
A Purely Logical Approach to
the Termination of Imperative Loops

Mădălina Eraşcu and Tudor Jebelean
Research Institute for Symbolic Computation

Johannes Kepler University,
Linz, Austria

{merascu, tjebelea}@risc.uni-linz.ac.at

Abstract—We present and illustrate a method for the gen-
eration of the termination conditions for nested loops with
abrupt termination statements. The conditions are (first-order)
formulae obtained by certain transformations of the program
text. The loops are treated similarly to calls of recursively
defined functions. The program text is analyzed on all possible
execution paths by forward symbolic execution using certain
meta-level functions which define the syntax, the semantics,
the verification conditions for the partial correctness, and the
termination conditions. The termination conditions are expressed
as induction principles, however, still in first-order logic.

Our approach is simpler than others because we use neither
an additional model for program execution, nor a fixpoint theory
for the definition of program semantics. Because the meta-level
functions are fully formalized in predicate logic, it is possible
to prove in a purely logical way and at object level that
the verification conditions are necessary and sufficient for the
existence and uniqueness of the function implemented by the
program.

Index Terms—program analysis and verification, symbolic
execution, semantics, induction, termination, Theorema system

I. INTRODUCTION

We present the theoretical foundations of a formal method
for handling the total correctness of arbitrary nested (possibly
abruptly terminating) while loops in imperative programs.
The goal of our approach is mainly foundational: we aim at
the identification of the minimal logical apparatus necessary
for formulating and proving (in a computer assisted manner)
a correct collection of methods for program verification. The
study of such a minimal logical apparatus should increase the
confidence in program verification tools and possibly reveal
some foundational relations between logic and programming.
Moreover this computer aided formalization may open the
possibility of reflection of the method on itself (treatment
of the meta-functions as programs whose correctness can be
studied by the same method).

The distinctive feature of our approach is the formulation of
the termination condition as an induction principle developed
from the structure of the program with respect to while
loops. This termination condition ensures the logical existence
of the function implemented by the loop. (The existence is not
automatic, because a loop corresponds from the logical point
of view to an implicit definition.) Moreover, the termination

condition can be also used for proving the uniqueness of the
function as well as the total correctness of the loop.

Syntactically, a program is considered to be a tuple of
statements, which contains terms and formulae expressed in
an object theory expressing the properties of the objects
manipulated by the program. (By a theory we understand a
set of formulae in the language of predicate logic.) Therefore,
the program statements are meta-constructs which incorpo-
rate object terms and object formulae as quoted meta-terms.
Currently, we consider programs which have some input
parameters and produce a single return value, thus a program
defines a function.

The semantics of the program is the object level formula
which defines logically the function implemented by the
program. This formula is constructed by traditional forward
symbolic execution: the program is executed on symbolic
arguments, and a clause for the implicit definition of the
program function is generated on each execution path of the
program. We consider the conjunction of these clauses as
being the semantics of the program. In a similar way, on
each path, one generates the partial correctness conditions
as safety, functional, and assertive conditions. Separately, the
termination condition is generated as an induction principle.
Remarkably, all the conditions are expressed in the object
logic.

This paper is an extension of [9], where we introduced
an algorithmic approach for checking the syntax and gener-
ating the semantics and the verification conditions (for par-
tial correctness and for termination) for imperative programs
having non-nested, normal terminating, while loops, using
the principles presented above. This was achieved, basically,
by constructing functional meta-definitions for the notions of
syntax, semantics, partial correctness and termination. The
semantics of a loop was captured by its invariant.

This paper enhances [9] in the following aspects:
• the formal meta-definitions (full description in [10] – this

paper emphasizes the termination in Section IV) handle
now imperative recursive programs with arbitrary nested
while loops, possibly abrupt terminating via return
and break, where the recursive calls can occur only
outside loops,

• the loop semantics is expressed as an implicit definition
of a [tail-] recursive function, and

• the correctness of method for this class of programs is
presented (Section V), where the crucial role is played
by the existence of semantics function, and the inductive
termination condition.

The method is completely formalized as functional meta-
definitions of the syntax checker, of the semantics constructor
and of the generators of the verification conditions. These
meta-level functions take the program text, the specification
(input and output conditions) and, eventually, assertions like
the loop invariant or others introduced by the Assert state-
ment. The approach is also universal because the programming
language itself is predicate logic (terms and formulae from
the object theory), except for the few meta-constructs which
represent the basic imperative statements (assignment, condi-
tionals, loops, abrupt statements: break, return), and for
Assert construct.

A while loop is treated similarly to a recursive call of
a new function together with the definition and specification
of it. The semantics of a loop is a logical implicit definition
of a function. The invariant has the role of input and output
condition of this virtual function. The parameters of the virtual
function are the so called critical variables – the variables
which are modified within the loop body. The actual arguments
of the call are the values of the critical variables when entering
the loop.

The method is implemented in Mathematica [24] on top
of the Theorema system [5]. Because the formalization of the
functional meta-definitions are given in the ,,pattern matching”
style, that is, it exhibits the behavior of the meta-function for
various specific classes of arguments, the differences between
the definitions presented in [10] and the real implementation
are minor.

