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A FINITE ELEMENT SOLVER FOR A MULTIHARMONIC
PARABOLIC OPTIMAL CONTROL PROBLEM

M. KOLLMANN, M. KOLMBAUER, U. LANGER, M. WOLFMAYR, W. ZULEHNER

Abstract. This paper presents the analysis of a distributed parabolic opti-
mal control problem in a multiharmonic setting. In particular, the desired
state is assumed to be multiharmonic. After eliminating the control from the
optimality system, we arrive at the reduced optimality system for the state and
the co-state that is nothing but a coupled system of a forward and a backward
parabolic partial differential equation. Due to the linearity, the state and the
co-state are multiharmonic as well. We discretize the Fourier coefficients by
the finite element method. This leads to a large system of algebraic equations,
which fortunately decouples into smaller systems each of them defining the
cosine and sine Fourier coefficients for the state and co-state with respect to a
single frequency. For these smaller systems we construct preconditioners result-
ing in a fast converging minimal residual solver with a parameter-independent
convergence rate. All these systems can be solved totally in parallel.

1. Introduction

In this paper, we focus on the construction and analysis of efficient and robust
solvers for multiharmonic parabolic optimal control problems where we want to
minimize a linear functional of the form

J (y, u) = F(y) + G(u).(1)

under PDE (Partial Differential Equation) constraints. In our model problem,
the state y is the solution of a second-order parabolic partial differential equation
in a bounded three-dimensional Lipschitz domain. We want to reach a certain
desired distribution yd, which is described through the functional F(y), whereas
the functional G(u) reflects the costs of the control u and provides a regularization
as well. For further information and a general analysis of optimal control problems,
we refer, for example, to Lions [25] and Tröltzsch [33]. In this paper, we consider
the case of a distributed control, which acts on the whole space-time cylinder.

In many practical applications, especially, in electromagnetics, we can assume
that the desired state yd and, therefore, also the state y and the control u are
time-periodic, see e.g. Gunzburger and Trenchea [14]. A very important tool for
the treatment of time-periodic problems is the multiharmonic approach where the
solution is approximated by a truncated Fourier series. Earlier works on the use of
the multiharmonic ansatz for simulating electromagnetic devices in the frequency
domain can be found e.g. in the papers by Yamada and Bessho [36], Paoli et
al. [30], Gersem et al. [12], Gyselinck et al. [15] and Bachinger et. al [5]. In
Bachinger et al. [6, 7], Copeland et al. [10, 11] and Kolmbauer and Langer [19], the
multiharmonic approach has successfully been applied to linear and nonlinear eddy-
current problems. Other applications are mentioned in [1] where nested multigrid
methods for solving time-periodic parabolic optimal control problems are studied.
This approach is based on the reduction of the first order optimality condition to an
operator equation of second kind and its solution by means of a so-called multigrid
method of second kind, as proposed by Hackbusch [16].
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In this paper, we assume from the very beginning that the desired state yd is mul-
tiharmonic. This yields a multiharmonic representation for the state y, the co-state
p and the control u as well. Let us mention that this assumption is very reasonable
in many practical applications. Moreover, in the general time-periodic case, the
desired state yd is first approximated by a truncated Fourier series that brings us
back to the multiharmonic setting. In the case of linear optimal control problems,
the advantage of the multiharmonic ansatz is that the optimality system, which
depends only on the Fourier coefficients, decouples: each block is related to a single
mode, and can be solved independently. The linear systems corresponding to these
blocks are saddle point problems. The fast solution of these linear systems requires
a good preconditioner. In our model problem, some critical model parameters are
involved (see Section 5) as well as the discretization parameter from the finite ele-
ment method. We choose the preconditioned Minimal Residual (MINRES) method
for solving the linear system. A new technique for constructing preconditioners for
saddle point problems was presented in the works of Schöberl and Zulehner [31] and
Zulehner [38], which is based on interpolation theory. We follow the strategy of [38]
and construct block-diagonal preconditioners for the MINRES solver of the linear
system finally leading to parameter independent and hence fast convergence rates.
We mention that the blocks of the preconditioner originally obtained by space in-
terpolation or norm equivalence techniques have to be replaced by easily invertible
blocks in order to obtain optimal or almost optimal complexity. These inexact
versions of our original preconditioner can be derived by standard precondition-
ing techniques like multigrid, multilevel, or domain decomposition preconditioning
methods.

The rest of the paper is organized as follows. In Section 2, we introduce the
multiharmonic parabolic optimal control problem that is investigated in this pa-
per. The corresponding optimality system is derived in Section 3. In Section 4, we
present and analyze the multiharmonic finite element method that is used for the
time-space discretization of the optimality system. The derivation and the analysis
of a robust preconditioner for the discrete optimality system is the main new con-
tribution of the paper. The new preconditioner together with the corresponding
MINRES solver is presented in Section 5. Section 6 is devoted to the discretization
error analysis. Finally, we discuss some numerical results in Section 7 and draw
some conclusions in Section 8.

2. A Multiharmonic Parabolic Optimal Control Problem

Let us assume that the domain Ω ⊂ R3 is a bounded Lipschitz domain with
boundary Γ := ∂Ω. For our distributed optimal control problem, the cost functional
J (y, u) = F(y) + G(u) is given by the relations

F(y) =
1

2

∫ T

0

∫
Ω

[y(x, t)− yd(x, t)]2 dx dt(2)

and

G(u) =
λ

2

∫ T

0

∫
Ω

[u(x, t)]
2
dx dt,(3)

where yd is some given multiharmonic desired state, and λ > 0 is some positive
parameter providing a cost weighting of the control u and, at the same time, a
regularization of the optimal control problem. In the following, we denote by QT :=
Ω × (0, T ) the space-time cylinder and by ΣT := Γ × (0, T ) its mantle boundary,
where T > 0 is the time period. Our linear parabolic optimal control problem is
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now given by finding the minimum of the cost functional J ,

min
y,u
J (y, u),(4)

subject to the state equations
σ(x)

∂

∂t
y(x, t)−∇ · (ν(x)∇y(x, t)) = u(x, t) ∀(x, t) ∈ QT ,

y(x, t) = 0 ∀(x, t) ∈ ΣT ,

y(x, 0) = y(x, T ) ∀x ∈ Ω,

(5)

where the symbol ∇ denotes the nabla operator with respect to the space variables
x = (x1, x2, x3). For the time being, we assume that the coefficients σ(·) and ν(·) are
uniformly positive and bounded. In practical applications, e.g. in computational
electromagnetics, σ(·) and ν(·) corresponds to the conductivity and reluctivity,
respectively. Usually, they are piecewise constant due to different materials of
which electrical devises are made. We mention that in non-conducting materials
like air the conductivity is zero. We will also consider this practically important
case that mathematically leads to a problem that is parabolic in the conducting
regions and elliptic in non-conducting regions of the computational domain.

Time-periodic parabolic partial differential equations like (5) have been dis-
cussed, for example, in the works of Hackbusch [16], Vandewalle and Piessens
[34, 35], Steuerwalt [32], Pao [29] and Lieberman [22, 23, 24]. As Steuerwalt com-
ments in [32], the existence of a time-periodic solution implies the solvability of the
corresponding initial value problem and vice versa. The unique solvability of the
initial value problem, which corresponds to the state equation (5) is discussed and
proved for example in Zeidler [37].

In order to determine the space-time variational formulation of the state equation
(5), we need to define proper function spaces as used in Ladyzhenskaya et al. [21].
After that, we discuss existence and uniqueness of the solution of the state equation,
and then of the optimal control problem.

