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ANALYSIS OF A NON-STANDARD FINITE ELEMENT METHOD
BASED ON BOUNDARY INTEGRAL OPERATORS

CLEMENS HOFREITHER1, ULRICH LANGER2, AND CLEMENS PECHSTEIN3

Abstract. We present and analyze a non-standard finite element method based on element-
local boundary integral operators that permits polyhedral element shapes as well as meshes
with hanging nodes. The method employs elementwise PDE-harmonic trial functions and
can thus be interpreted as a local Trefftz method. The construction principle requires the
explicit knowledge of the fundamental solution of the partial differential operator, but only
locally, i.e. in every polyhedral element. This allows us to solve PDEs with elementwise
constant coefficients. In this paper we consider the diffusion equation as a model problem,
but the method can be generalized to convection-diffusion-reaction problems and to systems
of PDEs like the linear elasticity system and the time-harmonic Maxwell equations with
elementwise constant coefficients. We provide a rigorous error analysis of the method under
quite general assumptions on the geometric properties of the elements. Numerical results
confirm our theoretical estimates.

1. Introduction

In some important practical applications one wants to discretize partial differential equa-
tions (PDEs) or systems of PDEs on polyhedral meshes without further decomposition of the
polyhedra into simplices. For instance, in reservoir simulation, polyhedral elements appear
naturally. Their use also gives great freedom in automatic mesh manipulation: elements can
be split, joined and manipulated freely without the need to maintain a particular element
topology. For instance, this freedom is advantageous in adaptive mesh refinement: straight-
forward subdivision of individual elements usually results in hanging nodes that are often
eliminated by introducing additional edges/faces to retain conformity. This can be avoided
if one can compute directly on polyhedral meshes with hanging nodes.

One established approach for this kind of problems is the family of so-called mimetic finite
difference (MFD) methods. They are based on the construction of discrete spaces and op-
erators which mimic properties of the continuous problem. MFD schemes for polygonal or
polyhedral meshes have been investigated by Kuznetsov, Lipnikov, and Shashkov [18], Brezzi,
Lipnikov, and Simoncini [5], and others. A convergence analysis has been provided by Brezzi,
Lipnikov, and Shashkov [4]. The realization of these methods requires the construction of
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a mesh-dependent inner product on a space of discrete velocities, which can be difficult for
general polyhedral meshes.

Another approach that allows general meshes is the class of discontinuous Galerkin (DG)
methods which have been intensively developed during the last decade, see e.g. [2]. As an
example for a DG method on polyhedral meshes (albeit for nonlinear convection-diffusion
problems), we refer to the work by Dolejší, Feistauer, and Sobotíková [12]. A DG approach
generally necessitates the duplication of degrees of freedom across neighboring elements and
thus an increase in the number of unknowns.

In this paper we analyze a discretization method for polyhedral meshes which has been
proposed by Copeland, Langer, and Pusch [9]. The method employs local boundary integral
operators and has its roots in the symmetric boundary element domain decomposition method
proposed by Hsiao and Wendland [15]. The latter has been developed into an efficient solution
technique on parallel computers in [6, 19].

As in the finite element method (FEM), the stiffness matrix of the scheme we are going
to discuss is assembled from local element matrices. However, on each polyhedral element
the corresponding element matrix is generated by using a boundary element method (BEM)
approach. For this reason, we refer to the method as a BEM-based FEM, or BBFEM for
short. Since we use a symmetric BEM discretization [10, 15], the element matrices and
consequently also the global stiffness matrix are symmetric. While the numerical realization
of the element matrices is not straightforward, existing implementations from established
BEM software packages like ostbem [28] can be leveraged for this task. In the special case
of the Laplace problem on a purely simplicial mesh, the obtained stiffness matrix is identical
to that of a standard FEM with linear simplicial elements. However, since the local assembly
procedure via boundary element techniques is applicable to general Lipschitz polyhedra, the
BBFEM can treat a much larger class of meshes naturally. In this sense, it may be viewed as
a generalization of the FEM. As soon as more general PDEs and/or meshes come into play,
a major difference to the FEM is that the trial functions are not piecewise polynomial, but
rather piecewise PDE-harmonic, i.e. fulfill the PDE locally in every element.

The main aim of this paper is to give a rigorous error analysis of the BBFEM. We note that
the error estimates for the domain decomposition variant given in [14, 15] are not explicit
in the shapes and diameters of the individual domains. They are thus not applicable to the
present case where we are interested in families of meshes whose element diameters uniformly
tend to zero. Furthermore, the estimates given in these works bound the error only on the
boundaries of the elements and are thus inherently mesh-dependent. In order to establish
the relationship to the FEM, we derive estimates for the energy norm of the error over the
whole computational domain.

We approach the analysis using a Strang lemma for the discrete variational formulation.
Then, we derive approximation results for Dirichlet and Neumann data on the boundaries
of general polyhedral elements. Some mesh-dependent quantities are bounded using recent
results on explicit constants for boundary integral operators [26].

The remainder of this paper is organized as follows. In Section 2 we derive the skeletal vari-
ational formulation that will be the starting point for the discretization. Section 3 introduces
the BBFEM by incorporating appropriate approximations of the local Steklov-Poincaré oper-
ators and discretizing. The error analysis is performed in Section 4. Some numerical results
are given in Section 5, and Section 6 gives a conclusion and outlook on further work. The
proofs of some technical intermediate results are moved to Appendix A.
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2. A skeletal variational formulation

The non-standard finite element method BBFEM which we are going to analyze in this
paper can directly be applied to diffusion problems of the form

−div(a(x)∇u(x)) = f(x), x ∈ Ω, (1)

with suitable boundary conditions on the boundary Γ = ∂Ω of a bounded domain Ω provided
that the coefficient a(·) is piecewise (more precisely elementwise) constant and uniformly
positive. Indeed, due to the nature of the construction, a fundamental solution for the
differential operator has to be explicitly known, however only locally on each element. In
practice, this means that we can treat problems with piecewise constant coefficients, i.e.
a(x) ≡ ai in the i-th element. Since we are using boundary integral techniques only locally,
the incorporation of an inhomogeneous right-hand side f 6≡ 0 requires the evaluation of
element-local Newton potentials.

Only for sake of simplicity of our presentation, we consider the inhomogeneous Dirichlet
boundary value problem for the Laplace equation

−∆u = 0 in Ω and u = g on Γ = ∂Ω, (2)

where Ω ⊂ Rd is a bounded Lipschitz domain, d = 2 or 3, and g is the given Dirichlet data.
The variational formulation of the above boundary value problem reads as follows: for given
Dirichlet data g ∈ H1/2(Γ), find u ∈ H1(Ω) such that

γ0
Γu := u|Γ = g,

∫
Ω
∇u · ∇v dx = 0 ∀v ∈ H1

0 (Ω), (3)

where γ0
Γ : H1(Ω) → H1/2(Γ) denotes the Dirichlet trace operator on Γ. For the definition

of the usual Sobolev spaces H1(Ω), H1
0 (Ω), H1/2(Γ) etc. and the trace operators, we refer

the reader to [1] and [30].

Finite element methods typically use the variational formulation (3) as their starting point.
In our approach, however, we first introduce a mesh and derive a skeletal reformulation of
(3). Later on, we will restrict to discrete trial spaces.

Consider a family of non-overlapping decompositions (Ti)Ni=1 of Ω,

Ω =
N⋃
i=1

T i, Ti ∩ Tj = ∅ ∀i 6= j.

We assume that each element Ti is a Lipschitz polygon/polyhedron whose boundary Γi = ∂Ti
is composed of (d− 1)-simplices, i.e., line segments in two dimensions and triangles in three
dimensions. In the following, we refer to these boundary simplices as facets. We assume
that the mesh is conforming in the sense that the intersection of the closure of two different
boundary facets of any two elements is either empty, a vertex, or a facet edge (in three
dimensions). A mesh with hanging nodes can be made conforming by integrating the hanging
nodes as vertices into neighboring elements.

