
The Se
ant-Newton Map is Optimal

Among Contra
ting Quadrati
 Maps

for Square Root Computation

∗

M d lina Era³
u

†

Resear
h Institute for Symboli
 Computation,

Johannes Kepler University, A-4040, Linz, Austria

meras
u�ris
.jku.at

Hoon Hong

Department of Mathemati
s, North Carolina State

University, Box 8205, Raleigh NC 27695, USA

hong�n
su.edu

Abstra
t

Consider the problem: given a real number x and an error bound ε,

�nd an interval su
h that it 
ontains

√
x and its width is less than ε.

One way to solve the problem is to start with an initial interval and

repeatedly to update it by applying an interval re�nement map on it until

it be
omes narrow enough. In this paper, we prove that the well known

Se
ant-Newton map is the optimal among a 
ertain family of natural

generalizations.
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1 Introdu
tion

Computing the square root of a given real number is a fundamental operation. Natu-

rally, various numeri
al methods have been developed [4, 9, 11, 6, 7, 5, 3, 1, 2, 10, 8℄.

In this paper, we 
onsider an interval version of the problem [7, 1, 8℄: given a real

number x and an error bound ε, �nd an interval su
h that it 
ontains

√
x and its

width is less than ε. One way to solve the problem starts with an initial interval and

repeatedly updates it by applying a re�nement map, say R, on it until it be
omes

narrow enough (see below).

in: x > 0, ε > 0
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out: I , interval su
h that

√
x ∈ I and width(I) ≤ ε

I ← [min(1, x),max(1, x)]

while width(I) > ε

I ← R(I, x)

return I

A well known re�nement map R, tailored for square root, is obtained by 
ombining the

se
ant map and the Newton map where the se
ant/Newton map is used for determining

the lower/upper bound of the re�ned interval, that is,

R : [L, U ], x 7→
[

L+
x− L2

L+ U
,U +

x− U2

2U

]

whi
h 
an be easily derived from Figure 1.

1 2

A question naturally arises. Is there any

L L ' UU 'x

Figure 1: Derivation of Se
ant-Newton map

re�nement map whi
h is better than Se
ant-Newton? In order to answer the question

rigorously, one �rst needs to �x a sear
h spa
e, that is, a family of maps in whi
h we

sear
h for a better map. In this paper, we will 
onsider the family of all the �natural

generalization� of Se
ant-Newton map. The above pi
ture shows that Se
ant-Newton

map is 
ontra
ting, that is, L ≤ L′ ≤ √x ≤ U ′ ≤ U . Furthermore, it �s
ales properly�,

that is, if we multiply

√
x, L and U by a number, say s, then L′

and U ′
are also

multiplied by s. This is due to the fa
t that the numerators are quadrati
 forms in√
x, L and U and the denominators are linear forms. These observations suggest the

1

An anonymous referee made an interesting observation that the Se
ant-Newton map 
an

be also viewed as an instan
e of the interval Newton map with slope:

[L,U ], x 7→ m −
m2 − x

m+ [L,U ]

where m ∈ [L,U ]. If we 
hoose m = U then it is identi
al to the Se
ant-Newton map.

2

It is important to note that there are faster non-interval algorithms for 
omputing square

roots [6, 5, 3, 2℄. They are based on stati
 error analysis, auto-
orre
tive behavior of Newton

map, et
. However, in this paper, we restri
t our investigation to interval methods be
ause the


urrent work is 
arried out as a preliminary study, in the hope of identifying 
on
eptual and

te
hni
al tools for �nding an optimal method for solving polynomial equations. Interval based

methods have the bene�t of providing a uniform paradigm for su
h larger 
lass of problems.
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following 
hoi
e of a sear
h spa
e: the family of all the maps with the form

R : [L, U ], x 7→ [L′
, U

′]

L
′ = L+

x+ p0L
2 + p1LU + p2U

2

p3L+ p4U

U
′ = U +

x+ q0U
2 + q1UL+ q2L

2

q3U + q4L

su
h that

L ≤ L
′ ≤
√
x ≤ U

′ ≤ U,

whi
h we will 
all 
ontra
ting quadrati
 maps. By 
hoosing the values for the pa-

rameters p = (p0, . . . , p4) and q = (q0, . . . , q4), we get ea
h member of the family.

