
A Purely Logical Approach to Program Termination
EXTENDED ABSTRACT

Mădălina Eraşcu∗ Tudor Jebelean
Research Institute for Symbolic Computation

Johannes Kepler University, Linz, Austria
{merascu,tjebelea}@risc.uni-linz.ac.at

We present our work in progress concerning the logical foundations of the analysis of termination for
imperative recursive programs. The analysis is based on forward symbolic execution [12] and functional
semantics. The distinctive feature of our approach is the formulation of the termination condition as
an induction principle developed from the structure of the program with respect to iterative structures
(recursive calls and while loops). Moreover the termination condition insures the existence and the
uniqueness of the function implemented by the program. Note that the existence is not automatic, because
a recursive program corresponds, logically, to an implicit definition. It is interesting that this inductive
termination condition can be also used for proving the uniqueness of the function as well as the total
correctness of the program. We show in this paper how to prove the existence of the implemented
function in the case of single recursion programs (programs with at most one recursive call on each
branch). The method can be applied however to all imperative recursive programs, where recursive calls
are outside the loops. For other programs, termination analysis appears to involve co-recursive functions
and it is subject to further investigation. The methods presented here are under implementation in the
Theorema system [2].

Related work. Existing static analysis methods in the Floyd-Hoare style [7, 10] for proving termination
of programs with loops consist in manually annotate the loop with a termination term [9], or to synthesize
the termination term automatically using various techniques mostly from linear [integer] programming
[15, 1]. These approaches can be seen in the context of our work as methods for proving certain classes
of such logically expressed termination conditions that we generate. A recent approach for termination
of functional programs is based on the comparison of infinite paths in the control flow graph and in ,,size-
change graphs”, comparison that is reduced to the inclusion test for Büchi automata [13]. Automated
tools supporting termination analysis are e.g. Terminator [3, 8], ACL2 [11], and termination tools for
term rewriting systems (http://www.termination-portal.org/).

Theoretical background. Our approach is purely logic, meaning that the program correctness is prov-
able in predicate logic, without using any additional theoretical model for program semantics or program
execution, but only using the theories relevant to the predicates, constants and functions present in the
program text. (By a theory we understand a set of formulae in the language of predicate logic with equal-
ity.) We call such theories ϒ object theories. We consider two kinds of functions in the object theory:
i) basic – they have only input conditions, but no output conditions (e.g. arithmetic operations in various
number domains); and ii) additional – they are functions implemented by other programs or bounded
arithmetical operations, and in the process of verification conditions generation only their specification
will be used.

Additionally, we consider a meta-theory which includes the programming constructs (statements),
the program itself, as well as the terms and the formulae from the object theory, which are meta–terms
from the point of view of the meta-theory, and they behave like quoted. The programming statements are:
abrupt statements (break, return), assignments – including recursive calls, conditionals and while

∗Supported by Upper Austrian Government and Austrian Science Foundation (FWF) grant W1214–DK1

1

A Purely Logical Approach to Program Termination Eraşcu, Jebelean

loops. The statements contain formulae and terms from the object theory. A program P is a tuple of state-
ments and is annotated with pre- and postcondition, the logic formulae I f [α] and O f [α,β], respectively.
It takes as input a certain number of variables and it returns a single value β . For simplicity we consider
a single input variable (denoted conventionally by α). (Clearly this formalism can be easily extended to
several input and output variables).

The meta-theory contains further constructs for reasoning about programs: The meta-predicate Π
checks that a program is syntactically correct, that every branch contains a return statement, that break
statement occurs only inside loops, and that each variable is initialized before it is used 1. The meta-
level function Σ creates an object-level formula containing a new [second order] symbol f denoting
conventionally the function defined by the program. It generates a conjunction of formulae with the
shape:

∀
α:I f

Φ⇒ (f [α] = t),

having the following meaning: the expression for f is the symbolic term t, conditioned by the object-level
formula Φ – the accumulated conditions coming from the analysis of each statement on the respective
path. This formula is universally quantified over the input variable α satisfying the input condition I f

of the program. (Please note that in this paper we depart from the classical notation for application of
functions and predicates, in that we use the square brackets instead of the usual round brackets.) We
consider this formula as being the semantics of the program P in the following sense: the function f
implemented by the program satisfies Σ[P], in other words Σ[P] is the implicit definition of the function
f . Note that Σ effectively translates the original program into a functional program. From this point
on, one could reason about the program using e.g. the Scott fixpoint theory ([14], pag. 86), however we
prefer a purely logical approach. The meta-level function Γ generates two kinds of verification conditions
insuring the partial correctness of the program. Safety conditions are formulae with the shape Φ⇒ Ih[t],
where Ih is the input condition of some function h called with the current symbolic value t, and the
formula Φ accumulates the conditions on the respective branch. Functional conditions are formulae
checking that the output condition on the currently returned value is a consequence of the accumulated
conditions on the respective branch. Finally, the meta-level function Θ generates a termination condition
for the recursive program and for each while loop.

The detailed formalization of the predicate and meta-functions are presented in [4, 5, 6].

Single recursion programs. We present in this paper the main meta-theorems concerning the programs
whose text contains at most one recursive call on each branch. It is quite straightforward to show that
such programs can always be expressed as in (1), where Q is a predicate and S, C, and R are functions
defined using the constructs present in the program text, possibly using conditionals but no recursion.

P : f [α] = if Q[α] then S[α] else C[α, f [R[α]]] (1)

The semantics formula Σ[P] and termination condition Θ[P] for such a program are (2) and (3),
respectively.

∀
α:I f

∧
{

Q[α]⇒ (f [α] = S[α])
¬Q[α]⇒ (f [α] = C[α, f [R[α]]])

(2) ∀
α:I f

∧
{

Q[α]⇒ π[α]
¬Q[α]∧π[R[α]]⇒ π[α]

}
⇒ ∀

α:I f
π[α] (3)

(We use as notations: x : I f for “x satisfying I f [x]” and ∧ with curly brackets for conjunction of
several formulae.) Note that both formulae are at object level. Also, (2) is an implicit definition of f .

1The check of initialized variables is purely syntactic, thus it may force some (logically) unnecessary initializations.

2

A Purely Logical Approach to Program Termination Eraşcu, Jebelean

In formula (3), π is a new constant symbol, thus in fact it behaves like a universally quantified
predicate. This is why this formula is in fact an induction principle. Note also that the termination
condition abstracts some details of the actual program (functions S and C), because they are in fact not
important for termination.

The rationale of this formula is as follows: The left-hand side of the implications represents a prop-
erty which should be fulfilled by the predicate π[α] (“the program terminates on input α”), property
which, in case of recursive calls includes also the predicate π[R[α]] – that is the arbitrary predicate ap-
plied to the current symbolic values of the arguments of the recursive call to f . However there may be
many predicates which have this property (for instance “True”). Intuitively, we consider that the pred-
icate expressing termination is the strongest predicate obeying this property. Since the new constant π
behaves like a universally quantified (second order) variable, the formula states that the input condition
I f is stronger than any such predicate, thus it is stronger than the termination predicate. Therefore, the
program terminates for any values of the input variable which fulfills the input condition.

Correctness of the method. The total correctness formula for single recursion programs is expressed
as: “The formula ∀

α
I f [α] ⇒ O f [α, f [α]] is a logical consequence of the semantics Σ[P] and with the

verification conditions.” However, this always holds in the case that Σ[P] is contradictory to the theory,
which may happen when the program is recursive. Therefore, one proves first that the existence (and the
uniqueness) of a f satisfying Σ[P] is a logical consequence of the verification conditions. This follows
from the termination condition.

We give now the main steps of the development leading to this fact. Please note that we use n,m as
natural numbers, and n+ for the successor function.

Lemma 1. (Existence of the repetition function.) The formula

∀
h
∃
G
∀
x

(
G[0,x] = x ∧ ∀

n:N
(G[n+,x] = h[G[n,x]])

)

is a logical consequence of the natural number theory.