We call such a decomposition (Ti)Ni=1 amesh of Ω. In the following we will frequently refer to
the local mesh sizes hi := diamTi and the global mesh size h := maxi hi. In this work, we are
interested in families of such meshes where the element diameters hi uniformly tend to zero,
while the number of facets of every element remains uniformly bounded by a small constant.
Within this framework we can treat typical element shapes like triangles or quadrilaterals
in two dimensions, tetrahedra, hexahedra, prisms or pyramids in three dimensions, as well
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Figure 1. A heterogeneous polygonal mesh.

as other, less standard shapes. In particular, we do not necessarily assume convexity of the
elements. We also retain the freedom to mix all these types of elements within one mesh;
see Figure 1 for an example. Finally, we do not require the meshes within the family to be
nested.

We define a restricted trial space by requiring that the trial functions fulfill the homogeneous
form of the PDE locally in every element, while being globally continuous. For the Laplace
equation, this means locally harmonic trial functions,

VH := {v ∈ H1(Ω) : v|Ti ∈ H(Ti) ∀i = 1, . . . , N},
VH,0 := VH ∩H1

0 (Ω),

with the space H(Ti) of harmonic functions on the element Ti defined by

H(Ti) :=
{
u ∈ H1(Ti) :

∫
Ti

∇u · ∇v0 dx = 0 ∀v0 ∈ H1
0 (Ti)

}
.

Noting that VH ⊂ H1(Ω) and VH,0 ⊂ H1
0 (Ω), we state a restricted version of the variational

problem (3) as follows: find u ∈ VH which satisfies

u|Γ = g,

∫
Ω
∇u · ∇v dx = 0 ∀v ∈ VH,0. (4)

Owing to VH ⊂ H1(Ω), the usual boundedness and coercivity properties of the bilinear form in
(3) carry over to (4). It follows that (4) is a well-posed variational problem. Furthermore, the
two formulations are equivalent since the solution u ∈ H1(Ω) of (3) lies in VH. This is easily
seen by choosing, for arbitrary but fixed i ∈ {1, . . . N}, an arbitrary function vi ∈ H1

0 (Ti),
extending it by zero to v ∈ H1

0 (Ω), and testing in (3) with this particular choice of v.

Following McLean [23, Lemma 4.3], we define the Neumann trace operator γ1
i = γ1

Γi
:

H(Ti)→ H−1/2(Γi) by the relation

〈γ1
i u, w〉Γi =

∫
Ti

∇u · ∇w̃ dx ∀w ∈ H1/2(Γi),
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where w̃ ∈ H1(Ti) is an arbitrary extension of w into Ti and 〈·, ·〉Γi denotes the duality
product between H−1/2(Γi) and H1/2(Γi). It follows from the definition of H(Ti) that the
Neumann trace γ1

i u does not depend on the actual choice of w̃. In other words, if we denote
by γ0

i : H1(Ti)→ H1/2(Γi) the usual Dirichlet trace operator, then we have for any u ∈ H(Ti)

〈γ1
i u, γ

0
i v〉Γi =

∫
Ti

∇u · ∇v dx ∀v ∈ H1(Ti). (5)

We recognize this as Green’s first identity for harmonic functions. This also shows that, in
case of sufficient regularity, γ1

i = ni · ∇ with the outward normal vector ni on Γi.

Green’s identity (5) allows us to rewrite the variational problem (4) as follows: we seek
u ∈ VH,g := {u ∈ VH : u|Γ = g} satisfying

N∑
i=1

〈γ1
i u, γ

0
i v〉Γi = 0 ∀v ∈ VH,0. (6)

The only values of u occurring in this formulation are the Neumann traces on the element
boundaries. This gives rise to the idea of representing u solely via its values on the skeleton
ΓS =

⋃N
i=1 Γi.

Let Hi : H1/2(Γi) → H(Ti) denote the local harmonic extension operator for the element
Ti. It maps gi ∈ H1/2(Γi) to the solution ui ∈ H1(Ti) of the local variational problem

γ0
i ui = gi,

∫
Ti

∇ui · ∇vi dx = 0 ∀vi ∈ H1
0 (Ti).

It is easy to see that Hi is bijective, with its inverse given by γ0
i . Denoting by H1/2(ΓS)

the trace space of H1(Ω) onto the skeleton, we introduce the skeletal harmonic extension
operator

HS : H1/2(ΓS)→ VH,

(HSv)|Ti = Hi(v|Γi) ∀i ∈ {1, . . . , N}.
(7)

From the above, we can infer that HS is a bijection between H1/2(ΓS) and VH, its inverse
being the skeletal Dirichlet trace operator γS : H1(Ω) → H1/2(ΓS). Similarly, with the
subspace W0 and the manifold Wg given by, respectively,

W0 := {v ∈ H1/2(ΓS) : v|Γ = 0} and Wg := {v ∈ H1/2(ΓS) : v|Γ = g},

the operator HS is a bijection between W0 and VH,0 as well as between Wg and VH,g. In
other words, we can represent any piecewise harmonic function v ∈ VH,0 uniquely as HSvS
with some skeletal function vS ∈W0, and u ∈ VH,g as HSuS with some uS ∈Wg. If we define
the local Dirichlet-to-Neumann maps

Si : H1/2(Γi)→ H−1/2(Γi),

v 7→ γ1
i (Hiv)

(8)

and introduce the short-hand notation vi := vS |Γi , we can rewrite the formulation (6) as
seeking u = HSuS with a skeletal function uS ∈Wg satisfying

N∑
i=1

〈Siui, vi〉Γi = 0 ∀vS ∈W0. (9)
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Since (9) is nothing but an equivalent rewriting of (4), which in turn we have above demon-
strated to be equivalent to the standard variational formulation (3), we have proved the
following proposition.

Proposition 2.1. Let g ∈ H1/2(Γ) be given. The variational formulations to find u ∈ H1(Ω)
with u|Γ = g such that ∫

Ω
∇u · ∇v dx = 0 ∀v ∈ H1

0 (Ω),

and uS ∈ H1/2(ΓS) with uS |Γ = g such that
N∑
i=1

〈Siui, vi〉Γi = 0 ∀vS ∈W0,

where ui = uS |Γi , vi = vS |Γi , are both well-posed. They are equivalent in the sense that their
unique solutions u and uS are related by

uS = γSu and u = HSuS .

Remark. For brevity, we will drop the subscript S for skeletal functions in the remainder of
this work and instead denote functions defined within the domain by the subscript Ω.

3. A BEM-based finite element method

In this section we derive the BBFEM discretization of the skeletal variational formula-
tion (9). Since we work with skeletal functions spaces which only incorporate boundary
values of the involved functions on every element, it is natural to use a representation of
the Dirichlet-to-Neumann map Si in terms of boundary integral operators. We use symmet-
ric approximations of the local Steklov-Poincaré operators in order to obtain a symmetric
stiffness matrix.

3.1. Boundary integral operators. We can only give a brief summary of some standard
results on boundary integral operators here and refer the reader to, e.g., [16, 23, 27, 30] for
further details.

For x, y ∈ Rd, let

U∗(x, y) :=

{
− 1

2π log |x− y| if d = 2,
1

4π |x− y|
−1 if d = 3,

denote the fundamental solution of the Laplace operator. Following, e.g., McLean [23] or
Steinbach [30], we introduce the boundary integral operators

Vi : H−1/2(Γi)→ H1/2(Γi), Ki : H1/2(Γi)→ H1/2(Γi),

K ′i : H−1/2(Γi)→ H−1/2(Γi), Di : H1/2(Γi)→ H−1/2(Γi).

They are called, in turn, the single layer potential, double layer potential, adjoint double
layer potential, and hypersingular operators. For sufficiently regular functions, they have the
integral representations

(Viv)(y) =
∫

Γi

U∗(x, y)v(x) dsx, (Kiu)(y) =
∫

Γi

∂U∗

∂nx
(x, y)u(x) dsx,

(Diu)(y) = − ∂

∂ny

∫
Γi

∂U∗

∂nx
(x, y)

(
u(x)− u(y)

)
dsx.
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In the present setting, Vi and Di are self-adjoint operators, whereas Ki and K ′i are adjoint
to each other. The bilinear form 〈·, Vi ·〉 induced by the single layer potential operator can be
shown to be coercive on H−1/2(Γi). In two dimensions, this requires the additional technical
condition that the diameter of the domain Ti be less than one.

We also introduce the subspaces

H
−1/2
∗ (Γi) := {w ∈ H−1/2(Γi) : 〈w, 1〉Γi = 0},

H
1/2
∗ (Γi) := {v ∈ H1/2(Γi) : 〈V −1

i v, 1〉Γi = 0} = ImVi(H
−1/2
∗ (Γi)).

