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Abstract—We present a logic-based verification method for
imperative loops (including ones with abrupt termination) and
the automatic proof of its soundness. The verification method
consists in generating verification conditions for total correctness
of an imperative loop annotated with an invariant. We realized, in
the Theorema system (www.theorema.org), the automatic proof of
the soundness of verification method: if the verification conditions
hold, then the imperative loop is totally correct with respect
to its given invariant. The approach is simpler than the others
because it is based on functional semantics (no additional theory
of program execution is necessary) and produces verification
conditions in the object theory of the program. The computer-
supported proofs reveal the minimal collection of logical assump-
tions (some from natural number theory) and logical inferences
(including induction) which are necessary for the soundness of
the verification technique.

Index Terms—program analysis and verification, symbolic
execution, semantics, induction, termination, Theorema system

I. INTRODUCTION

The soundness and relative completeness proofs of the
classical Hoare logic are well-established for sequential im-
perative programming languages. The same holds for logics
extending Hoare logic with recursive calls, abrupt termination,
exceptions, object-oriented features, etc. [10], [1], [22], [29].
These proofs are mainly done by defining the semantics in
type theory [29] and by using the proof assistants Coq [3],
Isabelle/HOL [21], PVS [24] in the (interactive) proofs. In
a functional setting, the most common way of defining the
semantics of the programs is to use Scott fixed-point theory
[28].

Additionally to the definition of semantics, these proofs
require to define the notion of termination. For imperative
languages:

1) if the semantics defines a memory model of the program
then inference rules for both partial and termination are
introduced,

2) if an axiomatic semantics is defined then inference rules
for termination are defined only for iterative structures
(while loops); these inference rules capture the well-
foundedness property of the iterative structure.

In the functional setting, termination is defined as being the
least fix-point of certain recursive operators.

Needless to say, the complexity of the proofs of the program
logics depends on the choice of semantics and definition of

termination. The complexity plays a crucial role especially if
one aims at the automatization of such proofs.

The present paper tries to avoid complex proofs by defining
semantics and termination in the same logic as the one of
the program. It focusses on the automatic proof of sound-
ness, in the Theorema system [7], of a method handling
abruptly terminating while loops in imperative programs.
The method is based on forward symbolic execution [13] and
functional semantics [19]. Our main aim is the identification
of the minimal logical apparatus necessary for formulating and
proving (in a computer-assisted manner) a correct collection
of methods for program verification. The study of such a
minimal logical apparatus has the potential to increase the
confidence in program verification tools and even to reveal
some foundational relations between logic and programming.

The distinctive features of our approach are:
• Program correctness, and implicitly the loop correct-

ness, is expressed in predicate logic, without using any
additional theoretical model for program semantics or
program execution, but only using the so-called object
theories, theories relevant to the predicates, constants and
functions present in the program text.

• The semantics of a loop is the implicit definition, at object
level, of the function implemented by the loop.

• Termination is defined as an induction principle devel-
oped from the structure of the program with respect to
while loops.

The correctness statement of while loops states that the
loop invariant is inductively preserved by the application of
the loop semantics.

For the soundness proofs, the entire knowledge base is
formulated only in the logic on which the program operates
except some axioms of natural number theory (including
induction over natural numbers). Moreover, the proofs are
performed using mainly first-order inferences (exception is
Skolemization). Note that, although the proof is automatic, the
effort of performing it is comparable to the ones performed by
the interactive theorem provers. However, the benefit is that all
the assumptions we made appear explicitly in the knowledge
base and therefore the theory is easier to explore in order to
detect inconsistencies.

We identified a reasonable-size knowledge base and a small
set of inference rules which are handled efficiently during
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proof search by our predicate logic prover implemented in
the Theorema system.

Our computer-aided formalization may open the possibility
of reflection of the method on itself (treatment of the meta-
functions as programs whose correctness can be studied by the
same method). Finally, the formal specification and the veri-
fication of the method are performed in the same framework,
namely Theorema system. This facilitates reasoning at object
and meta-level in the same system.