Definition 1. The Sobolev space H1,0(QT ) is defined by

H1,0(QT ) = {y ∈ L2(QT ) : ∇y ∈ [L2(QT )]3},

where ∇ is the weak spatial gradient, and equipped with the norm

‖y‖H1,0(QT ) =

(∫ T

0

∫
Ω

(
y(x, t)2 +

∣∣∇y(x, t)
∣∣2) dx dt)1/2

.

The following space includes the time derivative as well.

Definition 2. The Sobolev space H1,1(QT ) is defined by

H1,1(QT ) = {y ∈ L2(QT ) : ∇y ∈ [L2(QT )]3,
∂y

∂t
∈ L2(QT )},

where ∂
∂t is the weak time derivative, and equipped with the norm

‖y‖H1,1(QT ) =

(∫ T

0

∫
Ω

(
y(x, t)2 +

∣∣∇y(x, t)
∣∣2 +

∣∣∣∂y
∂t

(x, t)
∣∣∣2) dx dt)1/2

.

Remark 1. The space H1,0(QT ) is equivalent to the space L2(0, T ;H1(Ω)) of ab-
stract functions. The space H1,1(QT ) is a subspace of W 1

2 (0, T ;H1(Ω), L2(Ω)) :=
{y ∈ L2(0, T ;H1(Ω)) : ∂

∂ty ∈ L
2(0, T ; (H1(Ω))∗)}.

The following spaces include the boundary conditions and periodicity.
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Definition 3. For k = 0, 1, the Sobolev space H1,k
0 (QT ) is defined by

H1,k
0 (QT ) = {y ∈ H1,k(QT ) : y = 0 on ΣT },

whereas the Sobolev space H1,1
0,per(QT ) is given by

H1,1
0,per(QT ) = {y ∈ H1,1

0 (QT ) : y(x, 0) = y(x, T ) for almost all x ∈ Ω}.

The H-spaces introduced above are Hilbert spaces with scalar products corre-
sponding to the norms in an obvious way. As we will see later, we can assume that
the control u belongs to H1,1

0,per(QT ). Hence, the control u is T -periodic like the
state y. This a priori assumption will be clarified in Section 3. In order to derive
the space-time variational formulation of the state equation (5), we multiply the
parabolic partial differential equation with a test function v ∈ H1,1

0,per(QT ), inte-
grate over the space-time cylinder QT , and after integration by parts, we get the
following variational formulation: Find y ∈ H1,1

0,per(QT ) such that∫
QT

(
σ(x)

∂y

∂t
v + ν(x)∇y · ∇v

)
dx dt =

∫
QT

u v dx dt ∀v ∈ H1,1
0,per(QT ).(6)

Since the functions y, u, v belong to H1,1
0,per(QT ), we can expand these functions

into Fourier series. Moreover, as a result of the multiharmonic representation of
the desired state in the form

(7) yd(x, t) =

N∑
k=0

(ycdk(x) cos(kωt) + ysdk(x) sin(kωt)) ,

where the Fourier coefficients are given by the formulas

(8) ycdk(x) =
2

T

∫ T

0

yd(x, t) cos(kωt) dt and ysdk(x) =
2

T

∫ T

0

y(x, t) sin(kωt) dt,

the functions y, u, v will have a multiharmonic representation as well. For instance,
for the state y, we have the representation

y(x, t) = yc0(x) +

N∑
k=1

yck(x) cos(kωt) + ysk(x) sin(kωt)(9)

with unknown Fourier coefficients yck(x) and ysk(x). Here ω = 2π
T and T denote the

frequency and the periodicity, respectively. Inserting this multiharmonic ansatz
into the space-time variational formulation (6) of the state equation and making
use of the fact that the functions cos(kωt) and sin(kωt) are orthogonal with respect
to the scalar product (·, ·)L2(0,T ), we arrive at an equivalent variational formulation
for determining the Fourier coefficients. Due to the linearity of the problem, this
variational formulation decouples into separate variational problems for determining
the Fourier coefficients yck(x) and ysk(x) only corresponding to the k-th modes for
k = 0, 1, 2, . . . , N . Using the notation

vk = (vck, v
s
k)T , v⊥k = (−vsk, vck)T and ∇vk = (∇vck,∇vsk)T ,

we arrive at the following variational formulation corresponding to every single
mode k = 1, 2, . . . , N : Find yk ∈ V such that∫

Ω

ν(x)∇yk(x) · ∇vk(x) + kωσ(x)yk(x) · v⊥k (x) dx︸ ︷︷ ︸
=:〈Akyk,vk〉

=

∫
Ω

uk(x) · vk(x) dx︸ ︷︷ ︸
=:〈Uk,vk〉

(10)

for all vk ∈ V. The product 〈·, ·〉 denotes the duality product 〈·, ·〉V∗×V, where
V := V × V = (H1

0 (Ω))2 denotes the space for the Fourier coefficients, and

V = H1
0 (Ω) = {y ∈ L2(Ω) : ∇y ∈ L2(Ω) and y = 0 on Γ}.
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For ease of notation, the symbols (·, ·)L2(Ω) and ‖ · ‖L2(Ω) as well as the symbols
(·, ·)H1(Ω) and ‖ · ‖H1(Ω) do not only indicate the scalar case but also the vector-
valued case. We denote the L2-inner product by

(yk,vk)L2(Ω) =
∑

j∈{c,s}

(yjk, v
j
k)L2(Ω)

with the associated norm

‖yk‖2L2(Ω) = (yk,yk)L2(Ω)

for our problem. The space V = (H1
0 (Ω))2 is equipped with the norm

‖yk‖2H1(Ω) = ‖yk‖2L2(Ω) + ‖∇yk‖2L2(Ω).

In addition, we obtain the variational formulation∫
Ω

ν(x)∇yc0(x) · ∇vc0(x) dx =

∫
Ω

uc0(x)vc0(x) dx(11)

for the mode k = 0, in the space V = H1
0 (Ω).

The variational problems (10) and (11) can be rewritten as operator equations:
Find yk ∈ V such that

Akyk = Uk in V∗,(12)

where the linear bounded operator Ak ∈ L(V,V∗) and the linear bounded functional
Uk are defined by the left-hand and right-hand sides of (10) or (11), respectively.

Theorem 1. The variational problems (10) and (11) have a unique solution.

Proof. Since Uk ∈ V∗ and the bilinear form 〈Ak·, ·〉 is bounded and coercive on V,
unique solvability of the variational formulation (10) follows from the theorem of
Lax-Milgram. The same argument can be used to prove unique solvability for the
variational problem (11) in the space V . �

Now we are in the position to prove existence and uniqueness of a solution of
the variational problem (6) corresponding to our state equation (5).

Theorem 2. The space-time variational problem (6) has a unique solution.

Proof. The right hand side u and the solution y have a multiharmonic representa-
tion. Since existence and uniqueness of a solution for the problems corresponding
to the modes k = 0, 1, 2, . . . , N have already been showed in Theorem 1, we obtain
existence and uniqueness of the whole variational problem (6) as well, and the mul-
tiharmonic representation of the solution y given by (9) can be uniquely determined
by inserting all solutions of the variational problems (10) for k = 1, 2, . . . , N and
(11) for k = 0, which are the Fourier coefficients of y, into (9). �

We mention that (5) must always be understood in the weak sense, more pre-
cisely, in the sense of (6).