The bilinear form induced by Di is coercive on H
1/2
∗ (Γi). Furthermore, on H1/2

∗ (Γi), we have
the contraction property [30]

(1− cK,i)‖v‖V −1
i
≤ ‖(1

2I +Ki)v‖V −1
i
≤ cK,i‖v‖V −1

i
∀v ∈ H1/2

∗ (Γi),

with the contraction constants

c0,i := inf
v∈H1/2

∗ (Γi)

〈Div, v〉Γi

〈V −1
i v, v〉Γi

∈ (0, 1
4) and cK,i := 1

2 +
√

1
4 − c0,i ∈ (1

2 , 1),

where ‖v‖V −1
i

=
√
〈V −1
i v, v〉. Here and in the following we implicitly exclude v = 0 in infima

and suprema of the above form.

Following [23, 30], the Dirichlet-to-Neumann map Si defined in (8) is identical to the
Steklov-Poincaré operator given by

Si = V −1
i (1

2I +Ki).

Using the contraction properties of (1
2I +Ki) above and the Cauchy-Schwarz inequality, we

can easily derive the following estimates (cf. [11, 24]):

(1− cK,i)〈V −1
i v, v〉Γi ≤ 〈Siv, v〉Γi ≤ cK,i〈V −1

i v, v〉Γi ∀v ∈ H1/2
∗ (Γi).

The constant functions form the kernel of both (1
2I+Ki) and Si, and for every v ∈ H1/2(Γi)

there is a unique splitting v = v∗ + v0 with v0 constant and v∗ ∈ H1/2
∗ (Γi). Making use of

these facts, we can derive the following inequality that we will make use of later:

‖(1
2I +Ki)v‖V −1

i
= ‖(1

2I +Ki)v∗‖V −1
i

≤ cK,i‖v∗‖V −1
i
≤

cK,i√
1− cK,i

|v∗|Si =
cK,i√

1− cK,i
|v|Si . (10)

Above we have used the seminorm |v|Si =
√
〈Siv, v〉.

3.2. Approximation of the Steklov-Poincaré operator. The Steklov-Poincaré operator
Si has the non-symmetric and symmetric representations

Siui = V −1
i (1

2I +Ki)ui = Diui + (1
2I +K ′i)V

−1
i (1

2I +Ki)ui.

Both representations are of course self-adjoint in the continuous setting. However, discretizing
the first one yields a non-symmetric matrix. The second one does not immediately permit
a computable Galerkin discretization due to the occurrence of V −1

i . To obtain a symmetric
discretization, we first rewrite Si as

Siui = Diui + (1
2I +K ′i)wi(ui)
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with wi(ui) = V −1
i (1

2I +Ki)ui = Siui ∈ H−1/2(Γi). Let now wh,i(ui) ∈ Zh,i be the Galerkin
projection of wi(ui) onto some finite-dimensional space Zh,i ⊂ H−1/2(Γi). That is, wh,i(ui)
is determined locally on Γi by the variational problem

〈zh,i, Viwh,i(ui)〉Γi = 〈zh,i, (1
2I +Ki)ui〉Γi ∀ zh,i ∈ Zh,i. (11)

The outer symmetric BEM approximation of Si is then defined as

S̃i : H1/2(Γi)→ H−1/2(Γi),

ui 7→ Diui + (1
2I +K ′i)wh,i(ui),

see, e.g., [10, 29, 30]. One natural choice for Zh,i is the space of piecewise (per boundary
facet) constant functions on Γi, which we stick to here.

We observe that for all ui, vi ∈ H1/2(Γi),

〈S̃iui, vi〉 = 〈Diui, vi〉+ 〈(1
2I +K ′i)wh,i(ui), vi〉

= 〈Diui, vi〉+ 〈wh,i(ui), (1
2I +Ki)vi〉

= 〈Diui, vi〉+ 〈wh,i(vi), Viwh,i(ui)〉,

where the last expression is clearly symmetric with respect to ui and vi. This shows that S̃i
is indeed a self-adjoint operator, and this property carries over directly to its (now natural)
Galerkin discretization.

The symmetric approximation of the Steklov-Poincaré operator fulfills the spectral equiv-
alence relation (cf. [24, 29])

c0,i

cK,i
〈Sivi, vi〉Γi ≤ 〈S̃ivi, vi〉Γi ≤ 〈Sivi, vi〉Γi ∀vi ∈ H1/2(Γi). (12)

Note that the bilinear forms induced by both Si and S̃i are positive semidefinite.

3.3. Discretization. Let us restate the skeletal variational formulation (9) derived in Sec-
tion 2. It is always possible to extend the given Dirichlet data g ∈ H1/2(Γ) to the skeleton.
Therefore, without loss of generality, we assume g ∈ H1/2(ΓS). After homogenization with
this g, we seek u ∈W := W0 = {v ∈ H1/2(ΓS) : v|Γ = 0} such that

a(u, v) = 〈F, v〉 ∀v ∈W (13)

with the symmetric bilinear form and the linear functional

a(u, v) :=
N∑
i=1

〈Siui, vi〉Γi and 〈F, v〉 :=
N∑
i=1

〈−Sigi, vi〉Γi = −a(g, v),

respectively. The solution of the boundary value problem is then given by HS(ug), where we
denote by ug := u+ g the skeletal solution incorporating boundary conditions.

Approximating Si by S̃i, we get an approximate bilinear form and linear functional, re-
spectively, as

ã(u, v) :=
N∑
i=1

〈S̃iui, vi〉Γi and 〈F̃ , v〉 :=
N∑
i=1

〈−S̃igi, vi〉Γi = −ã(g, v).
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As a finite-dimensional trial space Wh ⊂ W , we choose the space of piecewise linear (per
facet of ΓS) and continuous functions on the skeleton. This yields the discretized variational
formulation: find uh ∈Wh such that

ã(uh, vh) = 〈F̃ , vh〉 ∀vh ∈Wh. (14)

As basis functions for Wh, we choose the skeletal nodal basis functions which are one in
a designated vertex of the skeleton and zero in all others while being piecewise linear on
the skeletal facets. To assemble the stiffness matrix corresponding to (14), we only need a
means of computing the local stiffness matrices arising from S̃i. The resulting linear system
is symmetric and positive definite.

It is interesting to note that, in the case of a purely simplicial mesh,

• the locally harmonic trial functions are just the piecewise linear functions,
• the space Zh,i of piecewise constant boundary functions can represent the Neumann
derivatives of the piecewise linear functions exactly,
• the local Galerkin projections of the Neumann derivative are thus just the identity,
i.e. wh,i = wi and therefore also S̃i = Si.

This means that in this special case, the scheme can be realized exactly and is equivalent to
a standard nodal FEM with piecewise linear trial functions. Indeed, the resulting stiffness
matrices from the BBFEM and this standard FEM are then identical.

4. Error analysis

The aim of this section is to derive rigorous error estimates for the numerical scheme
described by (14). Recall that the discretization of the variational formulation (9) proceeded
in two steps: we chose a finite-dimensional trial space Wh ⊂ W , and, to make the scheme
computable, we chose an approximation S̃i of the Dirichlet-to-Neumann map Si. While the
first step leads to a standard Galerkin method which is easily analyzed using the Céa lemma,
the second step introduces a consistency error which demands analysis by a Strang lemma.

4.1. Norms. In order to derive error estimates, we first need appropriate norms for the
involved boundary function spaces. Because we use harmonic extensions heavily, the natural
norms to work with are those defined in terms of the extension operators Hi. Thus, we equip
the local trace spaces H1/2(Γi) with the seminorm and norm

|vi|H1/2(Γi)
:= |Hivi|H1(Ti) = inf

φ∈H1(Ti)
γ0

i φ=vi

|φ|H1(Ti),

‖vi‖2H1/2(Γi)
:=

1
(diam(Ti))2

‖Hivi‖2L2(Ti)
+ |Hivi|2H1(Ti)

.

The norm ‖ · ‖H1/2(Γi)
induces as usual an associated dual norm ‖ · ‖H−1/2(Γi)

on the dual
space of H1/2(Γi).