Related Work. Our approach follows the principles of
forward symbolic execution [13] and functional semantics
[19], but additionally gives formal definitions in a metatheory
for the meta-level functions which define the syntax, the
semantics, and the verification conditions. To our knowledge
there is no other work on symbolic execution approaching the
verification problem in a fully formal way.

However, the ideas from the formalization of the calculus
are not completely new; [15] describes the behavior of concur-
rent systems as relation between the variables in the current
state and in the post-state. A similar approach is encountered
in [4] where the program equations (involving relation between
current and post-state) are used to express nondeterminacy and
termination. In the same manner, [26] presents the formal cal-
culus for imperative languages containing complex structures.
Specification languages used in the framework of verification
tools also use this concept – see e.g. JML [16].

Nowadays, symbolic execution [13] is widely used in con-
junction with other verification techniques [11].

Program logics for reasoning about programs with abrupt
statements are implemented in many state-of-the-art program
verifiers.

In the KeY system [1], which has a first-order predicate
programming logic (called Java Card DL) with subtyping
extended with parameterized modal operators, there are two
ways of handling abrupt termination of while loops: 1) syn-
tactically, by enriching the logic with labeled modalities []R
and 〈〉R, referring to the reason R of possible abrupt ter-
mination; 2) semantically, by transforming the program into
an equivalent one which catches all top-level exceptions and
thus always terminates normally. Parts of the programming
logic were proven correct using an existing Isabelle/HOL
formalization [29] of Java semantics.

We prove the soundness of the method for loops with abrupt
termination by transforming the loop into a normal terminating
one (Section III-B). The transformation method looks similar
to the one performed by KeY, however, we did not find any
references on how the translation is performed, nor how the
proof of the correctness was handled. Distinct to KeY system,
our programming logic is first-order logic extended with meta-
level constructs representing the program statements.

In ESC/JAVA 2 [8], abruptly terminating loops can be
modeled by throw/catch clauses. However, the system
uses an unsound calculus; one source of unsoundness is the
loop-unrolling mechanism rather than a loop invariant. Unlike
this, our method is sound because we are using loop invariants
to characterize loops.

In the LOOP tool [2], program semantics is described in
type theory and has a memory model and semantics inher-
itance as basic ingredients. A Hoare-like calculus including
abrupt termination is developed which is proved to be sound
w.r.t. their approach to semantics. The correctness proofs of the
calculus are done interactively in PVS [24] and Isabelle/HOL
[21]. On the contrary, our approach does not need any memory
model because we are working in a functional environment and
the proofs are done automatically in the Theorema system.

The authors of [25] develop a structural operational se-
mantics and Hoare-like logic as part of the Jive system
[20]. The program logic is interactively proved sound w.r.t.
the semantics by translating both of them in higher-order
logic using Isabelle/HOL [21]. In comparison with the LOOP
system, which reasons at semantic level, the reasoning of
JIVE is at syntactic level. Contrary to this, our semantics is
expressed in the logic on which the program operates and the
correctness proof of the calculus as well, except some second
order inferences.

A formalized semantics (in higher-order logic) of the C
programming language is given in [22]. It handles the cases
of abrupt termination by translating, at syntactic level, the
abruptly terminating program into a normal terminating one
and deriving post-conditions for each case of termination. The
formalization is done in Isabelle/HOL [21].

The idea of using induction for termination proving has
been widely used explicitly [5] or implicitly in the form of
well-founded induction [23]. These proving techniques can be
seen in the context of our work as methods for proving certain
classes of inductive termination conditions that we generate.
Note that in our approach termination is formulated as an
induction principle and not used as a proving technique for
termination as in the existing approaches.