3. The Optimality System

In order to determine the unique weak solution of the optimal control problem
(4)-(5), we derive its optimality system from the corresponding Lagrange functional.
The Lagrange functional of (4)-(5) is given by

L(y, u, p) := J (y, u)−
∫ T

0

∫
Ω

(
σ
∂y

∂t
−∇ ·

(
ν∇y

)
− u
)
p dx dt,(13)
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where p is the co-state (Lagrange multiplier). A stationary point (y, u, p) of the
Lagrange functional is characterized by the following three conditions:

∇yL(y, u, p) = 0,

∇uL(y, u, p) = 0,

∇pL(y, u, p) = 0,

(14)

called optimality system, see, e.g., [33]. We can eliminate the control u from the
optimality system (14) using the second condition, i.e.

u = −λ−1p in QT ,(15)

i.e. u corresponds in all but multiplication with −λ−1 to the co-state p. Hence, it
appears very natural to choose y, p and also u from the same space as it was done
in Section 2. By (13), (14) and (15), we obtain the following (classical) formulation
of the optimality system:



σ(x)
∂

∂t
y(x, t)−∇ · (ν(x)∇y(x, t)) = −λ−1p(x, t) ∀(x, t) ∈ QT ,

y(x, t) = 0 ∀(x, t) ∈ ΣT ,

y(x, 0) = y(x, T ) ∀x ∈ Ω,

−σ(x)
∂

∂t
p(x, t)−∇ · (ν(x)∇p(x, t)) = y(x, t)− yd(x, t) ∀(x, t) ∈ QT ,

p(x, t) = 0 ∀(x, t) ∈ ΣT ,

p(x, T ) = p(x, 0) ∀x ∈ Ω.

(16)

The corresponding weak formulation is given as follows: Let yd ∈ H0,1
0,per(QT ) be

given. Find y and p from H1,1
0,per(QT ) such that

∫ T

0

∫
Ω

y v − ν(x)∇p · ∇v + σ(x)
∂

∂t
p v dx dt =

∫ T

0

∫
Ω

yd v dx dt,∫ T

0

∫
Ω

ν(x)∇y · ∇q + σ(x)
∂

∂t
y q + λ−1p q dx dt = 0

(17)

for all test functions v, q ∈ H1,1
0,per(QT ).

4. Multiharmonic Finite Element Discretization

Let us recall that we have assumed that desired state yd(x, t) has a multiharmonic
representation of the form (7) with the Fourier coefficients (8). We mention here
that, in general, we only have an approximation of the desired state yd(x, t) by a
truncated Fourier series of the form (7). However here we suppose that the given
desired state is really multiharmonic that is often the case in electromagnetics.

Due to the linearity of the optimality system (17) the state y and the co-state
p are multharmonic as well, i.e. they can be represented in the same form as the
given desired state yd:

y(x, t) =

N∑
k=0

(yck(x) cos(kωt) + ysk(x) sin(kωt)) ,

p(x, t) =

N∑
k=0

(pck(x) cos(kωt) + psk(x) sin(kωt))

(18)

with unknown Fourier coefficients yk = (yck, y
s
k) and pk = (pck, p

s
k). In order to define

these unknown Fourier coefficients, we insert (7) and (18) into the optimality system
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(17) and test with all modes up to the number N . Using the orthogonality of the
sine and cosine functions and, of course, the linearity of our equations, we arrive at
the following optimality equations for the Fourier coefficients corresponding to the
modes k = 1, 2, ..., N : Find yk,pk ∈ V = V × V such that

∫
Ω

yk · vk − ν(x)∇pk · ∇vk + kωσ(x)pk · v⊥k dx =

∫
Ω

ydk · vk dx,∫
Ω

ν(x)∇yk · ∇qk + kωσ(x)yk · q⊥k + λ−1pk · qk dx = 0

(19)

for all test functions vk, qk ∈ V = V × V . In the case of k = 0, we obtain the
optimality system: Find yc0 ∈ V = H1

0 (Ω) and pc0 ∈ V = H1
0 (Ω) such that

∫
Ω

yc0 · vc0 − ν(x)∇pc0 · ∇vc0 dx =

∫
Ω

ycd0 · v
c
0 dx, ∀vc0 ∈ V = H1

0 (Ω)∫
Ω

ν(x)∇yc0 · ∇qc0 + λ−1pc0 · qc0 dx = 0, ∀qc0 ∈ V = H1
0 (Ω).

(20)

Now we approximate the unknown Fourier coefficients yk = (yck, y
s
k),pk =

(pck, p
s
k) ∈ V by finite element functions ykh = (yckh, y

s
kh),pkh = (pckh, p

s
kh) from

some finite element subspace Vh = Vh × Vh of V. Here and in the following, h
denotes the usual discretization parameter such that n = nh = dimVh = O(h−d).
In order to simplify the notation we sometimes omit h as an index as it is indicated
above and below. Let {ϕi(x) = ϕih(x) : i = 1, 2, ..., nh} be the standard nodal basis
of Vh = span{ϕ1, ..., ϕn}. In our numerical experiments, we have used continuous,
piecewise linear finite elements on triangles (2d) and tetrahedrons (3d) on a regular
triangulation to construct the finite element subspace Vh and its basis, see Ciarlet
[9]. Once the basis is chosen, the variational formulation (19) on Vh yields the linear
system

Mh 0 −Kh kωMh,σ

0 Mh −kωMh,σ −Kh

−Kh −kωMh,σ −λ−1Mh 0
kωMh,σ −Kh 0 −λ−1Mh




yc
k
ys
k
pc
k
ps
k

 =


Mhy

c
dk

Mhy
s
dk

0
0

 ,(21)

for defining the nodal parameter vectors yj
k

= yj
kh

= (yjk,i)i=1,...,n ∈ Rn and pj
k

=

pj
kh

= (pjk,i)i=1,...,n ∈ Rn of the finite element approximations

(22) yjkh(x) =

n∑
i=1

yjk,iϕi(x) and pjkh(x) =

n∑
i=1

pjk,iϕi(x)

to the Fourier coefficients yjk(x) and pjk(x) with j ∈ {c, s}. The matrix Mh corre-
sponds to the mass matrix, Mh,σ to the weighted mass matrix, and Kh corresponds
to the stiffness matrix, the entries of which are computed by the formulas

M ij
h =

∫
Ω

ϕiϕj dx M ij
h,σ =

∫
Ω

σϕiϕj dx Kij
h =

∫
Ω

ν∇ϕi · ∇ϕj dx,

where i, j = 1, ..., n. For k = 0, we obtain the following system of linear equations:(
Mh −Kh

−Kh −λ−1Mh

)(
yc

0
pc

0

)
=

(
Mhy

c
d0

0

)
.(23)
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Once the linear systems (21) and (23) are solved, we can easily construct the finite
element approximations

yh(x, t) =

N∑
k=0

(yckh(x) cos(kωt) + yskh(x) sin(kωt)) ,

ph(x, t) =

N∑
k=0

(pckh(x) cos(kωt) + pskh(x) sin(kωt))

(24)

to the state y(x, t) and to the co-state p(x, t) given by the multiharmonic represen-
tation (18). The finite element approximation uh(x, t) to the control u is given by
the formula uh = −λ−1ph.

Before we analyze the discretization errors y − yh and p − ph in Section 6, we
construct a fast and robust preconditioned MINRES method for the iterative so-
lutions of systems (21) and (23) in the next section. In fact, this is a challenging
and at the same time practically important problem since the condition number of
the system matrices is affected by the discretization and problem parameters h, N ,
ω, ν, σ and λ in a very bad way. The convergence rate of the MINRES method as
well as of other iterative methods depends on the spectrum of the iteration matrix.
Therefore, the construction of a preconditioner that eliminates this dependence of
the spectrum from the “bad” parameters is of great importance in practical compu-
tations. We consider the construction of preconditioners for the system matrices of
our systems (21) and (23), which yield robust (independent of all bad parameters)
convergence rates, as the main result of our paper.