We observe that, for all vi ∈ H1/2(Γi),

〈Sivi, vi〉Γi = 〈γ1
i (Hivi), γ0

i (Hivi)〉Γi

(5)
=
∫
Ti

∇(Hivi) · ∇(Hivi) dx = |Hivi|2H1(Ti)
= |vi|2H1/2(Γi)

.
(15)
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On W = {v ∈ H1/2(ΓS) : v|Γ = 0}, we define the skeletal energy norm by

|||v|||S :=
( N∑
i=1

|vi|2H1/2(Γi)

)1/2
=
( N∑
i=1

|Hivi|2H1(Ti)

)1/2
= |HSv|H1(Ω).

On the space W , whose members satisfy homogeneous boundary conditions, this is indeed a
full norm.

4.2. Error of the inexact Galerkin scheme. Our error analysis is based on the following
special case of the second Strang lemma.

Lemma 4.1. Let Xh ⊂ X be Hilbert spaces with the norm ‖ · ‖. Assume that there are
constants γ1, γ2, γ̃1, γ̃2 > 0 such that the bilinear forms a(·, ·), ã(·, ·) : X ×X → R satisfy

γ1 ‖v‖2 ≤ a(v, v), γ̃1 ‖v‖2 ≤ ã(v, v) ∀v ∈ X,
|a(v, w)| ≤ γ2 ‖v‖ ‖w‖, |ã(v, w)| ≤ γ̃2 ‖v‖ ‖w‖ ∀v, w ∈ X.

Assume that u ∈ X and uh ∈ Xh solve

a(u, v) = 〈F, v〉 ∀v ∈ X,

ã(uh, vh) = 〈F̃ , vh〉 ∀vh ∈ Xh,

with the bounded linear functionals F , F̃ ∈ X∗. Then

‖u− uh‖ ≤ C
(

inf
vh∈Xh

‖u− vh‖ + sup
wh∈Xh

|ã(u,wh)− 〈F̃ , wh〉|
‖wh‖

)
,

where C = max
{

1 + eγ2eγ1
, 1eγ1

}
.

Proof. See [7, Theorem 4.2.2]. �

Using this abstract result, we can now prove a first Céa-type error estimate for our method.

Lemma 4.2. Let u ∈W be the solution of (13), and uh ∈Wh the solution of (14). Denote
by wi(ug) = Si(u + g) ∈ H−1/2(Γi) the skeletal Neumann data corresponding to the exact
solution. Then we have the error estimate

|HS(u− uh)|H1(Ω) = |||u− uh|||S

≤ C

{
inf

vh∈Wh

|||u− vh|||S +
( N∑
i=1

inf
zh,i∈Zh,i

‖wi(ug)− zh,i‖2Vi

)1/2
}
, (16)

where

C =
(

1 +
1
cS

)
max

{
1,

cK√
1− cK

}
with the abbreviations cK := maxi cK,i < 1 for the largest contraction constant and cS :=
mini

c0,i

cK,i
> 0.

Proof. In the notation of Lemma 4.1, we use the Hilbert spacesWh ⊂W with the norm ||| · |||S .
For the bilinear form a(·, ·) (cf. Section 3.3), identity (15) gives us the bounds γ1 = γ2 = 1.
For the approximate bilinear form ã(·, ·), relation (12) yields the bounds γ̃1 = cS and γ̃2 = 1.
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(The upper bounds follow from the spectral estimates via the Cauchy-Schwarz inequality,
〈Sivi, wi〉2 ≤ 〈Sivi, vi〉〈Siwi, wi〉.) Lemma 4.1 then implies the error estimate

|||u− uh|||S ≤ C1

(
inf

vh∈Wh

|||u− vh|||S + sup
vh∈Wh

|ã(ug, vh)|
|||vh|||S

)
, (17)

where C1 = 1 + 1
cS
. We now estimate the consistency error. Note first that a(ug, v) = 0 for

all v ∈W . Hence, |ã(ug, vh)| = |a(ug, vh)− ã(ug, vh)|, and we see that

a(ug, vh)− ã(ug, vh) =
N∑
i=1

(
〈Si(ui + gi), vh,i〉Γi − 〈S̃i(ui + gi), vh,i〉Γi

)
=

N∑
i=1

〈(1
2I +K ′i)(wi(ug)− wh,i(ug)), vh,i〉Γi

=
N∑
i=1

〈(1
2I +Ki)vh,i, wi(ug)− wh,i(ug)〉Γi ,

where wh,i(ug) is determined by relation (11). In order to bound the local consistency error
on each element boundary Γi, we use that

sup
v∈H1/2(Γi)

〈w, v〉Γi

‖v‖V −1
i

= ‖w‖Vi ,

which is easily obtained by standard techniques. In other words, ‖ · ‖Vi is the associated dual
norm to ‖ · ‖V −1

i
. Hence,

〈(1
2I +Ki)vh,i, wi(ug)− wh,i(ug)〉Γi

≤ ‖(1
2I +Ki)vh,i‖V −1

i
‖wi(ug)− wh,i(ug)‖Vi

≤
cK,i√

1− cK,i
|vh,i|H1/2(Γi)

‖wi(ug)− wh,i(ug)‖Vi , (18)

where in the last line we have used inequality (10) and the fact that | · |Si = | · |H1/2(Γi)
.

Consider now the remaining rightmost term in (18). By the defining relations Viwi(ug) =
(1

2I +Ki)(ui + gi) for wi(ug) and (11) for wh,i(ug), we have the Galerkin orthogonality

〈Vi(wi(ug)− wh,i(ug)), zh,i〉 = 0 ∀zh,i ∈ Zh,i.
By a simple application of Céa’s lemma, we therefore get

‖wi(ug)− wh,i(ug)‖Vi = inf
zh,i∈Zh,i

‖wi(ug)− zh,i‖Vi .

Combining these results with (17), we obtain the desired statement easily from the Cauchy-
Schwarz inequality in RN . �

The error estimate (16) contains the constants cK and cS . We have not yet clarified their
dependence on the mesh (i.e., on the shapes of the elements), and will do so in the next
section. Furthermore, estimating the error in terms of the Dirichlet and Neumann errors on
the skeleton is not desirable since these terms are inherently mesh-dependent. The remainder
of our error analysis is concerned with estimating the expressions on the right-hand side of
(16) only in terms of the exact solution and certain regularity parameters of the mesh.

In the sequel we restrict ourselves to the three-dimensional case.
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i

τ

Τ

f

Figure 2. Sketch of a pentagonal element Ti with auxiliary triangulation
Ξi, one of its constituting simplices τ ∈ Ξi, and a boundary facet f ∈ Fi.

4.3. Geometric assumptions on the mesh. We assume that every element Ti has an aux-
iliary conforming triangulation Ξi consisting of mutually disjoint tetrahedra, T i =

⋃
τ∈Ξi

τ .
By Fi, we denote the collection of all triangular faces f of tetrahedra τ ∈ Ξi which lie on
the element boundary Γi. This setting is illustrated in Figure 2 for the two-dimensional case.
We assume that the triangulations of any two neighboring elements Ti and Tj are matching
in the sense that, for facets fi ∈ Fi and fj ∈ Fj such that fi 6= fj , their intersection f i ∩ f j
is either empty, a vertex, or an edge.

We emphasize that these local triangulations are a purely analytical device and not required
for the numerical realization.

Definition 4.1. The tetrahedral triangulation Ξi is called regular if and only if there exist
positive constants c1, c1, c2, and c2 such that for all tetrahedra τ ∈ Ξ we have

c1(diam τ)3 ≤ |det Jτ | ≤ c1(diam τ)3, (19)
‖Jτ‖`2 ≤ c2 diam τ, (20)

‖J−1
τ ‖`2 ≤ (c2 diam τ)−1, (21)

where Jτ is the Jacobian of the affine mapping from the unit tetrahedron to τ , and ‖A‖`2 =√
λmax(A>A) denotes the spectral matrix norm.

For some auxiliary results that will be given later on, we need the following shape regularity
assumptions on the mesh.

Assumption 4.1. We assume that the polyhedral mesh (Ti)Ni=1 satisfies the following condi-
tions.

• There is a small, fixed integer NF uniformly bounding the number of boundary trian-
gles per element, |Fi| ≤ NF ∀i = 1, 2, . . . , N .
• Every element Ti has a conforming triangulation Ξi which is regular with uniform
constants c1, c1, c2, and c2 > 0, independent of the index i.