Our approach is presented in full detail in [10]; here we
emphasize the termination of loops. In particular, we present
the proof of the fact that the termination condition ensures the
existence and the uniqueness of the function implemented by
the loop. The proof is elementary, using only natural number
induction and few inference rules.

Related Work

Our approach follows the principles of forward symbolic
execution [15] and functional semantics [19], but additionally
gives formal definitions in a meta-theory for the meta-level
functions which define the syntax, the semantics, and the ver-
ification conditions. To our knowledge there is no other work
on symbolic execution approaching the verification problem
in a fully formal way.

However, the ideas from the formalization of the calculus
are not completely new; [17] describes the behavior of concur-
rent systems as relation between the variables in the current
state and in the post-state. A similar approach is encountered
in [2] where the program equations (involving relation between
current and post-state) are used to express nondeterminacy and
termination. In the same manner, [22] presents the formal cal-
culus for imperative languages containing complex structures.

Specification languages used in the framework of verification
tools also use this concept – see e.g JML [6].

The most well-known techniques for proving that a loop
terminates is to manually annotate it with a termination term
[13], to synthesize the termination term based on the loop
behavior [3], [4], [21] or to compute the closure of some
well-founded relations [7]. They can be seen in the context of
our work as methods for proving certain classes of inductive
termination conditions that we generate.

The interactive theorem prover Coq [1] mechanizes the most
well-known semantics for imperative languages (operational,
denotational and axiomatic). Our approach is in the spirit
of the axiomatic semantics, if we think to the fact that we
annotate the program (input and output specification, invariants
for loops and Assert commands). But actually we transform
the imperative program into a functional one (a tail-recursive
function for each loop), thus one may expect a relation to
operational (call-by-value) or denotational semantics (based
on fix-point theory) for functional languages. On one side, we
are not interested how the functions evaluate their arguments,
therefore we do not use operational semantics. On the other
side, denotational semantics based on fix-point theory needs
an additional model for dealing with nonterminating programs.
Our approach uses implicitly the semantics of predicate logic.

Most of the proof assistants provide infrastructure for
proving/disproving the termination of classical examples with
general recursion. ACL2 [14] handles total functions that must
be proved total at the definition time; sometimes the system
is able to infer this fact. Isabelle [20], HOL4 [12] and Coq
[1] are basically using the recursion package TFL [23] and
thus allow definitions of total recursive functions by using the
fixed-point operators and well-founded relations supplied by
the user. Proving termination reduces to show that the relation
is well-founded and the arguments of the recursive calls are
decreasing. Our approach is equivalent, in the sense that the
termination condition is equivalent to the well-foundedness of
the partial order defined by the transformation of the critical
variables within the loop.

The treatment of termination in [16] also uses inductive
conditions extracted from the program recursions, but in the
form of implicit definitions of domains (set theory is also
needed). However, the existence of such inductively defined
objects is not proved directly.

Since our study is foundational, it constitutes a comple-
ment and not a competitor for practical work dealing with
termination proofs, like e. g. termination of term rewriting
systems http://www.termination-portal.org/, the size-change
termination principle [18] or the approaches for proving the
termination of industrial-size code (Microsoft Windows Oper-
ating System Drivers) [7].

II. LOGICAL FOUNDATIONS OF IMPERATIVE LOOPS

Our approach is purely logic, meaning that the program
correctness, and implicitly loop correctness, are expressible
in predicate logic, without using any additional theoretical
model for program semantics or program execution, but only

using the theories relevant to the predicates, constants and
functions present in the program text. We call such theories
object theories.

A meta-theory (in predicate logic with equality) is further
constructed for reasoning about programs. The meta-theory
contains specific functions and predicates from the set theory.
Moreover it needs the tuple theory: 〈...〉 denotes a tuple, ^
is the concatenation of tuples; x → t is a pair denoting
the replacement of the variable x with the term t (a set of
replacements is a substitution, and substitutions can also be
composed); as well as appropriate function symbols for the
construction of program statements (assignment, conditionals,
loops, abrupt statements: break, return).

The program statements and the program itself are meta-
terms. Also the terms and the formulae from the object theory
are meta-terms from the point of view of the meta-theory, and
they are considered quoted (because the meta-theory does not
contain any equalities between programming constructs, and
also does not include the object theory).

The expressions composing the definitions of the meta-level
predicate and functions presented below are to be understood
as universally quantified over the meta-variables of various
types: v ∈ V ⊂ V is an initialized variable, t ∈ T is a
term, ϕ is a boolean expression, B, PT and PF are tuples
of statements representing the loop body and the two paths
corresponding to the if statement, respectively. ι denotes
conventionally the loop invariant which holds at the beginning
of the loop and is inductively preserved by each iteration of the
loop. The user should provide such an invariant. We denote
conventionally by δ the critical variables. For simplicity we
consider a single critical variable in loops which we denote as
δ. It is straightforward to extend this formalism to tuples of
critical variables.