5. A Robust Preconditioner for the MINRES Solver

The resulting linear system (21) is a saddle point problem of the form(
A BT

B −C

)
︸ ︷︷ ︸

=:A

(
y
p

)
=

(
f
0

)
︸ ︷︷ ︸

=:f

,(25)

where the matrices A and C are symmetric and, even, positive definite. Therefore,
it can be solved by a preconditioned MINRES method, see Paige and Saunders [28].
The goal of this section is to construct preconditioners, which yield robust and fast
convergence for the preconditioned MINRES method. The construction of efficient
preconditioners is subject of discussion in many papers. For example, Hiptmair
[17] employs operator preconditioning for constructing preconditioners for discrete
linear operators coming from a Galerkin approach and presents applications as
for example saddle point problems to finite and boundary elements. Mardal and
Winther [26] also discuss an abstract approach constructing preconditioners for
symmetric linear systems in a Hilbert space setting and the application of this
theory on systems of partial differential equations which correspond to saddle point
problems.

In Subsection 5.1, we start with an easier case by assuming that the parame-
ter σ is constant. We construct preconditioners following the strategy presented
in Zulehner [38], which is based on space interpolation theory. Motivated by the
resulting preconditioner, we choose an initial guess for a preconditioner in the more
general case of σ being piecewise constant, which is discussed in subsection 5.2.
By introducing proper parameter dependent norms, we verify the assumptions of
the theorem of Babuška-Aziz established in Babuška [3] and Babuška and Aziz [4],
which finally yields a parameter robust convergence rate as desired. This procedure
leads to a block diagonal preconditioner, which might be not efficient in practice.
In subsection 5.3, we briefly discuss the construction of practical preconditioners.
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As Mardal and Winther [26] suggest, the blocks of the preconditioner have to be
replaced by operators which are more cost efficient but have equivalent mapping
properties. They are often constructed by multigrid methods, domain decomposi-
tion methods or similar techniques.

5.1. Preconditioning by Operator Interpolation. In the first subsection, we
start with a special case by assuming that σ is constant. Hence, in this case, we
have Mh,σ = σMh. The linear system (25) is then given by the block matrices

A :=

(
Mh 0
0 Mh

)
, B :=

(
−Kh −kωσMh

kωσMh −Kh

)
, C := λ−1A

and the vectors

f :=

(
Mhy

c
dk

Mhy
s
dk

)
, y :=

(
yc
k
ys
k

)
, p :=

(
pc
k
ps
k

)
.

As mentioned above, the symmetric and indefinite linear system (25) can be solved
by a preconditioned MINRES method. A convergence result for the preconditioned
MINRES Method can be found in Greenbaum [13]. It states that the convergence
rate of the preconditioned MINRES method depends on the condition number of
the preconditioned system. This convergence result is summarized in the following
theorem in detail.

Theorem 3. The preconditioned MINRES method applied to the system Ax = f
with some symmetric and positive definite (SPD) preconditioner P converges to
the solution of this system for an arbitrary initial guess x0. More precisely, the
preconditioned residual rm = P−1(f −Axm) after m iterations can be estimated by
the initial residual r0 as follows:

‖r2m‖P ≤
2qm

1 + q2m
‖r0‖P ,(26)

where

q =
κP(P−1A)− 1

κP(P−1A) + 1

with the condition number κP(P−1A) := ‖P−1A‖P‖(P−1A)−1‖P of the precondi-
tioned system matrix, the P-energy norm ‖ · ‖P = (P·, ·)1/2, and the corresponding
matrix norm ‖ · ‖P .

Proof. See Greenbaum [13]. �

Hence, we are going to construct preconditioners for the preconditioned MINRES
method such that the condition number κP(P−1A) of the preconditioned system
P−1A is independent of all “bad” parameters, i.e. h, N , ω, λ, ν and σ. In order to
obtain parameter robust convergence rates, we first construct block diagonal pre-
conditioners by the operator (matrix) interpolation technique presented in Zulehner
[38].

Theorem 4. Let A and C be symmetric and positive definite N ×N matrices and
let

S = C +BA−1BT and R = A+BTC−1B

be the negative Schur complements. If A is preconditioned by

P0 =

(
A 0
0 S

)
or P1 =

(
R 0
0 C

)
,(27)

then the eigenvalues of the preconditioned matrices P−1
0 A and P−1

1 A are located in
the set (−1, 1−

√
5

2 ] ∪ {1} ∪ (1, 1+
√

5
2 ].
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Proof. See Kuznetsov [20] and Murphy et al. [27]. �

Theorem 4 immediately yields the following norm estimates.

Corollary 1. The inequalities

(28) c ‖x‖P0 ≤ ‖Ax‖P−1
0
≤ c ‖x‖P0 and c ‖x‖P1 ≤ ‖Ax‖P−1

1
≤ c ‖x‖P1

are valid for all x ∈ R2N , with c = (
√

5− 1)/2 and c = (
√

5 + 1)/2.

In our model problem, the negative Schur complements are given by

S =

(
KhM

−1
h Kh + (k2ω2σ2 + λ−1)Mh 0

0 KhM
−1
h Kh + (k2ω2σ2 + λ−1)Mh

)
and

R =

(
λKhM

−1
h Kh + (k2ω2σ2λ+ 1)Mh 0

0 λKhM
−1
h Kh + (k2ω2σ2λ+ 1)Mh

)
.

Hence, R = λS. In practice, it is hard to work with these Schur complements. The
idea is to apply the following operator interpolation theorem, which is based on the
construction of intermediate spaces via the so called real method, which includes
the J- and the K-method. The idea of these methods is due to Lions and Peetre
and the theory of the real method is developed e.g. in Bergh and Löfström [8], see
Adams and Fournier [2].

Theorem 5. Let A : R2N −→ R2N with

‖Ax‖Y0
≤ c0‖x‖X0

and ‖Ax‖Y1
≤ c1‖x‖X1

,

where the norms ‖ · ‖Xi and ‖ · ‖Yi are the norms associated to the inner products

(x, y)Xi = 〈Mix, y〉 and (x, y)Yi = 〈Nix, y〉

with symmetric positive definite matrices M0,M1, N0, N1 ∈ R2N×2N . Then, for
Xθ = [X0, X1]θ and Yθ = [Y0, Y1]θ with θ ∈ [0, 1], we have

‖Ax‖Yθ ≤ c
1−θ
0 cθ1‖x‖Xθ .(29)

The norms ‖ · ‖Xθ and ‖ · ‖Yθ are the norms associated to the inner products

(x, y)Xθ = 〈Mθx, y〉 with Mθ = [M0,M1]θ = M
1/2
0

(
M
−1/2
0 M1M

−1/2
0

)θ
M

1/2
0 ,

(x, y)Yθ = 〈Nθx, y〉 with Nθ = [N0, N1]θ = N
1/2
0

(
N
−1/2
0 N1N

−1/2
0

)θ
N

1/2
0 .

Proof. See Adams and Fournier [2]. �

Hence, from interpolating between the block diagonal preconditioners P0 and
P1, we can obtain again parameter independent condition number estimates for all
θ ∈ [0, 1]. In our case, M0 = P0, M1 = P1, N0 = P−1

0 and N1 = P−1
1 . We choose

θ = 1
2 and obtain the block diagonal matrix

P1/2 =

(
[A,R]1/2 0

0 [S,C]1/2

)
(30)

with

[A,R]1/2 = A1/2(A−1/2RA−1/2)1/2A1/2

and

[S,C]1/2 = S1/2(S−1/2CS−1/2)1/2S1/2.