Most of the proof assistants provide infrastructure for
proving/disproving the termination of classical examples with
general recursion. ACL2 [12] handles total functions that must
be proved total at the definition time; sometimes the system
is able to infer this fact. Isabelle [21], HOL4 [9] and Coq
[3] are basically using the recursion package TFL [27] and
thus allow definitions of total recursive functions by using the
fixed-point operators and well-founded relations supplied by
the user. Proving termination reduces to show that the relation
is well-founded and the arguments of the recursive calls are
decreasing. Our approach is equivalent, in the sense that the
termination condition is equivalent to the well-foundedness of
the partial order defined by the transformation of the critical
variables1 within the loop.

The treatment of termination in [14] also uses inductive
conditions extracted from the program recursions, but in the
form of implicit definitions of domains (set theory is also
needed). However, the existence of such inductively defined
objects is not proved directly.

Since our study is foundational, it constitutes a comple-
ment and not a competitor for practical work dealing with

1A critical variable is a program variable modified in the loop body.



termination proofs, like e. g. termination of term rewriting
systems http://www.termination-portal.org/, the size-change
termination principle [17] or the approaches for proving the
termination of industrial-size code (Microsoft Windows Oper-
ating System Drivers) [5].

In order to prove the correctness of the while loops
in the classical Hoare logic it suffices to prove that the
invariant holds upon loop execution and that a termination
term exists. In case of abrupt terminating loops, one way is
to introduce, at syntactic level, the notion of abnormal state
[10] in the correctness statement. In these approaches the
correctness proof was done by proving the correctness of the
loop depending on the current statement which can occur in the
loop body, therefore logical formulae and program statements
appear in the proof. In our approach, we transform the loop
into logical formulae and prove loop correctness based on
them. Therefore the computed-supported proof in our case is
simpler because it has to deal only with formulae from the
logic on which the program operates.

II. LOGICAL FOUNDATIONS

In this section we introduce the program model and ex-
emplify it on an example. Algorithm 1 presents a searching

Algorithm 1 Linear Search
1. in a: array of integers;
n, e: integers where n ≥ 0

2. out β: boolean where(
∀

0≤j<n
a[j] 6= e∧ β = F

)
∨
(
∃

0≤j<n
a[j] = e∧ β = T

)
3. i := 0; y := F;
4. while (i < n) do
5. if (e = a[i]) then y := T; break;
6. i := i+ 1
7.return[y]

algorithm of the element e in the array a and returns T (true),
if the element was found, or F (false), otherwise. The loop is
manually annotated with the invariant

I[i, y] :⇐⇒ 0 ≤ i ≤ n∧(
( ∀
0≤j<i

a[j] 6= e ∧ y = F) ∨ (a[i] = e ∧ y = T)
)

We develop a purely logic-based approach for program
analysis, meaning that the program correctness (and implicitly
the loop correctness) is expressed in predicate logic, without
using any additional theoretical model for program semantics
or program execution, but only using the theories relevant to
the predicates, constants and functions present in the program
text (object theories). For instance, in Algorithm 1 the object
theory is the first-order theory of integer-indexed arrays.

Further, a metatheory (in predicate logic with equality) is
constructed for reasoning about programs. While the object
theory is program specific, the metatheory is general. We
describe it in the following. A program is a tuple of statements.
Therefore, the metatheory contains specific functions and

predicates from the set theory and tuple theory, as well as
appropriate function symbols for the construction of program
statements (assignment, conditionals, loops, abrupt statements:
break and return). The statements contain formulae and
terms from the signature of the underlying object theory. For
instance, the condition of the if statement in Algorithm 1 is
expressed in the object theory. Thus, there is no translation
between the logical model of the program and the logical
expressions occurring in the program.

The program statements and the program itself are meta-
terms because they are composed of meta- and object level
constructs. The terms and the formulae from the object theory
are also meta-terms from the point of view of the metatheory
and they are considered quoted.

Furthermore, the metatheory contains the properties of a
meta-predicate for syntax checking and meta-functions for
semantics and verification conditions generation, including
termination condition. They are constructed as inductive def-
initions and use forward symbolic execution in their specific
task (see [6] for a complete description).