For instan
e, Se
ant-Newton map 
an be obtained by setting p = (−1, 0, 0, 1, 1) and
q = (−1, 0, 0, 2, 0).

The main 
ontribution of this paper is the �nding that Se
ant-Newton map is the

optimal among all the 
ontra
ting quadrati
 maps. By optimal, we mean that the

output interval of Se
ant-Newton map is always proper subset of that of all the other


ontra
ting quadrati
 maps, as long as

√
x resides in the interior of the input interval.

The paper is stru
tured as follows. In Se
tion 2, we pre
isely state the main 
laim

of the paper. In Se
tion 3, we prove the main 
laim.

2 Main Result

In this se
tion, we will make a pre
ise statement of the main result informally des
ribed

in the previous se
tion. For this, we re
all a few notations and notions.

De�nition 1 (Quadrati
 map). We say that a map

R : [L, U ], x 7→ [L′
, U

′]

is a quadrati
 map if it has the following form

3

L
′ = L+

x+ p0L
2 + p1LU + p2U

2

p3L+ p4U

U
′ = U +

x+ q0U
2 + q1UL+ q2L

2

q3U + q4L

We will denote su
h a map by Rp,q.

De�nition 2 (Se
ant-Newton map). The Se
ant-Newton map is the quadrati
 map

Rp∗,q∗ where p∗ = (−1, 0, 0, 1, 1) and q∗ = (−1, 0, 0, 2, 0), namely

Rp∗,q∗ : [L, U ], x 7→ [L∗
, U

∗]

where

L
∗ = L+

x− L2

L+ U

U
∗ = U +

x− U2

2U

3

A 
areful reader would be 
on
erned about the possibility of the denominators be
om-

ing 0, making the expressions unde�ned. Fortunately it will turn out that these 
ases will be

naturally eliminated in the subsequent dis
ussions.
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De�nition 3 (Contra
ting quadrati
 map). We say that a map

R : [L, U ], x 7→ [L′
, U

′]

is a 
ontra
ting quadrati
 map if it is a quadrati
 map and

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ L ≤ L

′ ≤
√
x ≤ U

′ ≤ U. (1)

Now we are ready to state the main result of the paper.

Theorem 1 (Main Result). Let Rp,q be a 
ontra
ting quadrati
 map whi
h is not

Rp∗,q∗ (Se
ant-Newton). Then we have

(a) ∀
L,U,x

0 < L ≤ √x ≤ U =⇒ Rp∗,q∗([L,U ], x) ⊆ Rp,q([L,U ], x)

(b) ∀
L,U,x

0 < L <
√
x < U =⇒ Rp∗,q∗([L,U ], x) ( Rp,q([L, U ], x)

Remark 1. It is important to pay a 
areful attention to a subtle di�eren
e between

the two 
laims (a) and (b). In the �rst 
laim,

√
x is allowed to lie on the boundary of

the input interval, namely

√
x = L or

√
x = U . In the se
ond 
laim,

√
x is required to

lie in the interior of the input interval.

Remark 2. The �rst 
laim states that Se
ant-Newton map is never worse than any

other 
ontra
ting quadrati
 map as along as

√
x resides in the input interval. The se
-

ond 
laim states that Se
ant-Newton map is always better than all the other 
ontra
ting

quadrati
 maps as long as

√
x resides in the interior of the input interval.

3 Proof

In this se
tion, we will prove the main result (Theorem 1). For the sake of easy

readability, the proof will be divided into several lemmas, whi
h are interesting on

their own. The main theorem follows immediately from the last two lemmas (Lemmas

6 and 7).