In the standard finite element analysis, we usually obtain uniform constants by transforming
domain and surface integrals to reference elements. In this way, the constants appearing in
the estimates depend only on mesh regularity parameters as well as on some fixed constants
stemming from inequalities on the reference elements.
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For general polyhedral meshes, such a technique is not yet known. In particular, we cannot
express the constants c0,i by transformation to reference elements. In order to get uniform
bounds in our case too, we make use of shape-explicit bounds on the constants c0,i that
Pechstein [26] has recently obtained. The construction therein uses the following parameter
introduced by Jones [17].

Definition 4.2 (Uniform domain [17]). A bounded and connected set D ⊂ Rd is called a
uniform domain if there exists a constant CU (D) such that any pair of points x1 ∈ D and
x2 ∈ D can be joined by a rectifiable curve γ(t) : [0, 1] → D with γ(0) = x1 and γ(1) = x2,
such that the Euclidean arc length of γ is bounded by CU (D) |x1 − x2| and

min
i=1,2

|xi − γ(t)| ≤ CU (D) dist(γ(t), ∂D) ∀t ∈ [0, 1].

Any Lipschitz domain is also a uniform domain. In the following, for any Lipschitz domain
D, we call the smallest constant CU (D) that complies with Definition 4.2 the Jones parameter
of D.

The second parameter that we use is the constant in Poincaré’s inequality. Let D be a
uniform domain, then let CP (D) be the best constant such that

inf
c∈R
‖u− c‖L2(D) ≤ CP (D) diam(D) |u|H1(D) ∀u ∈ H1(D). (22)

Combining a famous result by Maz’ya [22] and Federer and Fleming [13] with an auxiliary
result by Kim (see [26, Lemma 3.4]), the constant CP (D) can be tracked back to the constant
in an isoperimetric inequality. For convex domains D, one can even show that CP (D) ≤ 1/π,
cf. [3]. Estimates for shar-shaped domains can be found in [31].

Since each individual element Ti is Lipschitz, the Jones parameter CU (Ti) and the constant
CP (Ti) in Poincaré’s inequality are both bounded.

Lemma 4.3 ([26]). For each element Ti we fix a ball Bi enclosing Ti with

Bi ⊃ Ti, dist(∂Bi, ∂Ti) ≥ 1
2diam(Ti), (23)

and let the Jones parameter CU (Bi \ T i) and Poincaré’s constant CP (Bi \ T i) be bounded.
Then, there exists a positive constant c̃0,i depending solely on CU (Ti), CP (Ti), CU (Bi \ T i)
and CP (Bi \ T i) (or on upper bounds of these constants) such that

c0,i ≥ c̃0,i > 0.

In order to get a uniform bound for the constants c0,i, we fix a ball Bi enclosing each
element Ti and fulfilling (23), and we need the following assumption.

Assumption 4.2. We assume that there are constants C∗U > 0 and C∗P > 0 such that, for
all i ∈ {1, . . . , N},

CU (Ti) ≤ C∗U , CU (Bi \ T i) ≤ C∗U ,

CP (Ti) ≤ C∗P , CP (Bi \ T i) ≤ C∗P .

Due to Lemma 4.3, if Assumption 4.2 holds, then each of the constants c0,i is bounded
away from zero by an expression which depends only on C∗U and C∗P . This also allows us to
bound cK,i away from one, as it is given in terms of c0,i.

Furthermore, as shown in the same work [26], if Assumption 4.2 is satisfied, we have the
bound

‖zi‖Vi ≤ C∗V ‖zi‖H−1/2(Γi)
∀zi ∈ H−1/2(Γi), (24)
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with a constant C∗V that is again uniformly bounded.

4.4. Approximation error in the Dirichlet data. Under the assumption of full H2-
regularity of the exact solution, we easily get the following result on skeletal approximation
of the Dirichlet data by standard finite element approximation techniques on the auxiliary
triangulation Ξi.

Theorem 4.4. Let the mesh (Ti)Ni=1 satisfy Assumption 4.1. Let uΩ ∈ H2(Ω) be the exact
solution of the domain variational formulation (3), and u ∈W the solution of (13). Assume
furthermore that the given Dirichlet data g ∈ H1/2(ΓS) is piecewise linear. Then we have

inf
vh∈Wh

|||u− vh|||S ≤ C
( N∑
i=1

h2
i |uΩ|2H2(Ti)

)1/2
≤ C h |uΩ|H2(Ω), (25)

where the constant C depends only on the regularity parameters from Assumption 4.1.

Proof. Due to Ξi being a conforming triangulation of Ti and the assumption of the element
triangulations being matching across element boundaries, Ξ =

⋃
i Ξi describes a conforming

regular triangulation of Ω. Let Vh ⊂ H1(Ω) denote a standard finite element space of
piecewise linear, globally continuous functions over Ξ. Choose φh ∈ Vh with φh|Γ = g
arbitrarily and set

Φh := γS(φh)− g ∈ Wh.

With this we estimate

inf
vh∈Wh

|||u− vh|||2S ≤ |||u− Φh|||2S =
N∑
i=1

|Hi(u− Φh)|2H1(Ti)
.

Note now that
γS(uΩ − φh) = u+ g − (Φh + g) = u− Φh,

and hence, by the energy-minimizing property of the harmonic extension,

|Hi(u− Φh)|H1(Ti) ≤ |uΩ − φh|H1(Ti) ∀i ∈ {1, . . . , N}.

Since φh was chosen arbitrarily, we obtain

inf
vh∈Wh

|||u− vh|||S ≤ inf
φh∈Vh
φh|Γ=g

|uΩ − φh|H1(Ω).

We can thus apply standard approximation results for finite element spaces, see e.g. Ciarlet
[7], to obtain the desired statement. �

4.5. Approximation error in the Neumann data. For technical reasons, we need the
Sobolev-Slobodeckii seminorm in addition to the harmonic extension norm we have worked
with so far. For every boundary face f ∈ Fi, we define

|u|2
H

1/2
∼ (f)

:=
∫
f

∫
f

[u(x)− u(y)]2

|x− y|3
dsx dsy, (26)

which gives rise to the piecewise Sobolev-Slobodeckii seminorm on Γi,

|u|2
H

1/2
∼pw(Γi)

:=
∑
f∈Fi

|u|2
H

1/2
∼ (f)

.
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For approximating the Neumann data, we use the space of piecewise constant functions on
Γi,

Zh,i := {v ∈ L2(Γi) : v|f ≡ const. ∀f ∈ Fi}.
We introduce the L2-projector Qh,i : L2(Γi)→ Zh,i via the unique solution of the variational
problem for a given u ∈ L2(Γi),

〈Qh,iu, vh〉L2(Γi) = 〈u, vh〉L2(Γi) ∀vh ∈ Zh,i.

The projector Qh,i permits the following interpolation error estimate.

Theorem 4.5. Let Ti be an element from a mesh fulfilling Assumption 4.1. Then, for all
w ∈ H1/2

pw (Γi), we have the error estimate

‖w −Qh,iw‖H−1/2(Γi)
≤ C hi |w|H1/2

∼pw(Γi)
, (27)

where the constant C depends solely on the constants from Assumption 4.1.

Proof. Postponed to Section A.4.

Additionally, we need the following Neumann trace inequality.

Theorem 4.6 (Neumann trace inequality). Let Ti be an element from a mesh fulfilling
Assumption 4.1. Then, for all u ∈ H2(Ti),

|γ1
i u|H1/2

∼pw(Γi)
≤ C |u|H2(Ti),

where the constant C depends solely on the constants from Assumption 4.1.

Proof. Postponed to Section A.2.

With this, we have the tools at hand to prove the following approximation result for the
Neumann data.

Theorem 4.7. Let the mesh (Ti)Ni=1 satisfy Assumption 4.1 and Assumption 4.2. Let uΩ ∈
H2(Ω) be the exact solution of the domain variational formulation (3), u ∈ W the solution
of (13), and wi(ug) = Si(ui + gi) the exact local Neumann data on Γi. Then,

inf
zh,i∈Zh,i

‖wi(ug)− zh,i‖Vi ≤ C hi |uΩ|H2(Ti)

where the constant C depends solely on the regularity parameters from Assumption 4.1 and
Assumption 4.2.