In the following, we use the special notation A ∼ B for the spectral equivalence
of the matrices A and B. Two SPD matrices A and B in Rn×n are called spectral
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equivalent, denoted by A ∼ B, if there exist positive constants c and c which are
independent of all involved parameters such that

c xTAx ≤ xTB x ≤ c xTAx

for all x ∈ Rn.
Since A and R are block diagonal, the diagonal entries [A,R]

(1,1)
1/2 and [A,R]

(2,2)
1/2

can be estimated as follows:

[A,R]
(1,1)
1/2 =[A,R]

(2,2)
1/2

=M
1/2
h (λM

−1/2
h KhM

−1
h KhM

−1/2
h + (k2ω2σ2λ+ 1)I)1/2M

1/2
h

∼
√
λM

1/2
h (M

−1/2
h KhM

−1
h KhM

−1/2
h )1/2M

1/2
h

+
√
k2ω2σ2λ+ 1M

1/2
h M

1/2
h

=
√
λM

1/2
h (M

−1/2
h KhM

−1/2
h )M

1/2
h +

√
k2ω2σ2λ+ 1Mh

=
√
λKh +

√
k2ω2σ2λ+ 1Mh

∼
√
λKh + (kωσ

√
λ+ 1)Mh =: D,

where we used the inequality 1 +x2 ≤ (1 +x)2 ≤ 2(1 +x2) that is valid for all reals
x ≥ 0 as well as I+X2 ≤ (I+X)2 ≤ 2(I+X2) is valid for non-negative symmetric
matrices X. Analogously, since S = λ−1R and C = λ−1A, we have

[S,C]
(1,1)
1/2 = [S,C]

(2,2)
1/2

= [λ−1R, λ−1A]
(1,1)
1/2

= λ−1[A,R]
(1,1)
1/2

∼ λ−1(
√
λKh + (kωσ

√
λ+ 1)Mh) = λ−1D.

Thus, we have obtained a new block diagonal preconditioner for the MINRES solver
of the problem (21) which is given by

P1/2 =


D 0 0 0
0 D 0 0
0 0 λ−1D 0
0 0 0 λ−1D

 .(31)

This block diagonal preconditioner is much easier to realize in practice than the
previous preconditioners P0 and P1. Due to Theorems 4 and 5, we obtain the
estimates

c ‖x‖P1/2
≤ ‖Ax‖P−1

1/2
≤ c ‖x‖P1/2

,(32)

which yield a robust estimate of the condition number

κP1/2
(P−1

1/2A) ≤ c/c

with constants c = (
√

5 − 1)/2 and c = (
√

5 + 1)/2 independent of all involved
parameters including the meshsize h. Therefore, Theorem 3 leads to robust con-
vergence rates of the MINRES method.

5.2. Preconditioning in Case of Piecewise Constant σ. We now assume that
σ is only piecewise constant. Moreover, we allow that σ is zero in some regions of
the computational domain Ω. This situation is typical in electromagnetics where σ
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is nothing but the conductivity that is zero in non-conducting regions. The system
matrix Ak of (21) is now given by

A :=


Mh 0 −Kh kωMh,σ

0 Mh −kωMh,σ −Kh

−Kh −kωMh,σ −λ−1Mh 0
kωMh,σ −Kh 0 −λ−1Mh

 ,(33)

where we again omit the mode number k. Since nowMh,σ 6= σMh, we cannot apply
the operator interpolation theory in this case ! However, we get an inspiration for
choosing a suitable block diagonal preconditioner according to the block diagonal
preconditioner P1/2 from the previous section. Replacing σMh by Mh,σ in (31), we
arrive at the new preconditioner

P =


D 0 0 0
0 D 0 0
0 0 λ−1D 0
0 0 0 λ−1D

 ,(34)

where D =
√
λKh + kω

√
λMh,σ +Mh. This preconditioner P is now our candidate

for a robust preconditioner for the system matrix A. In order to obtain robust norm
estimates for the preconditioned system matrix P−1A, we look at Babuška-Aziz’
theorem and see that the norm estimates which we have to prove are equivalent
to the assumptions (inf-sup- and sup-sup-conditions) in the theorem of Babuška-
Aziz that, at the same time, provides existence, uniqueness, and a priori estimates.
Moreover, the assumptions of Babuška-Aziz’ theorem also yield discretization error
estimates which we are going to present in Section 6.

Let us return to the variational formulation (19) of the optimality system for
each mode k, and let us define the corresponding bilinear form

B((yk,pk), (vk, qk)) :=

∫
Ω

yk · vk − ν∇pk · ∇vk + kωσpk · v⊥k dx

+

∫
Ω

ν∇yk · ∇qk + kωσyk · q⊥k + λ−1pk · qk dx.
(35)

Hence, the variational problem (19) reads now as follows: Find (yk,pk) ∈ V2 =
(H1

0 (Ω))4 such that

B((yk,pk), (vk, qk)) =

∫
Ω

ydk · vk dx(36)

for all test functions (vk, qk) ∈ V2. The initial guess (34) for the preconditioner
P yields the following definitions of inner products and associated norms. We first
define a non-standard (weighted) inner product in V = (H1

0 (Ω))2 by

(yk,vk)V =
√
λ (ν∇yk,∇vk)L2(Ω) + kω

√
λ (σyk,vk)L2(Ω) + (yk,vk)L2(Ω).

The associated norm is then given by

‖yk‖2V =
√
λ (ν∇yk,∇yk)L2(Ω) + kω

√
λ (σyk,yk)L2(Ω) + ‖yk‖2L2(Ω),

which differs from the standard H1-norms. Finally, we define an inner product in
V2 = (H1

0 (Ω))4 by

((yk,pk), (vk, qk))P = (yk,vk)V + λ−1(pk, qk)V.

The associated norm is given by

‖(yk,pk)‖2P = ‖yk‖2V + λ−1‖pk‖2V.

Next, we verify the assumptions (inf-sup- and sup-sup-conditions) of the theorem
of Babuška-Aziz.
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Theorem 6. The following inequalities are valid:

c ‖(yk,pk)‖P ≤ sup
06=(vk,qk)∈V2

B((yk,pk), (vk, qk))

‖(vk, qk)‖P
≤ c ‖(yk,pk)‖P(37)

for all (yk,pk) ∈ V2 with constants c = 1/
√

3 and c = 1.

Proof. We start with the proof of the inequality from above. Due to the triangle
inequality, it follows that

∣∣B((yk,pk), (vk, qk))
∣∣ ≤ ∣∣∣ ∫

Ω

yk · vk dx
∣∣∣+
∣∣∣ ∫

Ω

ν∇pk · ∇vk dx
∣∣∣

+
∣∣∣ ∫

Ω

kω σpk · v⊥k dx
∣∣∣+
∣∣∣ ∫

Ω

ν∇yk · ∇qk dx
∣∣∣

+
∣∣∣ ∫

Ω

kω σyk · q⊥k dx
∣∣∣+
∣∣∣ ∫

Ω

λ−1pk · qk dx
∣∣∣.

After appropriate scaling with the parameter λ and applying several times the
Cauchy-Schwarz inequality, we obtain

∣∣B((yk,pk), (vk,qk))
∣∣ ≤ ∣∣∣ ∫

Ω

yk · vk dx
∣∣∣+
∣∣∣ ∫

Ω

νλ−1/4∇pk · λ1/4∇vk dx
∣∣∣

+
∣∣∣ ∫

Ω

kω σλ−1/4pk · λ1/4v⊥k dx
∣∣∣+
∣∣∣ ∫

Ω

νλ−1/4∇yk · λ1/4∇qk dx
∣∣∣

+
∣∣∣ ∫

Ω

kω σλ−1/4yk · λ1/4q⊥k dx
∣∣∣+
∣∣∣ ∫

Ω

λ−1pk · qk dx
∣∣∣

≤ ‖yk‖L2(Ω)‖vk‖L2(Ω) + (νλ−1/4∇pk, λ1/4∇vk)L2(Ω)

+ kω(σλ−1/4pk, λ
1/4v⊥k )L2(Ω) + (νλ1/4∇yk, λ−1/4∇qk)L2(Ω)

+ kω(σλ1/4yk, λ
−1/4q⊥k )L2(Ω) + λ−1‖pk‖L2(Ω)‖qk‖L2(Ω).