Syntax. For loops, the syntax checker inspects, additionally
to syntactic correctness, that each variable is initialized. The
motivation behind this additional requirement is to avoid the
misuse of variables values.

Semantics. We define the loop semantics as an implicit
definition of a function, conventionally denoted by f . Our
semantics is denotational, because it translates the loop into
logical formulas, whose semantics is already known.

∀
i,y:I[i,y]

f [i, y] =


〈i, y〉 if i ≥ n
〈i,T〉 if i < n ∧ e = a[i]

f [i+ 1, y] if i < n ∧ e 6= a[i]

(1)

Remark 1. Note that the original loop is translated into a
function. From this point on, one could reason about the
while loops using the Scott fixpoint theory [18, p.86],
however we follow a logic-based approach.

The semantics of Algorithm 1 is (1). It was obtained by
analyzing the program lines: 〈4〉 (first branch) and 〈4, 5〉
(second branch), respectively 〈4, 5, 6〉 (third branch). (1) states
the following: “For all values of the critical variables i and
y satisfying the invariant I[i, y], if the while loop condition
i < n does not hold then the value of the function f is the tuple
〈i, y〉, representing the current values of i and y; otherwise, if
the element e is at the position i in the array then the value
of f is the tuple 〈i,T〉, otherwise, if the element e is not at
the position i in the array then the value of f is computed
recursively w.r.t. the next iteration.”

Partial Correctness. A meta-function generates partial
correctness conditions:

• safety conditions: loops are called with appropriate values
of the critical variables

• functional conditions: the output condition of the program
is a consequence of the accumulated conditions on the
respective execution path.

http://www.termination-portal.org/


For example, the fact that the invariant is inductively preserved
by the execution of the loop body is a safety condition, that
is:

0≤ i≤n ∧
(
( ∀
0≤j<i

a[j] 6= e ∧ y=F) ∨ (a[i] = e ∧ y = T)
)

∧ i < n

=⇒
0≤ i<n ∧

(
( ∀
0≤j≤i

a[j] 6= e ∧ y=F) ∨ (a[i+1] = e ∧ y = T)
)

Termination. A meta-function generates a termination condi-
tion formula for each loop, an induction principle developed
from the structure of the loop.

For Algorithm 1, the termination condition is:

∀
i,y:I[i,y]

∧

 i ≥ n⇒ π[i, y]
i < n ∧ (e = a[i])⇒ π[i,T]
i < n ∧ (e 6= a[i]) ∧ π[i+ 1, y]⇒ π[i, y]

⇒ ∀
i,y:I[i,y]

π[i, y] (2)

and was obtained by an analysis similar to the semantics
function.

In (2), π is a new constant symbol, thus it behaves like
a universally quantified predicate. The formula consists of an
implication between two universally quantified parts, both over
the critical variables i and y which satisfies the loop invariant
I[i, y]. The left-hand side is a conjunction of implicational
clauses. The first two clauses correspond to the branch where
the loop terminates due to loop exit, respectively, the element
e is found in the array at position i. On the last clause, the loop
terminates because the element e is not found at position i and
because the loop terminates at the next iteration. The rationale
behind (2) is as follows. Let us consider the predicate τ [i, y]
named “the loop terminates on the values i and y”, whose
logical definition is not actually known. The left-hand side of
the implication represents a property T [π] which should be
fulfilled by this predicate τ . Intuitively, this property states
that the loop terminates if:

1) the loop condition i < n does not hold,
2) the element e is found in the array at position i,
3) the element e is not found in the array at position i and

it terminates at the next iteration, for the value i := i+1.
We consider that the predicate expressing termination is the
strongest predicate obeying this property T . The termination
condition states that the invariant I[i, y] is stronger than any
predicate fulfilling T – thus it will be also stronger than τ . In
this way we can express termination without explicit use of
τ . Therefore, the condition states that the loop terminates for
any values of the critical variables which fulfill the invariant,
in particular, for the values of the critical variables at the entry
point of the loop because they preserve the invariant.