Lemma 2. Let Rp,q be a 
ontra
ting quadrati
 map. Then we have

p0 = −1, p1 = 0, p2 = 0

q0 = −1, q1 = 0, q2 = 0

Proof. Let Rp,q be a 
ontra
ting quadrati
 map. Then p, q satisfy the 
ondition (1).

The proof essentially 
onsist of instantiating the 
ondition (1) on x = L2
and x = U2.

By instantiating the 
ondition (1) with x = L2
and re
alling the de�nition of L′,

we have

∀
L,U

0 < L ≤ U =⇒ L+
L2 + p0L

2 + p1LU + p2U
2

p3L+ p4U
= L.

By simplifying, removing the denominator and 
olle
ting, we have

∀
L,U

(L, U) ∈ D =⇒ g (L,U) = 0,

where

D = {(L,U) : 0 < L ≤ U} ,
g (L,U) = (1 + p0)L

2 + p1LU + p2U
2
.
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Sin
e the bivariate polynomial g is zero over the 2-dim real domain D, it must be

identi
ally zero. Thus its 
oe�
ients 1 + p0, p1 and p2 must be all zero.

By instantiating the 
ondition (1) with x = U2
and re
alling the de�nition of U ′

,

we have

∀
L,U

0 < L ≤ U =⇒ U +
U2 + q0U

2 + q1UL+ q2L
2

q3U + q4L
= U.

By simplifying, removing the denominator and 
olle
ting, we have

∀
L,U

(L,U) ∈ D =⇒ h (L, U) = 0,

where

D = {(L, U) : 0 < L ≤ U} ,
h (L,U) = (1 + q0)L

2 + q1UL+ q2L
2
.

Sin
e the bivariate polynomial h is zero over the 2-dim real domain D, it must be

identi
ally zero. Thus its 
oe�
ients 1 + q0, q1 and q2 must be all zero.

Lemma 3. Let Rp,q be a 
ontra
ting quadrati
 map. Then we have

L
′ = L+

x− L2

p3L+ p4U

U
′ = U +

x− U2

q3U + q4L
.

Proof. Let Rp,q be a 
ontra
ting quadrati
 map. From Lemma 2, we have

p0 = −1, p1 = 0, p2 = 0

q0 = −1, q1 = 0, q2 = 0

Re
alling the de�nition of L′
and U ′

, we have

L
′ = L+

x− L2

p3L+ p4U

U
′ = U +

x− U2

q3U + q4L
.

The following lemma will be used to simplify the proof of Lemma 5.

Lemma 4. If

∀
X,Y,Z

0 < X < Y < Z =⇒ aX + bY + cZ ≥ 0

Then

a+ b+ c ≥ 0 b+ c ≥ 0 c ≥ 0

Proof. Assume

∀
X,Y,Z

0 < X < Y < Z =⇒ aX + bY + cZ ≥ 0
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Let x = X, y = Y −X and z = Z − Y. Then we 
an rewrite the above as

∀
x,y,z

x, y, z > 0 =⇒ ax+ b (x+ y) + c (x+ y + z) ≥ 0

Hen
e

∀
x,y,z

x, y, z > 0 =⇒ (a+ b+ c) x+ (b+ c) y + cz ≥ 0

Thus

a+ b+ c ≥ 0 b+ c ≥ 0 c ≥ 0

Lemma 5. Let Rp,q be a 
ontra
ting quadrati
 map. Then we have

p3 + p4 − 2 ≥ 0 p4 − 1 ≥ 0
q3 + q4 − 2 ≥ 0 q3 − 2 ≥ 0

Proof. Let Rp,q be a 
ontra
ting quadrati
 map. Using Lemma 3, we 
an rewrite the


ondition (1) as

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ L ≤ L+

x− L2

p3L+ p4U
≤
√
x ≤ U +

x− U2

q3U + q4L
≤ U.