A program P is a tuple of statements and is documented
with pre- and postconditions. It takes as input a certain
number of variables and it returns a single value conventionally
denoted β.

The meta-theory also contains the properties of the meta-
predicate Π (syntax checker) and meta-functions Σ, Σ′, and
Σ′′ (semantics generators), Γ (verification conditions genera-
tor), and Θ, Θ′, and Θ′′ (termination condition generators).

All meta-functions use forward symbolic execution: the
state of the program is represented by a formula Φ and
by a substitution σ. The formula contains the accumulated
condition on the current execution path (the path condition).
The substitution assigns the current symbolic values (terms
depending on the input) to the currently initialized variables.
Program analysis proceeds as follows:
• Initially new symbolic constants are assigned to the input

variables.
• After that, the program analysis proceeds in forward

manner, statement by statement.
• An assignment updates the substitution σ using the vari-

able and the term of the assignment.
• A conditional (if) splits the analysis of the correspond-

ing execution path and adds the condition formula and

its negation to the two new path conditions.
• return ends the analysis on the current execution path

and break ends the analysis of the current loop.
A while statement splits the analysis of the program in

three paths adding new path constraints to Φ as follows:
1) One path analyzes the statements occurring after the loop

– the case when the loop is not executed at all.
2) On the second path the loop is executed symbolically

using fresh values for the critical variables, which are
assumed to fulfill the invariant and the loop condition.

3) The third path continues the analysis of the program after
the loop, by assigning fresh values to the critical vari-
ables, which are assumed to fulfill the invariant and the
negated loop condition. Exception make the critical vari-
ables of abruptly terminating loops via break, which,
in our approach, fulfill the invariant and an assertion
specified by the user.

At the end of the analysis, the original constant symbols are
translated back to the input variables.

Remark 1: In the enumeration above, 1) does not subsume
3): in 1) the variables have exact values, while in 3) they
have symbolic values. Moreover, for reasoning about loops,
in particular about their correctness, one needs only the item
2) in the enumeration above.

The output of the meta-functions consists in a tuple of for-
mulae, each of them to be understood as universally quantified
over the free variables.

We illustrate the method using Example 1 (Search in a bidi-
mensional array) containing two nested, abrupt terminating
loops. Line 1 and 2 represent the input, respectively the output
condition of the program. The loops are annotated with the
invariants ι1 and ι2.

III. SYNTAX, SEMANTICS, AND PARTIAL CORRECTNESS

We first introduce a meta-predicate Π which checks the
syntax and a meta-function Σ which constructs the semantics.
These are not actually needed for the implementation of a
program verification system. They are only needed in order to
reason about the effect of the verification condition generator.
For instance, all statements about the effect of the meta-
functions can be formulated only on programs which fulfill
the predicate Π. Likewise, the effect of a program P is
expressed as a logical formula Σ[P], which constitutes the
implicit definition of the function realized by the program.
Additionally, we generate the semantics of each loop as an
implicit definition of the function implemented by the loop on
the critical variables.

The verification conditions for partial correctness are gen-
erated by a meta-function Γ.

Since the focus of this paper is on the termination, we do
not give here the definitions of Π, Σ and Γ (see details in
[10]), but only the main description.

A. Syntax

The predicate Π checks a program for syntactic correctness,
including the fact that each variable is initialized, that each

Algorithm 1 Search in a bidimensional array
1. in A: array of reals; m,n: integers; e: real
where m > 0, n > 0
2. out β: integer or tuple where
(∃
0≤k<m

∃
0≤l<n

A〈k,l〉=e⇒ Aβ=e)∧
(∀
0≤k<m

∀
0≤l<n

A〈k,l〉 6=e⇒ (β=−1))

3. local int i, j, s;
4. s := 0; i := 0;
5. while (i < m)
6. ι1: 0 ≤ i ≤ m ∧ ∀

0≤k<i
∀

0≤j<n
A〈k,j〉 6= e,

7. j := 0;
8. while (j < n)
9. ι2:0 ≤ j ≤ n ∧ ∀

0≤i<m
∀

0≤l<j
A〈i,l〉 6= e,

10. if (e = A〈i,j〉)
11. s := 1;
12. break;
13. j := j + 1;
14. Assert[ι2 ∨ (s = 1 ∧ e = A〈i,j〉)];
15. if (s = 1)
16. return[〈i, j〉];
17. i := i+ 1;
18.return[-1]

execution path contains a return statement, and that the
break statement occurs only in while loops. Moreover,
we require that each loop terminating abruptly via break
is annotated with an assertion, other than the invariant. The
reason is that one can not characterize precisely the critical
variables at the exit point of the loop as fulfilling the invariant
and the negated loop condition like in the case of normal
terminating loops. Therefore, the critical variables from loops
terminating abruptly via break are known to fulfill the
invariant and the assertion. This assertion is further used in
the analysis of the program after the loop and replaces the
negated loop condition which is known to be fulfilled only at
the end of normal terminating loops.

For instance our illustrating example is syntactically correct.