Applying the Cauchy-Schwarz inequality again several times, we obtain∣∣B((yk,pk), (vk, qk))
∣∣ ≤ (‖yk‖2L2(Ω) + λ−1/2(ν∇pk,∇pk)L2(Ω)

+ kωλ−1/2(σpk,pk)L2(Ω) + λ1/2(ν∇yk,∇yk)L2(Ω)

+ kωλ1/2(σyk,yk)L2(Ω) + λ−1‖pk‖2L2(Ω)

)1/2(
‖vk‖2L2(Ω) + λ1/2(ν∇vk,∇vk)L2(Ω)

+ kωλ1/2(σvk,vk)L2(Ω) + λ−1/2(ν∇qk,∇qk)L2(Ω)

+ kωλ−1/2(σqk, qk)L2(Ω) + λ−1‖qk‖2L2(Ω)

)1/2
=
(
‖yk‖2V + λ−1‖pk‖2V

)1/2(‖vk‖2V + λ−1‖qk‖2V
)1/2

= ‖(yk,pk)‖P‖(vk, qk)‖P .

Hence, we have proved the upper bound with c = 1. Now, we want to show the
estimate from below. With the choice

(vk, qk) =
(
yk −

1√
λ
pk −

1√
λ
p⊥k ,pk +

√
λyk −

√
λy⊥k

)
,
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we get the relations

B((yk,pk), (yk,pk)) =‖yk‖2L2(Ω) + λ−1‖pk‖2L2(Ω),

B
(

(yk,pk),
(
− 1√

λ
pk,
√
λyk

))
=
√
λ(ν∇yk,∇yk)L2(Ω)

+
1√
λ

(ν∇pk,∇pk)L2(Ω),

B
(

(yk,pk),
(
− 1√

λ
p⊥k ,−

√
λy⊥k

))
=kω
√
λ(σyk,yk)L2(Ω) + kω

1√
λ

(σpk,pk)L2(Ω).

Altogether, with this choice, we obtain

B((yk,pk), (vk, qk)) = ‖yk‖2V + λ−1‖pk‖2V = ‖(yk,pk)‖2P .

By using the fact that

‖(vk, qk)‖2P =
∥∥∥(yk − 1√

λ
pk −

1√
λ
p⊥k ,pk +

√
λyk −

√
λy⊥k

)∥∥∥2

P
= 3‖(yk,pk)‖2P ,

we arrive at the estimate of the supremum from below:

sup
06=(vk,qk)∈V2

B((yk,pk), (vk, qk))

‖(vk, qk)‖P
≥ 1√

3
‖(yk,pk)‖P .

Hence, we get c = 1/
√

3. This completes the proof of the theorem. �

Due to the symmetry of the bilinear form B(., .), inequalities (37) in Theorem
6 immediately yield existence and uniqueness of the solution of the variational
problem (36).

Due to the supremum the discrete version of the left inequality in Theorem 6 (the
so-called inf-sup condition) does in general not follow from the continuous version.
However, in our case, we can repeat the proof step-by-step, and, finally, we arrive at
the same inequalities in the discrete case where V2 is replaced by V2

h with the same
constants. Therefore, in matrix-vector notation, we have proved the inequalities

(38) c ‖x‖P ≤ sup
z∈R4n

(Ax, z)
‖z‖P

≤ c ‖x‖P ∀x ∈ R4n

implying the condition number estimate

κP(P−1A) := ‖P−1A‖P ‖A−1P‖P ≤ c/c =
√

3.(39)

Theorem 3 yields now a robust convergence rate of the preconditioned MINRES
method with

q =
κP(P−1A)− 1

κP(P−1A) + 1
≤
√

3− 1√
3 + 1

≈ 0.267949.

Finally, we want to determine a preconditioner for the discretized system (23)
in the case of k = 0. This is done in the same way as before. The matrix A is now
given by

A :=

(
A BT

B −C

)
,(40)

where A := Mh, B := −Kh and C := λ−1Mh. According to Theorem 4, we
construct the two block diagonal preconditioners P0 and P1 with

P0 =

(
A 0
0 C +BA−1BT

)
and P1 =

(
A+BTC−1B 0

0 C

)
.
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By applying Theorem 5, we obtain the new preconditioner P with

P =

(
[A,R]1/2 0

0 [S,C]1/2

)
=

(
[A,R]1/2 0

0 λ−1[A,R]1/2

)
,

where

[A,R]1/2 =M
1/2
h (M

−1/2
h (Mh + λKhM

−1
h Kh)M

−1/2
h )1/2M

1/2
h

∼M1/2
h (M

−1/2
h MhM

−1/2
h )1/2M

1/2
h

+
√
λM

1/2
h (M

−1/2
h KhM

−1
h KhM

−1/2
h )1/2M

1/2
h

=M
1/2
h M

−1/2
h M

1/2
h M

1/2
h +

√
λM

1/2
h M

−1/2
h KhM

−1/2
h M

1/2
h

=Mh +
√
λKh := D.

Hence, the preconditioner is given by

P =

(
D 0
0 λ−1D

)
.(41)

We can again establish similar inequalities as in Theorem 6. Indeed, let us define
the bilinear form

B((yc0, p
c
0), (vc0, q

c
0)) :=

∫
Ω

yc0v
c
0 − ν∇pc0 · ∇vc0 + ν∇yc0 · ∇qc0 + λ−1pc0q

c
0 dx,(42)

hence the variational problem (20) reads now as follows: Find (yc0, p
c
0) ∈ V × V

with V = H1
0 (Ω) such that

B((yc0, p
c
0), (vc0, q

c
0)) =

∫
Ω

ycd0 · v
c
0 dx(43)

for all test functions (vc0, q
c
0) ∈ V × V . Moreover, defining the inner product

((y, p), (v, q))2
P =(y, v)2

L2(Ω) +
√
λ(ν∇y,∇v)L2(Ω)

+ λ−1((p, q)2
L2(Ω) +

√
λ(ν∇p,∇q)L2(Ω))

with associated norm

‖(y, p)‖2P = ‖y‖2L2(Ω) +
√
λ(ν∇y,∇y)L2(Ω) + λ−1(‖p‖2L2(Ω) +

√
λ(ν∇p,∇p)L2(Ω)),

we can again show the following inequalities

c ‖(yc0, pc0)‖P ≤ sup
0 6=(vc0,q

c
0)∈V

B((yc0, p
c
0), (vc0, q

c
0))

‖(vc0, qc0)‖P
≤ c ‖(yc0, pc0)‖P(44)

for all (yc0, p
c
0) ∈ V with constants c and c independent of all involved parameters.

The upper bound of the supremum with the constant c = 1 is again obtained
by applying the triangle and the Cauchy-Schwarz inequalities. The estimate from
below follows by the choice

(vc0, q
c
0) =

(
yc0 −

1√
λ
pc0, p

c
0 +
√
λyc0

)
.

For this choice, we obtain

‖(vc0, qc0)‖2P = 2‖(yc0, pc0)‖2P
and

B((yc0, p
c
0), (vc0, q

c
0)) = ‖(yc0, pc0)‖2P .