Simplifying and splitting, we have

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ 0 ≤ (

√
x− L) (

√
x+ L)

p3L+ p4U
≤
√
x− L

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ 0 ≤ (U −√x)(U +

√
x)

q3U + q4L
≤ U −

√
x

By restri
ting the universal quanti�
ation to

√
x 6= L and

√
x 6= U, we have

∀
L,U,x

0 < L <
√
x < U =⇒ 0 ≤

√
x+ L

p3L+ p4U
≤ 1

∀
L,U,x

0 < L <
√
x < U =⇒ 0 ≤

√
x+ U

q3U + q4L
≤ 1

By 
an
eling the denominators, we have

∀
L,U,x

0 < L <
√
x < U =⇒

√
x+ L ≤ p3L+ p4U

∀
L,U,x

0 < L <
√
x < U =⇒

√
x+ U ≤ q3U + q4L

By rewriting it, we have

∀
L,U,x

0 < L <
√
x < U =⇒ (p3 − 1)L−

√
x+ p4U ≥ 0

∀
L,U,x

0 < L <
√
x < U =⇒ q4L−

√
x+ (q3 − 1)U ≥ 0

From Lemma 4, we have

(p3 − 1) + (−1) + (p4) ≥ 0 (−1) + (p4) ≥ 0 (p4) ≥ 0
(q4) + (−1) + (q3 − 1) ≥ 0 (−1) + (q3 − 1) ≥ 0 (q3 − 1) ≥ 0

Simplifying, we �nally have

p3 + p4 − 2 ≥ 0 p4 − 1 ≥ 0
q3 + q4 − 2 ≥ 0 q3 − 2 ≥ 0
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Now we are ready to prove the two 
laims in Main Theorem. The following lemma

(Lemma 6) will prove the 
laim (a) and the subsequent lemma (Lemma 7) will prove

the 
laim (b).

Lemma 6 (Main Theorem (a)). Let Rp,q be a 
ontra
ting quadrati
 map whi
h is not

Rp∗,q∗ (Se
ant-Newton). Then we have

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ Rp∗,q∗([L, U ], x) ⊆ Rp,q([L, U ], x)

Proof. Let Rp,q be a 
ontra
ting quadrati
 map whi
h is not Rp∗,q∗ (Se
ant-Newton),

that is, p 6= p∗ or q 6= q∗. Let L, U, x be arbitrary su
h that 0 < L ≤ √x ≤ U. We

need to show

Rp∗,q∗([L,U ], x) ⊆ Rp,q([L, U ], x)

Note

Rp∗,q∗([L, U ], x) ⊆ Rp,q([L, U ], x)

⇐⇒ L
′ ≤ L

∗ ∧ U
∗ ≤ U

′

⇐⇒ L+ x−L2

p3L+p4U
≤ L+ x−L2

L+U

∧
U + x−U2

2U
≤ U + x−U2

q3U+q4L

(Due to Lemma 3)

⇐⇒
(

x− L2
)

(

1
L+U

− 1
p3L+p4U

)

≥ 0

∧
(

U2 − x
)

(

1
2U
− 1

q3U+q4L

)

≥ 0

⇐⇒
(

x− L2
)

(

1
2L+(U−L)

− 1
(p3+p4)L+p4(U−L)

)

≥ 0

∧
(

U2 − x
)

(

1
2L+2(U−L)

− 1
(q3+q4)L+q3(U−L)

)

≥ 0

⇐⇒
(

x− L2
) (p3+p4−2)L+(p4−1)(U−L)

(2L+(U−L))((p3+p4)L+p4(U−L))
≥ 0

∧
(

U2 − x
)

(q3+q4−2)L+(q3−2)(U−L)
(2L+2(U−L))((q3+q4)L+q3(U−L))

≥ 0

⇐⇒
(

x− L2
)

((p3 + p4 − 2)L+ (p4 − 1) (U − L)) ≥ 0
∧
(

U2 − x
)

((q3 + q4 − 2)L+ (q3 − 2) (U − L)) ≥ 0
(Due to Lemma 5)

⇐⇒ true. (Due to Lemma 5)

Main Theorem (a) has been proved.