III. SOUNDNESS OF THE METHOD: AUTOMATED FORMAL
PROOF IN THE Theorema SYSTEM

The formalization, implementation and automated proofs
of soundness of our method are performed in the Theorema

system [7]. The system was built with the goal of providing
one logical and software system frame for the entire process
of mathematical exploration process. Implemented on top of
the computer algebra system Mathematica [30], the language
of Theorema is higher-order predicate logic extended with
sequence variables. The main reason for choosing Theorema
system in our work, instead of other proving systems, lies in
its ability to present the concepts and to perform proofs of
them in natural style, that is similar to the human style. The
proofs were carried out by extending the capabilities of the
predicate logic prover of the system.

Existing approaches prove correctness of loops in a Hoare-
like logic. For example

{I ∧ b} c {I}
{I} while b do c {I ∧ ¬b}

,

has the following interpretation: “To show that, if before the
execution of a while loop the property I holds and after its
termination the property I ∧¬b holds, unless it aborts or runs
forever, it suffices to show that the property I is preserved by
the execution of the command c, execution which is performed
when also b holds.”

For abruptly terminating loops, the correctness notion has
to be extended to include the notion of abnormal state: “If the
execution of c starts in a state satisfying I , then the execution
of c terminates abruptly in a state satisfying I ∧ ¬b”. To this
end, the notion of abnormal correctness is introduced (see [10]
for an approach).

Unlike these approaches, we prove the correctness of the
loops in the object logic of the program, hence no mixture
between programming constructs (meta-level) and logical for-
mulas (object level) exists. The separation between meta- and
object level makes our proofs simpler and easier to automate.

A. Simple Loops

In this section we prove the correctness of loops without
abrupt termination. Such a loop can be brought into the
following form:

while φ[δ] do δ:=R[δ], (3)

annotated with the loop invariant ι[δ], where φ[δ], and R[δ] are
the loop condition and the function representing the update of
the critical variable δ performed in the loop body, respectively.
For example, in Algorithm 1, φ[i] is i < n and R[i] is i+ 1.
While loop (3) has the semantics (4), partial correctness

(safety) (5) and termination condition (6).

∀
δ:ι[δ]

f [δ] =

{
δ if ¬φ[δ]
f [R[δ]] if φ[δ]

(4)

∀
δ:ι[δ]

ι[R[δ]] (5)

∀
δ:ι[δ]

∧
{
¬φ[δ]⇒ π[δ]
φ[δ] ∧ π[R[δ]]⇒ π[δ]

}
⇒ ∀

δ:ι[δ]
π[δ] (6)

The total correctness of simple while loops “The loop
invariant is always preserved.” is expressed formally as:



∀
δ:ι[δ]

ι[f [δ]]. (7)

We express the soundness of the verification method for loops
of type (3) as follows: “Formula (7) is a logical consequence
of the semantics (4) and of the termination condition (6).”

Note that a function like in (4) always exists but does
not necessary terminate. However, we still prove explicitly its
existence (and uniqueness) based on a witness term. The fact
that the witness has a closed-form solution is important for
the simplicity of the proofs. Therefore, we prove first that the
existence and uniqueness of an f satisfying (4) is a logical
consequence of the verification conditions. The semantics
formula (4) is expressed in terms of the repetition function
R and of the recursion index, a natural number expressing
how many times the loop is iterated. Therefore, the existence
of the function R and of the recursion index has to be proved
beforehand.

Summarizing, in order to prove the correctness of loops
(Theorem 1), one needs to prove:
• existence of the repetition function (Lemma 1),
• existence of the recursion index (Lemma 2),
• existence and uniqueness of the function implemented by

the loop (Lemma 3).
(Notation: N denotes the natural numbers, and +, − denote
the successor, respectively the predecessor functions.)