B. Semantics

For programs containing while loops there are two pos-
sibilities for constructing their semantics. The one presented
in [9] uses the loop condition, the invariant and the values
computed by the loop for the critical variables in order to
characterize the loop. Although simple, this technique con-
siders the loop as a black box: its effect is encoded into
the invariant and the operations inside the loop body are not
taken into consideration. We express in this paper a loop as
a recursive function (1) because this view allows us to prove
the correctness of our method in Section V, similarly to the
single recursion programs [11].

We define the semantics of a loop via the meta-level
function Σ as being an implicit definition at object level of
the function implemented by the loop. Each formula on the

left hand side of (1) is a conditional definition for f [δ] and
depends on the accumulated [negated] conditions ϕ coming
from the conditionals and from the loop constructs (invariants
and loop conditions). The value of f [δ] is the symbolic value
of the returned term according to the current substitution σ on
the respective non-recursive program paths and, respectively,
the value of f with the actual arguments (saved in σW) of the
recursive call, for the iterative paths. Note that the ellipsis in
(1) might represent other conditional definitions for f coming
from other iterative paths, and from the analysis of the abrupt
terminating statements.

∀
δ:ι
∧

 ¬ϕ⇒ (f [δ] = δ)
ϕ⇒ (f [δ] = f [δσW])
...

(1)

For instance, the semantics of the loops in our example
is given below, with certain notational conventions: f1 and
f2 are the symbols standing for the functions implemented
by the outer, respectively the inner loop, while the tuple
of numbers after each formula represents the corresponding
execution path.
Semantics of the outer loop.

∀
i,j,s:ι1

∧

i ≥ m⇒ (f1[i, j, s] = 〈i, j, s〉)
〈5, 6〉

i < m ∧ 0 ≥ n ∧
(
(0 ≤ n ∧ ∀

0≤i<m
∀

0≤l<0
A〈i,l〉 6= e)

∨ (s = 1 ∧A〈i,0〉 = e)
)
∧ s = 1

⇒ f1[i, j, s] = 〈i, j〉
〈5, 6, 7, 8, 14, 15, 16〉

i < m ∧ 0 ≥ n ∧
(
(0 ≤ n ∧ ∀

0≤i<m
∀

0≤l<0
A〈i,l〉 6= e)

∨ (s = 1 ∧A〈i,0〉 = e)
)
∧ s 6= 1

⇒ f1[i, j, s] = f1[i+ 1, j, s]
〈5, 6, 7, 8, 14, 15, 17〉

i < m ∧ j ≥ n ∧ ι2 ∧
(
(0 ≤ j ≤ n

∧ ∀
0≤i<m

∀
0≤l<j

A〈i,l〉 6=e) ∨ (s=1 ∧A〈i,j〉=e)
)

∧ (s = 1)⇒ f1[i, j, s] = 〈i, j〉
〈5, 6, 8, 9, 14, 15, 17〉

i < m ∧ j ≥ n ∧ ι2 ∧ (
(
0 ≤ j ≤ n

∧ ∀
0≤i<m

∀
0≤l<j

A〈i,l〉 6=e) ∨ (s=1 ∧A〈i,j〉=e)
)

∧ s 6= 1⇒ f1[i, j, s] = f1[i+ 1, j, s]
〈5, 6, 8, 9, 14, 15, 16〉

Semantics of the inner loop.

∀
j,s:ι2

∧

j ≥ n⇒ (f2[j] = j)
〈8, 9〉

j < n ∧ (e = A〈i,j〉)⇒ (f2[j, s] = 〈i, j〉)
〈8, 9, 10, 11, 12〉

j < n ∧ (e 6= A〈i,j〉)⇒ (f2[j, s] = f2[j + 1, s])
〈8, 9, 10, 13〉

C. Partial Correctness

The meta-function Γ generates the partial correctness con-
ditions. These ensure safety (all functions are used with appro-
priate values of the arguments) and functional correctness (the
values returned by the main function satisfy the output spec-
ification). Additional verification conditions, called assertive

conditions, are the conditions whose goal is represented by
an intermediary program assertion introduced by the Assert
construct. Altogether, they ensure the partial correctness. An
example is the formula:
m > 0 ∧ n > 0 ∧ 0 ≥ m ⇒ (∃

0≤k<m
∃

0≤l<n
A〈k,l〉 = e ⇒

(Aβ=e)) ∧ (∀
0≤k<m

∀
0≤l<n

A〈k,l〉 6=e⇒ (−1=−1)),

obtained from the analysis of the path: 〈4, 5, 18〉, which
corresponds to the case when the loop is not executed.

In the case of loops, the safety, functional, and assertive
conditions are generated as for recursive programs. Addition-
ally to these, verification conditions ensuring the invariant at
first loop entry, as well as the preservation of the invariant at
each iteration (including the exit values in case of break) are
generated.

IV. TERMINATION

Non-recursive programs containing nested abrupt termi-
nating while loops terminate if each loop terminates. We
approach the termination by considering the loop as separate
module (program or loop) whose termination condition is:

∀
δ:ι
∧

 ¬ϕ⇒ π[δ]
ϕ ∧ Φ ∧ π[δσW]⇒ π[δ]
...