Hence, the constant for the lower bound is c = 1/
√

2. The same arguments as
above lead us to the estimate

κP (P−1A) ≤
√

2,(45)
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which provides a robust convergence rate of the preconditioned MINRES method
by Theorem 3 with

q ≤
√

2− 1√
2 + 1

≈ 0.171573.

Moreover, we obtain the existence of a unique solution of our optimality system.

Theorem 7. The variational problem (17) of the optimality system has a unique
solution.

Proof. Since the functions yd, y and p have a multiharmonic representation and
since existence and uniqueness of a solution for the problems corresponding to the
modes k = 0, 1, 2, . . . , N is guaranteed, we obtain existence and uniqueness of the
whole optimality system (17) as well. Moreover, the multiharmonic representations
of the state y and the co-state p given by (18) can be uniquely determined by
inserting all solutions of the variational problems (36) for k = 1, 2, . . . , N and (43)
for k = 0, which are the Fourier coefficients of y and p, into (18). �

Altogether, for every mode k = 0, 1, 2, . . . , N , we have determined a precon-
ditioner such that the corresponding system can be solved by the preconditioned
MINRES method with a robust convergence rate.

5.3. Practical Implementation. In practical applications, the diagonal blocks
D =

√
λKh + kω

√
λMh,σ + Mh of the preconditioner P in (34) of the discretized

problem (21) for the case k = 1, 2, . . . , N and the diagonal blocks D = Mh +√
λKh of the preconditioner P in (41) of the problem (23) for the case k = 0

have to be replaced by diagonal blocks D̃, which are spectral equivalent to D,
robust, symmetric positive definite and more cost efficient. The construction of
such blocks can be done by techniques as for example multigrid methods or domain
decomposition methods, see Mardal and Winther [26]. The practical block diagonal
preconditioner for the case k = 1, 2, . . . , N is now given by

P̃ =


D̃ 0 0 0

0 D̃ 0 0

0 0 λ−1D̃ 0

0 0 0 λ−1D̃

 .(46)

The spectral equivalence of the diagonal blocks D̃ ∼ D implies the spectral equiva-
lence of the preconditioners P̃ ∼ P with the same parameter independent constants
cD and cD. Hence, the condition number can be estimated by

κP̃(P̃−1A) ≤ κP(P−1A) (cD/cD)(47)

where κP(P−1A) ≤
√

3 and cDD̃ ≤ D ≤ cDD̃. In the case k = 0, we con-
struct the practical preconditioner P̃ similarly, and the condition number of the
preconditioned system can be again estimated by κP̃ (P̃−1A) ≤ κP (P−1A)(c/c) ≤√

2(cD/cD). So, the new practical block diagonal preconditioners P̃ yield again
parameter independent convergence rates.

6. Discretization Error Analysis

In this section, we want to analyze the discretization errors y − yh and p − ph
coming from the finite element discretization. The multiharmonic representation
of y, yh, p and ph have been already introduced in Section 4. The analysis starts
with proving that the discretization error of the Fourier coefficients can be es-
timated by the best approximation error. Afterwards we estimate the best ap-
proximation error by the interpolation error provided the Fourier coefficients are
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sufficiently smooth. Finally, we present an estimate for the complete discretization
error ((y, p)− (yh, ph)) in an appropriate norm.

Our decoupled variational problems for k = 1, ..., N are given by: Find (yk,pk) ∈
V2 such that

B((yk,pk), (vk, qk)) =

∫
Ω

ydk · vk dx

=

∫
Ω

(ydk, 0) · (vk, qk) dx

=: 〈F, (vk, qk)〉

for all test functions (vk, qk) ∈ V2. Note that the error analysis for the case k = 0
can be done analogously. Due to the assumption that the desired state yd(x, t) has a
multiharmonic representation of the form (7), the corresponding discrete problems
are given by: Find (ykh,pkh) ∈ V2

h such that

B((ykh,pkh), (vkh, qkh)) = 〈F, (vkh, qkh)〉

for all test functions (vkh, qkh) ∈ V2
h, which is equivalent to solving the linear

system (21). Since Vh ⊂ V, we have the Galerkin orthogonality

B((yk,pk), (vkh, qkh))− B((ykh,pkh), (vkh, qkh)) = 0, ∀(vkh, qkh) ∈ V2
h.(48)

Due to linearity, the discretization error between the unknown solution (y, p)
and its finite element approximation (yh, ph) can be deduced from the discretization
error between the unknown Fourier coefficients and their finite element approxima-
tions.

Theorem 8. Under the assumption that (yk,pk) ∈ (H2(Ω))4 the discretization
error for the Fourier coefficients can be estimated by

‖(yk,pk)− (ykh,pkh)‖P ≤ c cpar(λ, k, ω, ν, σ, h)h |(yk,pk)|H2(Ω),(49)

where c is a constant depending on the constants from the approximation theorem,
c2par(λ, k, ω, ν, σ, h) =

√
λν + (1 + kω

√
λσ)h2, and | · |H2(Ω) is a weighted H2(Ω)-

seminorm defined by the relation |(yk,pk)|2H2(Ω) = |yk|2H2(Ω) + λ−1|pk|2H2(Ω).

Proof. Inserting an arbitrary (vkh, qkh) ∈ V2
h, using triangle inequality and the dis-

crete inf-sup condition of Babuška-Aziz together with (48), we obtain the following
estimate

‖(yk,pk)− (ykh,pkh)‖P ≤ ‖(yk,pk)− (vkh, qkh)‖P + ‖(ykh,pkh)− (vkh, qkh)‖P

≤ ‖(yk,pk)− (vkh, qkh)‖P +
√

3 sup
06=(ṽkh,q̃kh)∈V2

h

B((ykh,pkh)− (vkh, qkh), (ṽkh, q̃kh))

‖(ṽkh, q̃kh)‖P

≤ ‖(yk,pk)− (vkh, qkh)‖P +
√

3 sup
06=(ṽkh,q̃kh)∈V2

h

B((ykh,pkh)− (yk,pk), (ṽkh, q̃kh))

‖(ṽkh, q̃kh)‖P︸ ︷︷ ︸
=0

+
√

3 sup
06=(ṽkh,q̃kh)∈V2

h

B((yk,pk)− (vkh, qkh), (ṽkh, q̃kh))

‖(ṽkh, q̃kh)‖P

≤ ‖(yk,pk)− (vkh, qkh)‖P +
√

3 · 1‖(yk,pk)− (vkh, qkh)‖P
≤ (1 +

√
3)︸ ︷︷ ︸

=:ca

‖(yk,pk)− (vkh, qkh)‖P .

So we can estimate the discretization error by the best approximation error, i.e.

‖(yk,pk)− (ykh,pkh)‖P ≤ ca inf
(vkh,qkh)∈V2

h

‖(yk,pk)− (vkh, qkh)‖P .(50)
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Thus, the best approximation error can be estimated by the interpolation error, i.e.

inf
(vkh,qkh)∈V2

h

‖(yk,pk)− (vkh, qkh)‖P ≤ ‖(yk,pk)− I2
h(yk,pk)‖P ,(51)

where I2
h : V2 → V2

h (respectively Ih : V → Vh) is some interpolation operator.
The P-norm

‖(yk,pk)‖2P = ‖yk‖2V + λ−1‖pk‖2V
with

‖yk‖2V =
√
λ(ν∇yk,∇yk)L2(Ω) + kω

√
λ(σyk,yk)L2(Ω) + ‖yk‖2L2(Ω)

≤
√
λν|yk|2H1(Ω) + (1 + kω

√
λσ)‖yk‖2L2(Ω)

is bounded by

‖(yk,pk)‖2P ≤
√
λν|yk|2H1(Ω) + (1 + kω

√
λσ)‖yk‖2L2(Ω)

+ λ−1
(√
λν|pk|2H1(Ω) + (1 + kω

√
λσ)‖pk‖2L2(Ω)

)
.