Lemma 1. (Existence of the repetition function) Formula

∀
h
∃
G
∀
x

(
G[0, x] = x ∧ ∀

n:N
(G[n+, x] = h[G[n, x]])

)
is a logical consequence of the natural number theory.

Proof sketch. Let x be arbitrary but fixed. One proves first:
∀
h
∀
m:N
∃
H

(
H[0] = x ∧ ∀

n<m
H[n+] = h[H[n]]

)
by natural in-

duction on m. From here by Skolemization on H one obtains:
∀
h
∀
h
∃
H
∀
m:N

(
H[m][0] = x ∧ ∀

n<m
H[m][n+] = h[H[m][n]]

)
.

Furthermore one can prove: ∀
n:N

∀
m≥n

H[m][n] = H[n][n] by

natural induction on n and by taking g[n] = H[n][n] one has
(since x was arbitrary): ∀

x
∃
g

(
g[0] = x ∧ ∀

n:N
g[n+] = h[g[n]]

)
,

which by Skolemization on g gives the desired formula (with
notation G[n, x] instead of G[x][n]).
Remark 2. We use hn[x], instead of G[n, x], in our formalism.
Remark 3. It is straightforward to show that
hn[h[x]] = hn

+

[x].
The subsequent properties need the theory of natural num-

bers, although we do not specify it explicitly.

Lemma 2. (Existence of the recursion index) Formula

∀
δ:ι[δ]

∃
n

(
¬φ[Rn[δ]] ∧ ∀

m

(
¬φ[Rm[δ]]⇒ m ≥ n

))
is a logical consequence of the termination condition (6).

Proof sketch. The automated proof uses a built-in natu-
ral induction principle. Additionally, the following assump-
tions are used:

∀
x
R0[x] := x (8a)

∀
x,n

Rn[R[x]] := Rn
+

[x] (8b)

∀
n
n ≥ 0 (8c)

∀
n 6=0

(n−)
+
:= n (8d)

∀
m,n

m ≥ n⇒ m+ ≥ n+ (8e)

Remark 4. From Lemma 2, one can see immediately that n is
unique, thus, by Skolemization, one obtains the function M [δ]
called the recursion index of δ, that is:
M [δ] := {n | (¬φ[Rn[δ]] ∧ ∀

m:N
(¬φ[Rm[δ]]⇒ m ≥ n)}.

Lemma 3. (Existence and uniqueness of the function imple-
mented by the loop) The existence and uniqueness of an f
satisfying formula (4) is a logical consequence of the termi-
nation condition (6) and of the safety verification condition
(5).

Proof sketch. For proving the existence, one takes ∀
δ:ι[δ]

f [δ] :=

RM [δ][δ] as witness for the loop semantics and derives the
expression of f on each execution branch as required by (4)
The proof requires also the use of (8a), (8b) and:

∀
δ:ι[δ]

(¬φ[δ]⇒M [δ] := 0) (9a)

∀
δ:ι[δ]

(M [R[δ]]+ :=M [δ]) (9b)

For proving the uniqueness, one takes two different seman-
tics functions, e.g. f and g, of the form (4) and shows that
they are the same.

Remark 5. Note that a total function f as in (4) always exists,
but it is not necessarily unique. Its uniqueness comes from the
termination condition.

Theorem 1. (Correctness of simple loops) Formula (7) is a
logical consequence of the semantics formula (4) and of the
termination condition (6).

Proof sketch. The proof is straightforward by taking in (6)
π[δ] as ι[f [δ]]. This is because the left-hand side of the (6)
becomes identical to the functional conditions generated for
partial correctness.

Remark 6. Theorem (1) can be proved also by using the
semantics witness from Theorem 3. In the respective proof,
one needs information about the loop semantics on different
execution branches as given by (4).