⇒ ∀δ:ιπ[δ] (2)

In formula (2), π is a new constant symbol, thus in fact it
behaves like a universally quantified predicate. This is why this
formula is in fact an induction principle. The formula consists
of an implication between two universally quantified parts,
both over δ (standing for the loop critical variable[s]) which
satisfy the loop invariant ι. The left-hand side is a conjunction
of implicational clauses. The first clause corresponds to the
end of the loop (ϕ is the loop condition), and the other clauses
correspond to the paths of execution of the loop. Each path
has associated a path condition Φ and a substitution σW which
encodes symbolically the effect of this path on the critical
variable[s] δ.

We now explain the rationale behind (2). Let us consider
the predicate τ [δ]: “the loop terminates on input δ” (whose
definition we do not actually know). The left-hand side of
the implication represents a property T [π] which should be
fulfilled by this predicate τ . Intuitively, this property states
that the loop terminates if the condition ϕ is not fulfilled,
and furthermore, corresponding to each execution path, it
states that the loop terminates on δ if it terminates on the
values updated by the execution of the loop δσW . Intuitively,
we consider that the predicate expressing termination is the
strongest predicate obeying this property T . The termination
condition states that the invariant ι is stronger than any
predicate fulfilling T – thus it will be also stronger than τ . In
this way we can express termination without explicit use of τ .

Therefore, the condition states that the loop terminates for
any values of the critical variable which fulfills the invariant,
in particular for the values of the critical variable at the entry
point of the loop because they preserve the invariant. This is,
however, only an intuitive explanation, and in the next section

we show rigourously that the termination condition is sufficient
for the existence and uniqueness of the function implemented
by the loop.

Loop analysis implies collecting in Φ the conditions of the
if statements, the invariants of the inner loops and the output
characterization of the additional functions encountered – if
it is the case, and also formulae of the type π[δσW]. The
operations in the inner loops do not appear explicitly in the
outer ones (they are encoded in the loop invariant), except
for break – if the currently analyzed module has non-nested
loops, and for return – at any level.

As in the semantics formula (1), the ellipsis in (2) might
represent other conditional definitions for f coming from other
iterative paths, and from the analysis of the abrupt terminating
statements.

The termination condition, one for each loop, is generated
automatically by the meta-level functions Θ, Θ′ and Θ′′.

The meta-level function Θ analyzes the current module and
specializes itself into Θ′ and, respectively, into Θ′′ for modules
which contain nested loops, because the break statement
has different behavior for non-nested, respectively, for nested
loops. On one hand, for non-nested loops, both return and
break terminate the loop (Definitions 2.1, 2.2). On the other
hand, in nested loops, return terminates all loops and the
program itself (Definition 3.1) and break terminates only the
innermost loop that contains it (Definition 3.2).

The main function Θ depends on the global variable rep-
resenting the initial program state. The truth constant T is
used as assumption at the beginning of the program analysis
(Definition 1.1) and also each time a new module is analyzed
(Definition 1.7.2). This assumption is sufficient because we
generate termination conditions only for loops specified by
the corresponding invariant. The meta-level function works by
symbolic execution, generating a list of termination conditions,
one for each loop of the program as follows: updates the
program state in case of assignments (Definition 1.4), forks
the analysis of the program in two execution paths in case
of conditional if (Definition 1.5), returns the empty tuple in
case of return statement (because termination of a module
corresponds to the termination of the inner iterative structures,
if they exist). Definitions 1.3 – handling break statements
and 1.6 – handling end of while are applied only if the
module analyzed does not contain nested loops, these cases
occurring by the application of Definition 1.7.2. Each time a
loop is analyzed, a new symbol π standing for an arbitrary
predicate is generated and the analysis proceeds as follows:
a termination condition for the currently analyzed loop is
generated (Definition 1.7.1) where an auxiliary function Θ′ is
used, a path analyzes the loop body similarly to the program
(Definition 1.7.2) and the last one continues with the analysis
of the statements after the loop (Definition 1.7.3). Note that
the same analysis is performed for each loop, independently
of the degree of nestedness, due to Definition 1.7.2.

The inductive definitions corresponding to the meta-function
Θ are as follows:

Definition 1:

1) Θ[P] = Θ[{α→ α0},T, P]{α0 → α}
2) Θ[σ,Φ, 〈return[t]〉^ P] = 〈〉
3) Θ[σ,Φ, 〈break〉^ P] = 〈〉
4) Θ[σ,Φ, 〈v := t〉^ P] = Θ[σ{v → tσ},Φ, P]

5) Θ[σ,Φ, 〈if(ϕ)PT , PF 〉^ P] =

^

{
Θ[σ,Φ ∧ ϕσ, PT ^ P]
Θ[σ,Φ ∧ ¬ϕσ, PF ^ P]