Lemma 7 (Main Theorem (b)). Let Rp,q be a 
ontra
ting quadrati
 map whi
h is not

Rp∗,q∗ (Se
ant-Newton). Then we have

∀
L,U,x

0 < L <
√
x < U =⇒ Rp∗,q∗([L, U ], x) ( Rp,q([L, U ], x)

Proof. Let Rp,q be a 
ontra
ting quadrati
 map whi
h is not Rp∗,q∗ (Se
ant-Newton),

that is, p 6= p∗ or q 6= q∗. Let L, U, x be arbitrary su
h that 0 < L <
√
x < U. We

need to show

Rp∗,q∗([L, U ], x) ( Rp,q([L,U ], x)
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Following a similar pro
ess as in the proof of Lemma 6, we have

Rp∗,q∗([L, U ], x) ( Rp,q([L,U ], x)

⇐⇒ L
′
< L

∗ ∨ U
∗
< U

′
(Due to Lemma 6)

⇐⇒ L+ x−L2

p3L+p4U
< L+ x−L2

L+U

∨
U + x−U2

2U
< U + x−U2

q3U+q4L

(Due to Lemma 3)

⇐⇒ 1
L+U

− 1
p3L+p4U

> 0

∨
1
2U
− 1

q3U+q4L
> 0

(sin
e L <
√
x < U)

⇐⇒ 1
2L+(U−L)

− 1
(p3+p4)L+p4(U−L)

> 0

∨
1

2L+2(U−L)
− 1

(q3+q4)L+q3(U−L)
> 0

⇐⇒ (p3+p4−2)L+(p4−1)(U−L)
(2L+(U−L))((p3+p4)L+p4(U−L))

> 0

∨
(q3+q4−2)L+(q3−2)(U−L)

(2L+2(U−L))((q3+q4)L+q3(U−L))
> 0

⇐⇒ (p3 + p4 − 2)L+ (p4 − 1) (U − L) > 0
∨
(q3 + q4 − 2)L+ (q3 − 2) (U − L) > 0

(Due to Lemma 5)

⇐⇒ p3 + p4 − 2 6= 0 ∨ p4 − 1 6= 0
∨
q3 + q4 − 2 6= 0 ∨ q3 − 2 6= 0

(Due to Lemma 5)

⇐⇒ ¬ (p3 + p4 − 2 = 0 ∧ p4 − 1 = 0 ∧ q3 + q4 − 2 = 0 ∧ q3 − 2 = 0)

⇐⇒ ¬ (p3 = 1 ∧ p4 = 1 ∧ q4 = 0 ∧ q3 = 2)

⇐⇒ ¬ (p = p
∗ ∧ q = q

∗) (Due to Lemma 2)

⇐⇒ p 6= p
∗ ∨ q 6= q

∗

⇐⇒ true.

Main Theorem (b) has been proved.

4 Con
lusion

In this paper we investigated optimal methods for real square root 
omputation by

interval re�ning. More exa
tly, we proved that the well known Se
ant-Newton re�ne-

ment map is the optimal among its natural generalizations, that is, among the maps

that are 
ontra
ting and are 
ertain rational fun
tions. This result motivates several

interesting further questions.

• What about n-th root? It is natural to generalize the family of 
ontra
ting

quadrati
 maps to 
ontra
ting degree n maps, that is, rational fun
tions whose

numerators are n-degree forms and whose denominators are (n−1)-degree forms.

One asks what is the optimal map among the family of maps.

• What about dropping the 
ondition �
ontra
ting�? Re
all that Se
ant-Newton

map is a parti
ular instan
e of interval Newton map with slope where m is
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hosen to be U (footnote 1). If one 
hooses a di�erent m value (from U), then

the interval Newton map with slope is not 
ontra
ting. In pra
ti
e, one remedies

this by interse
ting the result of the map with [L, U ] before the next iteration.
This trivially ensures that the resulting map is 
ontra
ting. This motivates a

larger family of maps where a map is de�ned as a quadrati
 map 
omposed with

interse
tion with [L, U ]. Again, one asks what is the optimal map among the

larger family of maps.

We leave them as open problems/
hallenges for future resear
h.
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