B. Abruptly Terminating Loops

There are basically two methods of proving the correctness
of an abruptly terminating loop:

1) prove its correctness directly;
2) transform it into an equivalent simple one and prove the

total correctness of the transformed version.
The drawback in the first case is that the invariant might
become difficult to express and too lengthy for loops with



many ramifications and abrupt statements. In the second case,
the difficulty might arise at program transformation, but the
gain is that the invariants are simpler and the correctness of the
initial loop resumes to the correctness of a loop-free construct
due to the fact that the correctness of simple loops was already
proved (Section III-A).

We chose to prove correctness by the second method.
1) Non-nested Abruptly Terminating Loops. Case break:

Any while loop abruptly terminating via break can be
expressed as in Example 1 even if it contains other loops with
break; break from a inner loop can be eliminated and the
inner loop can be expressed as function call.

Example 1.
while φ[δ] do
if ψ[δ] then
δ := S[δ];
break

else
δ := R[δ]

Example 2.
while φ[δ] ∧ ¬ψ[δ] do

δ := R[δ];
if φ[δ] ∧ ψ[δ] then

δ := S[δ]

For instance, Example 1 is transformed into Example 2.
Each loop is annotated with an invariant. Note that, in

general, the invariants of Examples 1 and 2 are not the same,
namely the invariant of Example 1 is stronger. However, we
use this invariant for both loops (and we refer to it as ι[δ])
because it implies also the invariant of the loop in Example
2. The same holds for Examples 1 and 2.

Like for simple loops, the correctness of abruptly ter-
minating while loops via break resumes to proving the
soundness of the method. In this case, proving soundness
reduces to show the equivalence of semantics functions of
Examples 1 and 2 (Lemma 4).

Let (10) be the semantics of Example 1 and (11) a witness
satisfying it.

∀
δ:ι[δ]

f [δ] =


δ if ¬φ[δ]
S[δ] if φ[δ] ∧ ψ[δ]
f [R[δ]] if φ[δ] ∧ ¬ψ[δ]

(10)

∀
δ:ι[δ]

f [δ] :=

{
RM [δ][δ] if ¬(φ[RM [δ][δ]] ∧ ψ[RM [δ][δ]])

S[RM [δ][δ]] if φ[RM [δ][δ]] ∧ ψ[RM [δ][δ]]
(11)

where M [δ] :=
{
n|¬ (φ[Rn[δ]] ∧ ¬ψ[Rn[δ]]) ∧(

∀
m:N
¬ (φ[Rm[δ]] ∧ ¬ψ[Rm[δ]])⇒ m ≥ n

)}
is the recursion

index of the loop. Further, let (12) and (13) be the semantics of
the simple loop and, respectively, of the conditional obtained
of Example 2.

∀
δ:ι[δ]

f ′[δ] =

{
δ if ¬(φ[δ] ∧ ¬ψ[δ])
f ′[R[δ]] if φ[δ] ∧ ¬ψ[δ]

(12)

∀
δ:ι[δ]

g′[δ] =

{
δ if ¬φ[δ]
S[δ] if φ[δ] ∧ ψ[δ]

(13)

Let (14) and (15) be witnesses satisfying (12), respectively,
(13).

∀
δ:ι[δ]

f ′[δ] := RM [δ][δ] (14)

∀
δ:ι[δ]

g′[δ] :=

{
δ if ¬(φ[δ] ∧ ψ[δ])
S[δ] if φ[δ] ∧ ψ[δ]

(15)

The semantics witness of Example 2 is F ′[δ] = g′[f ′[δ]]
and is obtained by composing the semantics witnesses (14)
and (15). We have

∀
δ:ι[δ]

F ′[δ] :=

{
RM [δ][δ] if ¬(φ[RM [δ][δ]] ∧ ψ[RM [δ][δ]])

S[RM [δ][δ]] if φ[RM [δ][δ]] ∧ ψ[RM [δ][δ]])
(16)

Lemma 4. Examples 1 and 2 implement the same semantics
function.

Proof sketch. The proof is immediate by observing that (11)
and (16) are the same.