6) Θ[σ,Φ, 〈〉] = 〈〉
7) Θ[σ,Φ, 〈while (ϕ) do ι, B ^ P] =

^

〈
∀
δ:ι
∧
{(
¬ϕσ0⇒π[δ]

)
{δ0→δ}

Θ′[σ0, ϕσ0, B, π]⇒π[δ]

}
⇒ ∀

δ:ι
π[δ]
〉

(1)

Θ[σ0, ϕσ0 ∧ ισ0, B] (2)
Θ[σ0,T, P] (3)

The auxiliary functions Θ′ and Θ′′ behave similarly to Θ,
except that they generate a disjunction of formulae (for the
simplicity of the approach), one for each path analyzed, from
which the termination of the loop must follow (Definition
1.7.1) and that:
• return statement has the same behavior in non- and

nested loops: they return the accumulated path conditions
(Definitions 2.1 and 3.1);

• break statement behaves similarly to return in non-
nested loops (Definition 2.2), but for programs with
nested loops the analysis performed in inner loops is not
visible in the wrapper ones (Definitions 3.2).

• at the end of the non-nested loop, a path condition involv-
ing the termination predicate π is constructed (Definition
2.5), while the analysis performed in the nested loops is
not visible in the outer loops (Definition 3.5)

• nested loops are always analyzed by the meta-function
Θ′′ (Definition 2.6).

Definition 2:
1) Θ′[σ,Φ, 〈return[δ]〉^ P,π] = Φ{δ0 → δ}
2) Θ′[σ,Φ, 〈break〉^ P,π] = Φ{δ0 → δ}
3) Θ′[σ,Φ, 〈v := t〉^ P,π] = Θ′[σ{v → tσ},Φ, P, π]

4) Θ′[σ,Φ, 〈if (ϕ) PT , PF 〉^ P,π] =

∨
{

Θ′[σ,Φ ∧ ϕσ, PT ^ P,π]
Θ′[σ,Φ ∧ ¬ϕσ, PF ^ P,π]

5) Θ′[σ,Φ, 〈〉, π] = (Φ ∧ π[δσ]){δ0 → δ}
6) Θ′[σ,Φ, 〈while (ϕ) do ι, B〉^ P,π] =

Θ′′[σ,Φ, 〈while (ϕ) do ι, B]〉^ P,π]

Definition 3:
1) Θ′′[σ,Φ, 〈return[δ]〉^ P,π] = Φ{δ0 → δ}
2) Θ′′[σ,Φ, 〈break〉^ P,π] = F
3) Θ′′[σ,Φ, 〈v := t〉^ P,π] = Θ′′[σ{v → tσ},Φ, P, π]

4) Θ′′[σ,Φ, 〈if (ϕ) PT , PF 〉^ P,π] =

∨
{

Θ′′[σ,Φ ∧ ϕσ, PT ^ P,π]
Θ′′[σ,Φ ∧ ¬ϕσ, PF ^ P,π]

5) Θ′′[σ,Φ, 〈〉, π] = F
6) Θ′′[σ,Φ, 〈while (ϕ) do ι, B〉^ P,π] =

∨

 Θ′[σ,Φ ∧ ¬ϕσ, P, π]
Θ′′[σ, ϕσ ∧ ισ,B, π]
Θ′[σ,¬ϕσ ∧ ισ, P, π]

The termination conditions for the loops in Example 1 are as
below. There are actually two induction principles, developed
from the structure of the loops. The program terminates if both
loops terminates, i.e. the following two formulae hold. The
tuples of numbers between the formulae represent the program
lines analyzed leading to the respective path condition.

Semantics of the outer loop.

∀
i,j,s:ι1

∧

i ≥ m⇒ π1[i, j, s]
〈5, 6〉

i < m ∧ 0 ≥ n ∧
(
(0 ≤ n ∧ ∀

0≤i<m
∀

0≤l<0
A〈i,l〉 6= e)

∨ (s = 1 ∧A〈i,0〉 = e)
)
∧ s = 1⇒ π1[i, j, s]

〈5, 6, 7, 8, 14, 15, 16〉
i < m ∧ 0 ≥ n ∧

(
(0 ≤ n ∧ ∀

0≤i<m
∀

0≤l<0
A〈i,l〉 6= e)

∨ (s = 1 ∧A〈i,0〉 = e)
)
∧ s 6= 1 ∧ π1[i+ 1, j, s]

⇒ π1[i, j, s]
〈5, 6, 7, 8, 14, 15, 17〉

i < m ∧ j ≥ n ∧ ι2 ∧
(
(0 ≤ j ≤ n

∧ ∀
0≤i<m

∀
0≤l<j

A〈i,l〉 6=e) ∨ (s=1 ∧A〈i,j〉=e)
)

∧ (s = 1)⇒ π1[i, j, s]
〈5, 6, 8, 9, 14, 15, 17〉

i < m ∧ j ≥ n ∧ ι2 ∧ (
(
0 ≤ j ≤ n

∧ ∀
0≤i<m

∀
0≤l<j

A〈i,l〉 6=e) ∨ (s=1 ∧A〈i,j〉=e)
)

∧ s 6= 1 ∧ π1[i+ 1, j, s]⇒ π1[i, j, s]
〈5, 6, 8, 9, 14, 15, 16〉

⇒ ∀
i,j,s:ι1

π2[i, j, s]

Termination of the inner loop.

