in Example 1. The six colored tetrahedra (gray, blue, yellow, red,
green, pink) represent six links in the linkage, and the joints are common edges of connected tetrahedra. (For interpretation of the references to color in this
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3.3. Linkages with Rank 4

In this subsection, we show that the angle-symmetric linkages with Rank 4 are exactly those that have been constructed in
([10], Example 3) by factorization of cubic motion polynomials.

Recall that a motion polynomial P is a polynomial in one variable t with coefficients in DH such that PP is a real
polynomial that does not vanish identically. (Multiplication in DH t½ � is defined by requiring that t commutes with the
coefficients inDH.) Motion polynomials parametrize motions: by substituting a real number for t, we obtain an element in the
Study quadric.

We give a brief sketch of the construction in [9,10]. Linear motion polynomials of the form (t − a − bh), a; b∈R ,
b ≠ 0, h∈DH , h2 = −1 parametrize revolutions. When we multiply three such polynomials R1,R2,R3, we get a cubic
motion polynomial Q. Generally, there are 6 different factorizations into linear monic polynomials, and there is one of the form R6,
R5,R4 such that the equations R1R1 = R4R4, R2R2 = R5R5, R3R3 = R6R6 hold. The three linear factors R4,R5,R6 are again motion
polynomials parametrizing revolutions. The six axes of R1, …, R6 define a closed 6R linkage; let us call it a linkage of cubic polynomial
type.

figure legend, the reader is referred to the web version of this article.)
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We set Ri(t) = t − ai − bihi for i = 1, …, 6, ai; bi ∈R, bi ≠ 0, hi ∈DH, hi2 = −1. The equations above are equivalent to ai =
ai + 3 and bi

2 = bi + 3
2 for i = 1, 2, 3.Wemay even assume bi = − bi + 3; if not, we replace hi + 3 and bi + 3 by− hi + 3 and− bi + 3.

We multiply R1R2R3 = R6R5R4 by R4R5R6 and get that
is a re

In par
t−a1−b1h1ð Þ t−a2−b2h2ð Þ t−a3−b3h3ð Þ t−a1−b1h4ð Þ t−a2−b2h5ð Þ t−a3−b3h6ð Þ

al polynomial. This shows that the configuration curve is parametrized by

t1; t2; t3; t4; t5; t6ð Þ ¼ t−a1
b1

;
t−a2
b2

;
t−a3
b3

;
t−a1
b1

;
t−a2
b2

;
t−a3
b3

� �
:

ticular, the linkage of cubic polynomial type is angle symmetric. Here is a converse of the above statement.
Theorem 4. If L is an angle-symmetric linkage such that the λ-matrix has rank r = 4, then L is of cubic polynomial type.

Proof. By Lemma 1, there exist a polynomial of the form bt1 + ct2 + d that vanishes on Ksym, b; c;d∈R , bc ≠ 0, and the
projection of Ksym to (t1,t3) is in the common zero set of two linear independent polynomials of bidegree (2,1). The equation of the
projection is therefore a common factor of these two equations and must have bidegree smaller than (2,1). Since Ksym has a
non-degenerate component, the common factor cannot be constant in t1 or t3, hence it has bidegree (1,1). Because (∞,∞) is contained
in the projection, the common factor has the form b′t1 + c′t2 + d′ for b′; c′;d′∈R, b′c′ ≠ 0. This allows us to parametrize Ksym with
linear functions
t1; t2; t3ð Þ ¼ t−a1
b1

;
t−a2
b2

;
t−a3
b3

� �

;…; b3 ∈R , b1b2b3 ≠ 0. Now the linkage can be reconstructed from the two factorizations of the cubic motion
for a1
polynomial
t−a1−b1h1ð Þ t−a2−b2h2ð Þ t−a3−b3h3ð Þ ¼ t−a3 þ b3h6ð Þ t−a2 þ b2h5ð Þ t−a1 þ b1h4ð Þ;

of cubic polynomial type. □
so it is

4. Conclusion

In the analysis of the case r = 3, we obtained a new type of linkage (with parallel property h1 ∥ h4, h2 ∥ h3, h5 ∥ h6). It is not
clear from the paper if every linkage with parallel property is angle-symmetric.

This is not the case: examples of linkages with parallel property that are not angle-symmetric can be found in [12,13]. A
complete classification of linkages with parallel property can be found in [14].
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