2) Non-nested Abruptly Terminating Loops. Case return:
Any while loop abruptly terminating via return can be
expressed as in Example 3 even if it contains other loops with
break and return; both break and return from a inner
loop can be eliminated and the inner loop can be expressed
as function call.

Example 3.
while φ[δ] do
if ψ[δ] then
δ := S[δ];
return[δ]

else
δ := R[δ]

Example 4.
while φ[δ] ∧ ¬ψ[δ] do

δ := R[δ];
if φ[δ] ∧ ψ[δ] then

δ := S[δ]
return[δ]

For instance, Example 3 is transformed into Example 4.
The correctness of loops abruptly terminating via return

can be proved following the principles of loop abruptly termi-
nating via break, with the remark that the return statement
causes execution to exit the program. Hence, additionally
to proving the equivalence of the semantics functions of
Examples 3 and 4, one has to prove that the output condition
of the program holds upon the execution of the return.

3) Nested Abruptly Terminating Loops: Our approach can
be extended to arbitrarily nested, abruptly terminating while
loops. The proofs are similar to those with non-nestedness,
the effort is to transform the initial loops into simple loops. A
naive algorithm for such a translation is:

1) analyze the program top-down detecting the innermost
loop with abrupt termination,

2) transform it into a normal terminating one; the abrupt
statements are eliminated in the order they appear:
break is eliminated from the currently analyzed loop,
from the all wrapper loops and from the program itself,
return is eliminated only from the currently analyzed
loop,

3) repeat 1. and 2. until there are no loops with abrupt
termination.



Of course, the program text which does not need transfor-
mations is copied correspondingly.

We apply our method to Algorithm 2, search of an element
into a bidimensional array.

Algorithm 2 Search in a bidimensional array
1. in a: array of integers;
m,n, e:integers m ≥ 0, n ≥ 0

2. out β: integer or β1, β2: integers where((
∃

0≤k<m
∃

0≤l<n
a[k][l] = e

)
∧ (a[β1][β2] = e)

)
∨((

∀
0≤k<m

∀
0≤l<n

a[k][l] 6= e
)
∧ (β = −1)

)
3. i := 0; j := 0;
4. while (i < m) do
5. j := 0;
6. while (j < n) do
7. if (e = a[i][j]) then return[i, j];
8. j := j + 1;
9. i := i+ 1;
10.return[-1]

The translated version is as follows
i := 0; j := 0;
while

(
i < m ∧ ¬

(
j < n ∧ (e = a[i][j])

))
do

j := 0;
while

(
j < n ∧ (e 6= a[i][j])

)
do

j := j + 1;
i := i+ 1;

if ((i < m ∧ j < n ∧ (e = a[i][j])) then
return[i, j];

return [−1];
The abrupt termination via return was transferred to the

main program. The correctness of the simple loops is proved
as follows.

1) Prove the correctness of the inner loop.
2) Prove the correctness of the wrapper loop by considering

the inner loop as a black-box characterized by the loop
invariant the loop invariant is used in the proof of
correctness of the wrapper loop.

IV. CONCLUSIONS

We showed that reasoning about imperative programs, in
particular also about the ones including loops, does not
necessarily need a complex theoretical construction, because
it is possible to transfer the semantics of the program into
the semantics of the logical formulas, thus avoiding any
special theory related to program execution. Moreover, even
the termination condition can be expressed as a logical formula
in the object theory of the domain manipulated by the program.
In our approach, this condition is in fact equivalent to an in-
duction principle, which makes it very instrumental in proving
the existence and uniqueness of the function implemented by
the loop.

In computer science, when a new program is written then
one needs to prove that it is correct. In mathematics, when a

new function is defined (implicitly), then one needs to prove
that it exists and it is unique. Our approach shows that these
two processes are essentially the same: if the semantics of a
program is defined in a logical functional way (as the function
implemented by the program), then the total correctness of the
program is equivalent to the existence and uniqueness of the
function implemented by the program. This applies as well to
recursive programs [6].
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