∀
j,s:ι2

∧

j ≥ n⇒ π2[j, s]
〈8, 9〉

j < n ∧ (e = A〈i,j〉)⇒ π2[j, 1]
〈8, 9, 10, 11, 12〉

j < n ∧ (e 6= A〈i,j〉) ∧ π2[j + 1, s]⇒ π2[j, s]
〈8, 9, 10, 13〉

⇒ ∀
j,s:ι2

π2[j, s]

V. CORRECTNESS OF THE METHOD

The loop semantics as given by the function Σ can be
brought into the form Σ[W]:

∀
δ:ι
∧
{
Q[δ]⇒ (f [δ] = S[δ])
¬Q[δ]⇒ (f [δ] = f [R[δ]])

(3)

where Q[δ] represents the disjunction of the negated loop
condition with all path conditions on which the loop terminates
abruptly or normally, while S and R express the effects of
the loop body on different paths, possibly including case
distinction.

Then the termination condition given by Θ can be expressed
as:

∀
δ:ι
∧
{
Q[δ]⇒ π[δ]
¬Q[δ] ∧ π[R[δ]]⇒ π[δ]

}
⇒ ∀

δ:ι
π[δ] (4)

The total correctness formula for while loops is expressed
as: “The formula ∀

δ:ι
ι[f [δ]] is a logical consequence of the

semantics Σ[W] and the verification conditions.” However,
this always holds in the case that Σ[W] is contradictory to

the theory, which may happen on the iterative execution path.
Therefore, one proves first that the existence (and the unique-
ness) of an f satisfying Σ[W] is a logical consequence of
the verification conditions. This follows from the termination
condition.

We give now the main steps of the development leading to
this fact. Please note that we use the basic theory of natural
numbers (including the induction principle), and we denote by
n,m natural numbers.

A first step is the general fact of the existence of the
repetition function, that is the formula:

∀
g
∃
G
∀
x
(G[0, x] = x) ∧ (∀

n
G[n+, x] = g[G[n, x]]),

where n+ stands for the successor of n in the theory of natural
numbers. The proof is based on natural number induction
and is presented in detail in [10], and we will employ the
usual notation gn[x] for G[n, x], as well as the straightforward
property gn

+

[x] = gn[g[x]] = g[gn[x]].
Lemma 1: (Existence of the recursion index.) The formula
∀
δ:ι
∃
n:N
Q[Rn[δ]] is a logical consequence of the termination

condition (4) and the safety verification conditions.
Proof: The proof uses the induction principle given in

(4), where π[δ] is ∃
n:N
Q[Rn[δ]].

We have to prove that:

∀
δ:ι
∧

{
Q[δ]⇒ ∃

n:N
Q[Rn[δ]]

¬Q[δ] ∧ ∃
n:N
Q[Rn[R[δ]]]⇒ ∃

n:N
Q[Rn[δ]]

In the first clause n is 0, and in the second clause n on the
right hand side is the successor of n from the left hand side.

Remark 2: One can define now a function (the recursion
index of δ) M [δ] = min{n | Q[Rn[δ]} because the set is
nonempty.

Remark 3: It is straightforward to show that M [R[δ]]+ =
M [δ].

Theorem 1: (Existence of the function implemented by the
loop.) The existence of an f satisfying formula (3) is a logical
consequence of the termination condition (4) and the safety
verification conditions.

Proof: We take f [δ] := S[RM [δ][δ]] as the witness for
the loop semantics. For showing that f satisfies (3), in the
inductive clause we use the remark above.

Remark 4: The uniqueness is easily proven by taking
f1[δ] = f2[δ] as π[δ] for two arbitrary functions f1, f2 which
satisfy (3).

Theorem 2: (Total correctness.) The formula ∀
δ:ι
ι[f [δ]] is

a logical consequence of the program semantics and the
verification conditions.

Proof: By taking π[δ] as ι[f [δ]] in (4), we have to prove
that:

∀
δ:ι
∧
{
Q[δ]⇒ ι[f [δ]]
¬Q[δ] ∧ ι[f [R[δ]]]⇒ ι[f [δ]]

The first implication holds by using the semantics definition
for f in the case Q[δ] holds and the functional verification

condition expressing the fact that the invariant is preserved
also at the last iteration of the loop. The premises of the second
implication hold because f [R[δ]] is defined (R[δ] satisfies
ι) and ι[f [R[δ]]] is preserved at each loop iteration by the
corresponding functional verification condition.

Note that this proof is basically identical for tail recursive
functions in general, and very similar to the single recursion
programs [11].

VI. CONCLUSION

The method presented in this paper combines forward
symbolic execution and functional semantics for reasoning
about [abrupt terminating] imperative non-recursive programs.
A distinctive feature of our approach is the formulation of the
termination condition as an induction principle depending on
the structure of the program with respect to loops. Moreover,
the total correctness condition is expressed at object level, and
we do not need any additional construction for the definition
of program execution (in particular for termination).