Under the assumption that the Fourier coefficients are from H2(Ω), the interpola-
tion error can be estimated by

‖(yk,pk)− I2
h(yk,pk)‖2P = ‖(I − Ih)2(yk,pk)‖2P

= ‖(I − Ih)yk‖2V + λ−1‖(I − Ih)pk‖2V
≤
√
λν|(I − Ih)yk|2H1(Ω) + (1 + kω

√
λσ)‖(I − Ih)yk‖2L2(Ω)

+ λ−1
(√
λν|(I − Ih)pk|2H1(Ω) + (1 + kω

√
λσ)‖(I − Ih)pk‖2L2(Ω)

)
≤ c2b

(√
λνh2|yk|2H2(Ω) + (1 + kω

√
λσ)h4|yk|2H2(Ω)

)
+ λ−1c2b

(√
λνh2|pk|2H2(Ω) + (1 + kω

√
λσ)h4|pk|2H2(Ω)

)
= c2b

(
(
√
λν + (1 + kω

√
λσ)h2)h2|yk|2H2(Ω)

+ λ−1 (
√
λν + (1 + kω

√
λσ)h2)︸ ︷︷ ︸

=:c2par(λ,k,ω,ν,σ,h)

h2|pk|2H2(Ω)

)
= c2bc

2
par(λ, k, ω, ν, σ, h)h2(|yk|2H2(Ω) + λ−1|pk|2H2(Ω)),

where cb is a generic constant coming from applying the approximation theorem
from finite element discretization theory, see Ciarlet [9]. So

‖(yk,pk)− I2
h(yk,pk)‖P ≤ cbcpar(λ, k, ω, ν, σ, h)h (|yk|2H2(Ω) + λ−1|pk|2H2(Ω))

1/2︸ ︷︷ ︸
=:|(yk,pk)|H2(Ω)

,

where |(yk,pk)|H2(Ω) is a weighted vector-valued H2-seminorm. Altogether the
discretization error for the Fourier coefficients can be estimated by

‖(yk,pk)− (ykh,pkh)‖P ≤ ca inf
(vkh,qkh)∈V2

h

‖(yk,pk)− (vkh, qkh)‖P

≤ ca‖(yk,pk)− I2
h(yk,pk)‖P

≤ cacb︸︷︷︸
=:c

cpar(λ, k, ω, ν, σ, h)h |(yk,pk)|H2(Ω),

(52)

where c is a constant consisting of ca and of a constant depending on the constants
from the approximation theorem. �

Now, we are in the position to estimate the complete discretization error ((y, p)−
(yh, ph)).
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niter ω
10−8 10−6 10−4 10−2 1 102 104 106 108

10−8 15 15 15 15 15 15 14 8 4
10−6 14 14 14 14 14 16 14 8 4
10−4 14 14 14 14 14 20 16 8 4
10−2 10 10 10 10 10 16 16 8 4

λ 1 6 6 6 6 8 14 16 8 4
102 6 6 6 6 6 14 16 8 4
104 4 4 4 4 6 14 16 8 4
106 4 4 4 4 6 14 16 8 4
108 4 4 4 4 6 14 16 8 4

Table 1. Number of MINRES iterations niter for different values
of ω and λ on a 64× 64 grid

Theorem 9. Under the assumptions of Theorem 8, the complete discretization
error ((y, p)− (yh, ph)) can be estimated as follows:

‖(y, p)− (yh, ph)‖P ≤ c cpar(λ,N, ω, ν, σ, h)h |(y, p)|H2(Ω),(53)

where

‖(y, p)‖2P = T‖(yc0, pc0)‖2P +
T

2

N∑
k=1

‖(yk,pk)‖2P ,

|(y, p)|2H2(Ω) = T |(yc0, pc0)|2H2(Ω) +
T

2

N∑
k=1

|(yk,pk)|2H2(Ω)

are defined in the Fourier space. The seminorm | · |H2(Ω) for the Fourier coefficients
is given in Theorem 8.

The proof of estimate (53) immediately follows from Theorem 8. We mention
that similar estimates can be obtained by space interpolation if y and p have only
reduced regularity. More precisely, if y and p only belong to H1+s(Ω) with some
s ∈ (0, 1) the convergence rate reduces from h to hs.

7. Numerical Results

We present here the first numerical results for a 2-dimensional example where we
want to study the convergence behavior of our preconditioned MINRES solver. Let
us consider our optimal control problem (4) - (5) with an harmonic desired state,
given by the formula

yd(x, t) = 2(4− x1x2(x2 − 1) + x2
1x2(x2 − 1))(cos(ωt) + sin(ωt)),

in the unit square domain Ω = (0, 1)× (0, 1) that is unifomely discretized by trian-
gles. In our computations, we used the standard continuous, piecewise linear finite
element spaces. In order to study the robustness of our preconditioner, we have
performed numerical experiments for several parameter settings. In particular, we
have varied the values of the parameters ω and λ, whereas σ and ν were set to 1 and
h = 1/64. Table 1 presents the number of MINRES iterations, which are needed to
reduce the residual by a factor of 10−6. The theoretical bound for that lies at 22
iterations. Hence, the numerical results enhance the theoretical ones having a pre-
conditioned MINRES solver which provides a parameter independent convergence
rate.



20 M. KOLLMANN, M. KOLMBAUER, U. LANGER, M. WOLFMAYR, W. ZULEHNER

8. Conclusions and Outlook

We have considered a distributed multiharmonic parabolic optimal control prob-
lem, where the optimality system decouples into smaller systems for the single mode
Fourier coefficients. This decoupling simplifies the analysis and the construction of
fast and robust solvers. Indeed, the algebraic systems resulting from the finite ele-
ment discretization can be solved by means of a preconditioned MINRES method.
The main contribution of this paper is the construction of preconditioners which
yield convergence rates that are independent of the discretization parameter and all
other involved ”bad” parameters. At the beginning, we assumed that the parameter
σ is constant. However, in many practical applications, for example, in electromag-
netics, this parameter, which corresponds to the conductivity, is only piecewise
constant and vanishes in non-conducting materials. Hence, we have derived robust
block diagonal preconditioners for both cases, where the simpler case of a constant
conductivity gave us the right inspiration for the general case. Moreover, we have
analyzed the error coming from the finite element discretization. Finally, we have
presented some numerical results showing the robustness of our preconditioner.

In this paper we have assumed a multiharmonic setting of our optimal control
problem. The more general time-periodic setting can be reduced to the multihar-
monic case after time discretizion by means of truncating the Fourier series expan-
sion. Therefore, the multiharmonic finite element discretization of time-periodic
parabolic optimal control problems leads to the same systems of linear algebraic
equation as in the multiharmonic case. Thus, the same preconditioned MINRES
solvers can be used. However, the time discretizion requires a further error anal-
ysis that is connected with the convergence of the Fourier series. In the case of
different observation and control regions, different observation norms and control
inequality constraints imposed on the Fourier-coefficients, Kolmbauer and Koll-
mann constructed preconditioners that are robust with respect to all parameters
with exception of the cost or regularization parameter [18]. The efficient treatment
of inequality constraints for the control and the state is much harder. The inclusion
of such inequality constraints into the cost functional as a penalty term is one tech-
nique to handle this problem. However, this makes the optimal controll problem
non-linear. In the case of non-linear problems caused by the penalty technique or
other non-linearities in the state equation, we lose the decoupling of the optimality
system for the Fourier coefficients. However, the block-diagonal preconditioners
constructed for the linear case should also work in some non-linear cases [7].
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