Proof. Due to Proposition 2.1, wi(ug) = Si(ui + gi) = γ1
i uΩ ∈ H1/2

pw (Γi). Using relation (24),
Theorem 4.5, and Theorem 4.6, we estimate

inf
zh,i∈Zh,i

‖wi(ug)− zh,i‖Vi ≤ ‖wi(ug)−Qh,iwi(ug)‖Vi

(24)
≤ C∗V ‖wi(ug)−Qh,iwi(ug)‖H−1/2(Γi)

Thm.4.5
≤ C hi |wi(ug)|H1/2

∼pw(Γi)

= C hi |γ1
i uΩ|H1/2

∼pw(Γi)

Thm.4.6
≤ C hi |uΩ|H2(Ti). �
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4.6. Final error estimate.

Theorem 4.8. Let the mesh (Ti)Ni=1 satisfy Assumption 4.1 and Assumption 4.2. Assume
further that the given Dirichlet data g is piecewise linear. If uΩ ∈ H2(Ω) is the exact solu-
tion of the variational formulation (3), and uh ∈ Wh is the solution of the discrete skeletal
formulation (14), we have the error estimate

|uΩ −HS(uh + g)|H1(Ω) ≤ C
( N∑
i=1

h2
i |uΩ|2H2(Ti)

)1/2
≤ C h |uΩ|H2(Ω),

where the constant C depends solely on the regularity parameters from Assumption 4.1 and
Assumption 4.2.

Proof. Note first that uΩ = HS(u + g) and thus uΩ − HS(uh + g) = HS(u − uh). From
Lemma 4.2, we have

|HS(u− uh)|H1(Ω) ≤ C

{
inf

vh∈Wh

|||u− vh|||S +
( N∑
i=1

inf
zh,i∈Zh,i

‖wi(u)− zh,i‖2Vi

)1/2}
with

C =
(

1 +
1
cS

)
max

{
1,

cK√
1− cK

}
.

Due to Lemma 4.3, C can be bounded in terms of the regularity parameters. Now, Theo-
rem 4.4 yields the Dirichlet approximation property

inf
vh∈Wh

|||u− vh|||S ≤ C
( N∑
i=1

h2
i |uΩ|2H2(Ti)

)1/2
.

The remaining terms can be treated using the Neumann approximation property from The-
orem 4.7:

inf
zh,i∈Zh,i

‖wi(ug)− zh,i‖Vi ≤ C hi |uΩ|H2(Ti). �

5. Numerical results

To verify our theoretical results, we have implemented the BBFEM and performed sev-
eral numerical tests. The implementation was done in C++ and builds upon the parmax
framework by Pechstein and Copeland (see http://www.numa.uni-linz.ac.at/P19255/
software). For the computation of the boundary element matrix entries, we use the ap-
proach of the ostbem library [28]: the inner (collocation) integral is computed analytically,
while the outer integral is approximated by a 7-point quadrature. For the solution of the
resulting symmetric positive definite linear system, we use a non-preconditioned Conjugate
Gradient (CG) method.

In our numerical experiments, we consider the inhomogeneous Dirichlet boundary value
problem for the Laplace equation (2) in the unit cube Ω = (0, 1)3. In all tests, we prescribe
the exact solution u(x, y, z) = exp(x) cos(y)(1 + z).

We perform computations on two different mesh configurations. The first one is a standard
regular tetrahedral mesh obtained by uniform refinement of a coarse mesh. The second one
is derived from the first one by unifying some pairs of adjacent tetrahedra. This results in
meshes consisting of both tetrahedra and polyhedra having 5 vertices, 9 edges and 6 faces.
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(a) Results with tetrahedral mesh.

mesh size h H1-error L2-error #tets
0.866025 0.923507 0.0879679 48
0.433013 0.459565 0.0223147 384
0.216506 0.226186 0.00549834 3,072
0.108253 0.109806 0.00131165 24,576
0.0541266 0.0537825 0.000315016 196,608
0.0270633 0.0264988 7.62441e-05 1,572,864

(b) Results with mixed mesh.

mesh size h H1-error L2-error #tets #polys
0.866025 0.867685 0.0842554 40 4
0.433013 0.433557 0.0214242 258 63
0.216506 0.214188 0.00522372 2,044 514
0.108253 0.103955 0.00124863 15,822 4,377
0.0541266 0.0508436 0.000304395 125,350 35,629
0.0270633 0.0251327 7.76704e-05 996,390 288,237

Table 1. Numerical results

Some of the latter may be non-convex. Because our method places its degrees of freedom in
element vertices, this unification procedure does not change the number of unknowns.

For computing the L2-error, we use the representation formula from the theory of boundary
integral operators to evaluate the solution at some inner points of the elements and perform
quadrature. For computing the H1-error, we estimate the gradient as a piecewise constant
quantity from the computed Neumann data and again perform quadrature.

The results are shown in Table 1, where Table 1(a) gives the results for the tetrahedral
meshes, while Table 1(b) gives the results for the mixed meshes. In each table, the first
column gives the mesh size (here calculated as the maximum edge length). The second and
third columns give the error in the H1-seminorm and the L2-norm, respectively. The final
columns give the number of tetrahedra and polyhedra in each mesh.

In both cases, the H1-error decays with O(h), as Theorem 4.8 predicts. Also, the L2-error
decays with O(h2) in both experiments. Figure 3 visualizes these results graphically. As can
be seen, the errors for the tetrahedral and mixed meshes are virtually undistinguishable.

6. Conclusion and outlook

We have described in detail the discretization method for elliptic PDEs on polyhedral
meshes introduced by Copeland, Langer, and Pusch [9], and analyzed it in the special case of
the 3D Laplace equation. To our knowledge, our main result, Theorem 4.8, is the first rigorous
error estimate for a method of this type. Our numerical tests confirm the convergence rates
which the theory suggests.

The range of application of the BBFEM is very broad. Copeland applied this method to
the Helmholtz equation and to the time-harmonic Maxwell equation in the high-frequency
range [8]. The numerical results presented in [8] look very nice, but a rigorous error analysis is
still missing for these cases. In order to apply the BBFEM to some boundary value problem,
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Figure 3. L2- and H1-error for tetrahedral and mixed mesh.

the fundamental solution of the corresponding partial differential operator must be explicitly
known. Since we need the fundamental solution only elementwise, we can permit elementwise
constant coefficients. We can even allow for elementwise smooth coefficients and then solve
an approximate equation with suitable elementwise constant coefficients. Therefore, the ap-
plication of this method to linear elasticity problems with elementwise homogeneous material
properties, to the Stokes system and even to diffusion-convection-reaction problems with el-
ementwise constant (or smooth) coefficients is possible. For all these cases, the fundamental
solutions are explicitly known (see, e.g., [23, 27]).

In this paper we were primarily interested in the discretization error analysis and not
in the construction and analysis of fast solvers for the linear systems resulting from the
BEM-based FE discretization. In the numerical experiments presented in Section 5, we used
the Conjugate Gradient method without any preconditioner as solver for the linear systems
of algebraic equations. Of course, for really large scale systems, efficient parallel solvers
like domain decomposition or algebraic multigrid methods should be used. We believe that
finite element tearing and interconnecting (FETI) type methods are well suited for solving
BBFEM equations; see, e.g., [32, Ch. 6], and also [20, 21, 25] for boundary element variants.
However, the proper application of FETI-type methods to BBFEM and a corresponding
rigorous analysis should be the subject of future research.

Appendix A. Proofs of some element-local properties

In the proof of our error estimates, we—perhaps surprisingly—found that among the great-
est technical challenges was obtaining approximation properties for piecewise constant bound-
ary functions which are valid on the quite general polyhedral elements we consider. This
appendix serves to provide some technical results which we have used without proof in the
main part of the article. Specifically, our aim here is to prove Theorem 4.5 and Theorem 4.6.
Since all relevant properties can be analyzed locally, we simplify the notation by omitting
the element index subscript in the following; e.g., we write T for an element Ti.
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A.1. Transformation properties. Throughout this appendix, we assume that T ⊂ R3

is a polyhedral element from a mesh satisfying Assumption 4.1. That is, T has a regular
triangulation Ξ with at most NF boundary triangles F . Note that for every boundary
triangle f ∈ F , there exists exactly one tetrahedron τf ∈ Ξ having f as one of its faces.

