
ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013 ISSAC poster abstracts

A Verification Framework for MiniMaple Programs∗

Muhammad Taimoor Khan and Wolfgang Schreiner
Dokotratskolleg Computational Mathematics (DK) and
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria
muhammad.khan@dk-compmath.jku.at

Wolfgang.Schreiner@risc.jku.at

In this poster, we present an overview of our ongoing work and results on the development of a verifi-
cation framework for programs written in a (substantial) subset of the language of the computer algebra
system Maple, which we call MiniMaple. The main goal here is to detect behavioral errors in such programs
w.r.t. their specifications by static analysis. However, the task of the formal specification and verification
of MiniMaple programs is complex as Maple supports various non-standard types of objects such as un-
evaluated expressions and also requires abstract data types to formalize computer algebra concepts and
notions. To approach our goal, we have defined and formalized the syntax, semantics, type system and
specification language for MiniMaple. For the verification, we translate an annotated MiniMaple program
into the language Why3ML of the intermediate verification tool Why3 [1] developed at LRI, France. We
generate verification conditions by the corresponding component of Why3 and then prove the correct-
ness of these conditions by various automatic and interactive theorem provers supported by the Why3
back-end. The main test for our verification framework is the Maple package DifferenceDifferential [2]
developed at our institute to compute bivariate difference-differential polynomials using relative Gröbner
bases. All software (lexer, parser, type checker and translator) is open source and freely available from
http://www.risc.jku.at/people/mtkhan/dk10/.

As a general overview of our verification framework, first any MiniMaple program is parsed to generate
an abstract syntax tree (AST). Then the AST is type checked and annotated by type information and
translated into a (presumably) semantically equivalent Why3ML program. From this program, Why3
generates verification conditions to be proved correct by its various back-end supported provers. All
components of the framework may generate errors and information messages.

The syntax of MiniMaple [3] covers all the syntactic domains of Maple but supports fewer alternatives in
each domain than Maple; in particular, Maple has many built-in expressions which are not supported in our
language. We use the type annotations which Maple introduced for runtime checking for the purpose of the
static type checking of MiniMaple programs; indeed we have defined a formal type system for MiniMaple
as a decidable logic with various typing judgments. The type system requires that procedure parameters,
procedure results and local variables are type annotated. However, global variables in Maple cannot be type
annotated, such that values of arbitrary types can be assigned to them. To handle the correct semantics
of such variables inside and outside of the body of procedures, we introduced global and local contexts. In
the former, variables can be introduced by assignments and their types can change arbitrarily, while in the
latter, variables can only be introduced by declarations and their types can only be specialized [3]. Another
issue is the handling of dynamic type tests by the MiniMaple expression type(E,T ). The use of a type
test in a conditional may result in different type information for the same variable in different branches of
the conditional; we use the type information introduced by the corresponding conditional branches to infer

∗The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK10.

1



ISSAC poster abstracts

the possible type of a variable. We have applied the type checker to the package DifferenceDifferential ;
no crucial errors were found but some bad code parts, e.g. duplicate declaration of variables and global
variables that are declared but not used.

Furthermore, we have defined a specification language for MiniMaple to formally describe mathematical
theories (types, functions, axioms), behavior of procedures (pre- and post-conditions and other constraints),
loops (invariants and termination terms) and commands (assertions). In addition to basic formulas, our
specification language supports various forms of quantifiers, i.e. logical quantifiers (forall and exists),
numerical quantifiers (add, mul, max and min) and sequential quantifiers (seq) to represent truth values,
numeric values and sequences of values respectively. The language slightly extends the Maple syntax, e.g.
logical quantifiers use typed variables and numerical quantifiers use logical conditions that filter values
from the specified range of a variable. The language supports abstract data types to specify abstract
mathematical concepts, e.g. polynomial rings. As an example, we have formally specified a substantial part
of the package DifferenceDifferential, e.g. difference-differential operators are formalized by a corresponding
abstract data type.

To verify a MiniMaple program annotated with types and specifications, we translate this program
to the language Why3ML of the intermediate verification tool Why3. We use the Why3 verification
conditions generator to produce a set of verification conditions: the pre-conditions of called procedures,
the post-conditions of defined procedures, the initial establishing of loop invariants, the preservation of loop
invariants after every iteration and the decreasing of termination terms. We then prove their correctness by
automated provers (e.g. Z3 and CVC3) and proof assistants (e.g. Coq) supported by the Why3 back-end.
The wide range of proof support was one the reasons why we chose Why3, as we are, e.g., dealing with
non-linear arithmetic which requires in general an interactive prover. For verification, we have defined
the translation of MiniMaple into semantically equivalent constructs of Why3ML, e.g. the MiniMaple
return statement is translated using the Why3 exception-handling mechanism, union types are translated
to algebraic types and the corresponding type tests are translated using pattern matching. Using this
approach, we have already verified most of the low level procedures of the package DifferenceDifferential,
e.g. “gleicheterme” (comparing two difference-differential terms), “sigmamax” (computing a differential
term with given constraints) and “ddsub” (subtraction of differential operators).

Currently, we are in the process of verifying higher level procedures with abstract (data type based)
specifications: based on an example we experiment with appropriate proof strategies for such specifications
using our verification framework. As a next step, a proof of the soundness of translation for selected Mini-
Maple constructs is planned. One of the reason for choosing Why3 was that it provides a formal (originally
weakest precondition based, later also operational) semantics. We have correspondingly defined a formal
denotational semantics of MiniMaple programs [3], e.g. the semantics of command execution is defined
as a state relationship between pre- and post-states, i.e. the MiniMaple command semantics [[C]](e)(s, s′)
states that in an environment e the execution of a command C in a pre-state s may result in a post-state
s′. Based on these definitions, we plan to prove that our translation preserves the programs’ semantics.

References

[1] F. Bobot and et al. Why3: Shepherd Your Herd of Provers. In Boogie 2011: First International
Workshop on Intermediate Verification Languages, Wroc law, Poland, August 2011.

[2] Christian Dönch. Bivariate Difference-Differential Dimension Polynomials and Their Computation in
Maple. Technical report, Research Institute for Symbolic Computation, University of Linz, 2009.

[3] M. T. Khan and W. Schreiner. Towards the Formal Specification and Verification of Maple Programs.
In J. Jeuring and et al., editors, Intelligent Computer Mathematics, volume 7362 of LNCS, pages
231–247. Springer, 2012.

2