We are currently working at the automated proofs from
Section V in the framework provided by the Theorema system
[5]. As future work, we plan to extend our approach to multiple
recursion programs.

In the past we approached the problem of termination of
recursive programs [8], which is more complex but it is
solved in a similar manner as in this paper. This approach
can be easily extended to programs containing loops, but
where recursive calls are outside the loops. Otherwise, mutual
recursion occurs and this requires further investigation.

REFERENCES

[1] Y. Bertot and P. Casteran, Interactive Theorem Proving and Program
Development, Springer-Verlag, 2004.

[2] R. Boute, Calculational Semantics: Deriving Programming Theories
from Equations by Functional Predicate Calculus, ACM Transactions
on Programming Languages and Systems 28 (2006), no. 4, 747–793.

[3] A. Bradley, Z. Manna, and H. Sipma, Linear Ranking with Reachability,
Proc. 17th Intl. Conference on Computer Aided Verification (K. Etes-
sami and S. Rajamani, eds.), Lecture Notes in Computer Science, vol.
3576, Springer Verlag, July 2005.

[4] A. Bradley, Z. Manna, and H. Sipma, Termination analysis of integer
linear loops, CONCUR 2005 (London, UK), Springer-Verlag, 2005.

[5] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Naka-
gawa, F. Piroi, N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger,
Theorema: Towards Computer-Aided Mathematical Theory Exploration,
Journal of Applied Logic 4 (2006), no. 4, 470–504.

[6] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, R. Leino,
and E. Poll, An Overview of JML Tools and Applications, International
Journal on Software Tools for Technology Transfer 7 (2005), no. 3,
212–232.

[7] B. Cook, A. Podelski, and A. Rybalchenko, Termination Proofs for
Systems Code, ACM SIGPLAN Notices 41 (2006), no. 6, 415–426.

[8] M. Eraşcu and T. Jebelean, Practical Program Verification by Forward
Symbolic Execution: Correctness and Examples, Austrian-Japan Work-
shop on Symbolic Computation in Software Science (B. Buchberger,
T. Ida, and T. Kutsia, eds.), 2008, pp. 47–56.

[9] M. Eraşcu and T. Jebelean, A Calculus for Imperative Programs:
Formalization and Implementation, Proceedings of the 11th International
Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting (S. Watt, V. Negru, T. Ida, T. Jebelean, D. Petcu, and D. Zaharie,
eds.), IEEE, 2009, pp. 77– 84.

[10] M. Eraşcu and T. Jebelean, A Purely Logical Approach to Imperative
Program Verification, Tech. Report 10-07, Research Institute for Sym-
bolic Computation, Johannes Kepler University, Linz, 2010.

[11] M. Eraşcu and T. Jebelean, A Purely Logical Approach to Program
Termination, Proceedings of the 11th International Workshop on Termi-
nation, FLOC 2010 (P. Schneider-Kamp, ed.), July 14-15 2010.

[12] M. Gordon and T. Melham (eds.), Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic, Cambridge University
Press, New York, NY, USA, 1993.

[13] D. Gries, The Science of Programming, Springer, 1981.
[14] M. Kaufmann, J. Strother Moore, and P. Manolios, Computer-Aided

Reasoning: An Approach, Kluwer Academic Publishers, Norwell, MA,
USA, 2000.

[15] J. King, Symbolic Execution and Program Testing, Communications of
the ACM 19 (1976), no. 7, 385–394.

[16] A. Krauss, Automating Recursive Definitions and Termination Proofs
in Higher-Order Logic, Ph.D. thesis, Technische Universität München,
2009.

[17] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers, Addison-Wesley Professional, July
2002.

[18] C. S. Lee, N. Jones, and A. Ben-Amram, The Size-Change Principle for
Program Termination, SIGPLAN Not. 36 (2001), no. 3, 81–92.

[19] J. McCarthy, A Basis for a Mathematical Theory of Computation, Com-
puter Programming and Formal Systems (P. Braffort and D. Hirschberg,
eds.), North-Holland, Amsterdam, 1963, pp. 33–70.

[20] L. C. Paulson, Isabelle - A Generic Theorem Prover (with a contribution
by T. Nipkow), Lecture Notes in Computer Science, vol. 828, Springer,
1994.

[21] A. Podelski and A. Rybalchenko, A Complete Method for the Synthesis
of Linear Ranking Functions, VMCAI, 2004, pp. 239–251.

[22] W. Schreiner, Understanding Programs, Tech. report, Research Institute
for Symbolic Computation, July 2008.

[23] K. Slind, Function Definition in Higher-Order Logic, TPHOLs ’96:
Proceedings of the 9th International Conference on Theorem Proving
in Higher Order Logics (London, UK), Springer-Verlag, 1996, pp. 381–
397.

[24] S. Wolfram, The Mathematica Book. Version 5.0, Wolfram Media, 2003.