We write
4d := {(x1, . . . , xd)> ∈ Rd : xi > 0, x1 + . . .+ xd < 1}

for the unit simplex in Rd. For any tetrahedron τ ∈ Ξ, we fix an affine mapping Fτ : R3 → R3

such that Fτ (43) = τ . The Jacobian of this mapping is denoted by Jτ = ∇Fτ ∈ R3×3.

From the regularity conditions (20) and (21), we easily derive the property

c2(diam τ) |ξ| ≤ |Jτξ| ≤ c2(diam τ) |ξ| ∀ξ ∈ R3, (28)

which describes how lengths transform under Fτ .

In the following we show that regularity of Ξ implies regularity of F .

Lemma A.1. Let Ξ be a regular tetrahedral triangulation. Then for every triangular face
f ∈ F and every tetrahedron τ = τf ∈ Ξ with f ⊂ ∂τ , we have

c2diam τ ≤ diam f ≤ diam τ, (29)
c1

2c2
(diam τ)2 ≤ |f | ≤ 1

2
(diam τ)2, (30)

where |f | denotes the area of the triangle f .

Proof. The estimate diam f ≤ diam τ is trivial as f ⊂ τ . From this we easily get

|f | ≤ 1
2

(diam f)2 ≤ 1
2

(diam τ)2,

and thus the upper bounds are proved.

For the lower bounds, let ξ1 through ξ4 denote the vertices of the unit tetrahedron 43.
The vertices of τ are then given by xi = Fτ (ξi), i = 1, . . . , 4. Clearly, the diameter of f is
the length of an edge, say (xi, xj), of τ . We have

diam f = |xi − xj | = |Fτ (ξi)− Fτ (ξj)| = |Jτ (ξi − ξj)|
(28)
≥ c2 diam τ |ξi − ξj | .

Since |ξi − ξj | is the length of an edge of the unit tetrahedron, it is clear that |ξi − ξj | ≥ 1,
which finishes the proof of (29).

For the lower area bound, let xi, xj , xk be the vertices of f . With y1 := xj − xi and
y2 := xk−xi, the area of the triangle is given by |f | = 1

2 |y1 × y2|. Furthermore, f̂ := F−1
τ (f)

is a face of 43, and we have
∣∣∣f̂ ∣∣∣ = 1

2 |η1 × η2| with

η1 = ξj − ξi = F−1
τ (xj)− F−1

τ (xi) = J−1
τ (xj − xi) = J−1

τ y1,

and analogously η2 = J−1
τ y2. Thus we may estimate

1
2 = |f̂ | = 1

2 |η1 × η2| = 1
2

∣∣J−1
τ y1 × J−1

τ y2

∣∣
(∗)
= 1

2

∣∣det J−1
τ

∣∣ ∣∣∣J>τ (y1 × y2)
∣∣∣ ≤ 1

2 c
−1
1 (diam τ)−3 c2 (diam τ) 2 |f | ,
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where we have used that det(J−1
τ ) = (det Jτ )−1 and ‖J>τ ‖`2 = ‖Jτ‖`2 . The identity marked

with (∗) stems from the following elementary property of the cross product that can easily
be checked by direct calculation: for any non-singular matrix A ∈ R3×3,

Ay1 ×Ay2 = (detA)A−>(y1 × y2). �

We also need some norm scaling relations for transforming functions to and from the unit
tetrahedron.

Lemma A.2. Let f be a face of a tetrahedron τ from a regular triangulation and f̂ := F−1
τ (f)

the corresponding triangle on the unit tetrahedron 43. Let φ ∈ H1/2(f) and denote by
φ̂ = φ ◦ Fτ the pullback of φ to f̂ . Then,

|φ|
H

1/2
∼ (f)

≤ c
−3/2
2 (diam τ)1/2 |φ̂|

H
1/2
∼ (f̂)

(31)

with the Sobolev-Slobodeckii seminorm as defined in (26). Let u ∈ H1(τ) and denote by
û = u ◦ Fτ the pullback of u to 43. Then,

c
1/2
1 c−1

2 (diam τ)1/2 |û|H1(43) ≤ |u|H1(τ) ≤ c
1/2
1 c−1

2 (diam τ)1/2 |û|H1(43). (32)

Proof. Let Ff , Ff̂ : R2 → R3 denote affine mappings such that Ff (42) = f , Ff̂ (42) = f̂ , and

Ff = Fτ ◦ Ff̂ . Note that
∣∣∣∂Ff

∂x1
× ∂Ff

∂x2

∣∣∣ = 2 |f |. For a suitable real-valued function φ defined
on f , we see that∫

f
φ(x) dsx = 2 |f |

∫
42

φ(Ff (ξ)) dξ = 2 |f |
∫
42

φ(Fτ (Ff̂ (ξ))) dξ

=
|f |
|f̂ |

∫
f̂
φ(Fτ (x)) dsx =

|f |
|f̂ |

∫
f̂
φ̂(x) dsx.

For the Sobolev-Slobodeckii seminorm, the above identity gives us

|φ|2
H

1/2
∼ (f)

=
∫
f

∫
f

|φ(x)− φ(y)|2

|x− y|3
dsx dsy

=
(
|f |
|f̂ |

)2 ∫
f̂

∫
f̂

|φ̂(ξ)− φ̂(η)|2

|Jτ (ξ − η)|3
dsξ dsη.

Using the regularity relations (30) and (28) we obtain

|φ|2
H

1/2
∼ (f)

≤ c−3
2

(
(diam τ)2

2|f̂ |

)2

(diam τ)−3

∫
f̂

∫
f̂

|φ̂(ξ)− φ̂(η)|2

|ξ − η|3
dsξ dsη.

Noting finally that |f̂ | ≥ 1
2 , we get (31).

The remaining statement (32) is shown by standard transformation arguments from finite
element analysis, and we omit the proof. �

A.2. Trace inequalities. In this section we derive trace inequalities for T with constants
which depend solely on the regularity parameters of its triangulation. First we consider a
single tetrahedron τ with associated trace operator γτ : H1(τ)→ H1/2(∂τ).
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Lemma A.3. For a tetrahedron τ from a regular triangulation and one of its faces, f , we
have the Dirichlet trace inequality

|γτu|H1/2
∼ (f)

≤ cτγ |u|H1(τ) ∀u ∈ H1(τ) (33)

with a trace constant cτγ > 0 which depends solely on the regularity parameters.

Proof. By a standard embedding argument, there exists a fixed constant cγ > 0 such that
for every face f̂ of the unit tetrahedron 43, we have

|γ43u|H1/2
∼ (f̂)

≤ cγ |u|H1(43) ∀u ∈ H1(43), (34)

with the trace operator γ43 : H1(43) → H1/2(∂43). Using the transformation relations
from Lemma A.2, we obtain

|γτu|H1/2
∼ (f)

(31)
≤ c

−3/2
2 (diam τ)1/2|γ43 û|H1/2

∼ (f̂)

(34)
≤ cγ c

−3/2
2 (diam τ)1/2|û|H1(43)

(32)
≤ cγ c

−1/2
1 c2 c

−3/2
2 |u|H1(τ). �

This result extends straightforwardly to the piecewise Sobolev-Slobodeckii seminorm on
the boundary of a polyhedral element.

Lemma A.4. If the element T has a regular triangulation, then

|γTu|H1/2
∼pw(∂T )

≤ 2 cτγ |u|H1(T ) ∀u ∈ H1(T ). (35)

Proof. We fix u ∈ H1(T ) and calculate

|γTu|2
H

1/2
∼pw(∂T )

=
∑
f∈F
|γτfu|

2

H
1/2
∼ (f)

(33)
≤ (cτγ)2

∑
f∈F
|u|2H1(τf ).

Since every tetrahedron τf has four sides, every τ ∈ Ξ occurs at most four times in the
rightmost sum. Thus we may further estimate

|γTu|2
H

1/2
∼pw(∂T )

≤ 4 (cτγ)2
∑
τ∈Ξ

|u|2H1(τ) = 4 (cτγ)2 |u|2H1(T ). �

With this result we are able to prove the Neumann trace inequality used in our error
estimates.

Proof of Theorem 4.6. On every boundary triangle f ∈ F , there is a uniquely defined and
constant outwards normal vector nf ∈ R3 with |nf | = 1. On a single face f ∈ F lying on the
tetrahedron τ , by using the triangle inequality and then the Cauchy-Schwarz inequality, we
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get ∣∣γ1
τu
∣∣
H

1/2
∼ (f)

=
∣∣(γτ∇u) · nf

∣∣
H

1/2
∼ (f)

=
∣∣∣ 3∑
k=1

(γτ∇u)k (nf )k
∣∣∣
H

1/2
∼ (f)

≤
3∑

k=1

|(nf )k|
∣∣(γτ∇u)k

∣∣
H

1/2
∼ (f)

≤ |nf |
( 3∑
k=1

∣∣(γτ∇u)k
∣∣2
H

1/2
∼ (f)

)1/2

=
( 3∑
k=1

∣∣∣γτ ∂u
∂xk

∣∣∣2
H

1/2
∼ (f)

)1/2

.

With this we obtain that on the entire boundary,

|γ1
Tu|2H1/2

∼pw(∂T )
=
∑
f∈F
|γ1
τf
u|2
H

1/2
∼ (f)

≤
∑
f∈F

3∑
k=1

∣∣∣γτf ∂u∂xk
∣∣∣2
H

1/2
∼ (f)

=
3∑

k=1

∣∣∣γT ∂u

∂xk

∣∣∣2
H

1/2
∼pw(∂T )

(35)
≤ 4 (cτγ)2

3∑
k=1

∣∣∣ ∂u
∂xk

∣∣∣2
H1(T )

= 4 (cτγ)2 |u|2H2(T ). �

A.3. An auxiliary harmonic extension norm. For our final approximation result, we will
make use of a more general version of the norm defined via the harmonic extension, namely
one which is defined on arbitrary parts of the surface. This first requires a generalization of
the harmonic extension operator. For any Lipschitz domain D and some surface component
t ⊆ ∂D with positive measure, we define

Ht→D : H1/2(t)→ H1(D) : u 7→ arg min
φ∈H1(D)
φ|t=u

|φ|H1(D).

The previously introduced harmonic extension operator may be seen as a special case of this
definition: Hi = H∂Ti→Ti

. With this notation, we define a seminorm on H1/2(t) given by

|u|H1/2(t,D) := |Ht→Du|H1(D) = inf
φ∈H1(D)
φ|t=u

|φ|H1(D) ∀u ∈ H1/2(t).

Again, this may be viewed as a generalization of | · |H1/2(∂D) = | · |H1/2(∂D,D).

It is of interest to know how this seminorm relates to the previously introduced Sobolev-
Slobodeckii seminorm. For our purposes, the following simple result will suffice.

Lemma A.5. Let τ ∈ Ξ be a tetrahedron from a regular triangulation, and let f ⊂ ∂τ be one
of its faces. For every v ∈ H1/2(f), we have

|v|
H

1/2
∼ (f)

≤ C |v|H1/2(f,τ) (36)

with a constant C that depends solely on the regularity parameters.

Proof. Using the trace inequality, we easily get

|v|
H

1/2
∼ (f)

= |γτHf→τv|H1/2
∼ (f)

(33)
≤ cτγ |Hf→τv|H1(τ) = cτγ |v|H1/2(f,τ). �

The following lemma gives some indication of the monotonic behavior of the new seminorm
when either the domain into which extends or the surface component on which it is defined
is restricted.
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Lemma A.6. Let D′ ⊂ D be Lipschitz domains and t′ ⊂ t ⊆ ∂D′ ∩ ∂D surface components
with positive measure. Then, for every v ∈ H1/2(t), we have

|v|H1/2(t,D′) ≤ |v|H1/2(t,D), (37)

|v|H1/2(t′,D) ≤ |v|H1/2(t,D). (38)

Proof. We observe that

|Ht→D′v|H1(D′) ≤ |Ht→Dv|H1(D′) ≤ |Ht→Dv|H1(D),

where the first inequality holds because of the energy-minimizing property of the harmonic
extension. This proves the first statement.

Because of t′ ⊂ t, it is clear that

{u ∈ H1(D) : u|t′ = v} ⊇ {u ∈ H1(D) : u|t = v},

and thus the minimum that is attained over the left set is smaller than that over the right
one. This proves the second statement. �

We now return to the polyhedral element T . For u ∈ H1/2
pw (∂T ), we define the seminorm

|u|2
H

1/2
pw (∂T )

:=
∑
f∈F
|u|2

H1/2(f,τf )
.

If u ∈ H1/2(∂T ), then by applying (37) and (38) we immediately obtain

|u|
H

1/2
pw (∂T )

≤
√
NF |u|H1/2(∂T,T ) =

√
NF |u|H1/2(∂T ). (39)

A.4. Approximation properties. We now study approximation properties for piecewise
constant boundary functions on ∂T . The final aim of this section is the proof of Theorem 4.5.
We follow quite closely the approach by Steinbach [30].

Recall the L2-projector Qh into the space of piecewise constant functions Zh on ∂T intro-
duced in Section 4.3. It is easy to see that the values of the projection are given by

(Qhu)|f ≡
1
|f |

∫
f
u(y) dsy for f ∈ F . (40)

Lemma A.7. Let Ξ be a regular triangulation of T and f ∈ F a boundary face. For u ∈
H

1/2
pw (∂T ), we have the error estimates

‖u−Qhu‖L2(f) ≤

√
2 c2

c1

(diam f)1/2 |u|
H

1/2
∼ (f)

,

‖u−Qhu‖L2(∂T ) ≤ C (diamT )1/2 |u|
H

1/2
∼pw(∂T )

(41)

with a constant C which depends solely on the regularity parameters.

Proof. Because of (40), we have

u(x)−Qhu(x) =
1
|f |

∫
f
[u(x)− u(y)] dsy for x ∈ f.
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Squaring this relation and using the Cauchy-Schwarz inequality yields

|u(x)−Qhu(x)|2 =
1
|f |2

(∫
f
[u(x)− u(y)] dsy

)2

=
1
|f |2

(∫
f

[u(x)− u(y)]

|x− y|3/2
|x− y|3/2 dsy

)2

≤ 1
|f |2

∫
f

[u(x)− u(y)]2

|x− y|3
dsy

∫
f
|x− y|3 dsy

≤ (diam f)3 1
|f |

∫
f

[u(x)− u(y)]2

|x− y|3
dsy.

Estimating |f | from below using the regularity condition (30) and integrating over f proves
the first statement. The second statement follows by summing up over all f ∈ F and using
that diam f ≤ diamT . �

With Lemma A.7, we can finally prove the approximation property used in our error esti-
mates using an Aubin-Nitsche duality argument.

Proof of Theorem 4.5. By the definition of the dual norm and of the L2-projection Qh,
and per the Cauchy-Schwarz inequality, we have

‖w −Qhw‖H−1/2(∂T ) = sup
v∈H1/2(∂T )

〈w −Qhw, v〉L2(∂T )

‖v‖H1/2(∂T )

= sup
v∈H1/2(∂T )

〈w −Qhw, v −Qhv〉L2(∂T )

‖v‖H1/2(∂T )

≤ ‖w −Qhw‖L2(∂T ) sup
v∈H1/2(∂T )

‖v −Qhv‖L2(∂T )

‖v‖H1/2(∂T )

.

We estimate ‖w −Qhw‖L2(∂T ) using (41). For ‖v −Qhv‖L2(∂T ), we again use (41) and then
estimate

‖v −Qhv‖L2(∂T ) ≤ C (diamT )1/2 |v|
H

1/2
∼pw(∂T )

= C (diamT )1/2

(∑
f∈F
|v|2

H
1/2
∼ (f)

)1/2 (36)
≤ C (diamT )1/2

(∑
f∈F
|v|2

H1/2(f,τf )

)1/2

= C (diamT )1/2 |v|
H

1/2
pw (∂T )

(39)
≤ C

√
NF (diamT )1/2 |v|H1/2(∂T ).

Since we assumed that NF is a uniform, small bound on the number of boundary triangles
per element, we may subsume it into the generic constant C. Combined, these estimates
yield the statement of Theorem 4.5. �
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Rotation-Minimizing Frames via MöbiusTransformations November 2009. Eds.: J. Schicho,
W. Zulehner
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