Proof. Let x be arbitrary but fixed.
One proves first ∀

m:N
∃
H

(
H[0] = x ∧ ∀

n<m
H[n+] = h[H[n]]

)
by natural induction on m. From here by

Skolemization on H one obtains ∃
H

∀
m:N

(
H [m][0] = x ∧ ∀

n<m
H [m][n+] = h[H [m][n]]

)
. Furthermore one

can prove ∀
n:N

∀
m≥n

H [m][n] = H [n][n] by natural induction on n and by taking g[n] = H [n][n] one has

(since x was arbitrary) ∀
x
∃
g

(
g[0] = x ∧ ∀

n:N
g[n+] = h[g[n]]

)
which by Skolemization on g gives the desired

formula (with notation G[n,x] instead of G[x][n]).

Remark 1. The function G[n,x] is usually denoted as hn[x].
Remark 2. It is straightforward to show that hn[h[x]] = hn+

[x].
The subsequent properties need the theory of natural numbers, although we do not specify this ex-

plicitly.

Lemma 2. (Existence of the recursion index.) The formula ∀
α:I f

∃
n:N

Q[Rn[α]] is a logical consequence of

the termination condition (3) and the safety verification conditions.

Proof. The proof uses the induction principle given in (3), where π[α] is ∃
n:N

Q[Rn[α]]. One needs to use

the safety conditions and the property of hn given above.

3

A Purely Logical Approach to Program Termination Eraşcu, Jebelean

Remark 1. One can define now a function (the recursion index of α) M[α] = min{n | Q[Rn[α]} because
the set is nonempty.
Remark 2. It is straightforward to show that M[R[α]]+ = M[α].

Theorem 1. (Existence of the function implemented by the program.) The formula (2) is a logical
consequence of the termination condition (3) and the safety verification conditions.

Proof. The proof is similar to the one from Lemma 1, only that instead of the running argument n we use
α with a certain recursion index.

One proves first:

∀
m:N

∃
F
∀

α:I f
(M[α]≤ m)⇒ ((

Q[α]⇒ F [α] = S[α]
) ∧ (¬Q[α]⇒ F [α] = C[α,F [R[α]]]

))
(4)

by natural induction on m.
By Skolemizing F from (4) one obtains:

∃
F
∀

m:N
∀

α:I f
(M[α]≤ m)⇒ (

(Q[α]⇒F [m][α] = S[α]) ∧ (¬Q[α]⇒F [m][α] = C[α,F [m][R[α]]])
)

Furthermore one can prove ∀
α:I f

∀
m:N

(m ≥M[α]) ⇒ (F [m][α] = F [M[α]][α]) by the induction given in

the formula (3) (taking as π[α] the formula above without the quantifier for α).
Finally one takes f [α] = F [M[α]][α].

Remark. Uniqueness of f is straightforward: take f1, f2 satisfying (2) and use (3) with π[α] as f1[α] =
f2[α].

Theorem 2. (Total correctness.) The formula ∀
α

I f [α] ⇒ O f [α, f [α]] is a logical consequence of the
program semantics and the verification conditions.

Proof. The proof is straightforward by taking in (3) π[α] as O f [α, f [α]]. This is because the left-hand
side of the (3) becomes identical to the functional conditions generated for partial correctness.

Programs containing while loops. Our approach can be easily extended to programs containing ar-
bitrarily nested possibly abrupt terminating while loops2, by transforming the loop body B into a tail
recursive function where the loop invariant ι represents the specification of the new function. The param-
eters of the virtual function are the so called critical variables – the variables which are modified within
the loop body. The actual arguments of the call are the values of the critical variables when entering
the loop. The template semantics and termination formulae are similar to those corresponding to prim-
itive recursive functions, namely if the while loop is (5) then the semantics is (6) and the termination
condition is (7).

W : while ϕ [δ] do ι ,B (5)

∀
δ :ι
∧

{¬ϕ [δ]⇒ (f [δ] = δ)
ϕ [δ]⇒ (f [δ] = f [R[δ]])

(6) ∀
δ :ι
∧

{¬ϕ[δ]⇒ π[δ]
ϕ[δ]∧π[R[δ]]⇒ π[δ]

}
⇒ ∀

δ :ι
π[δ] (7)

In case of nested loops, the operations from the body of the inner loops are not reflected explicitly in
the clauses of the semantics and verification conditions, except if a return – at all levels or a break–

2Currently we do not treat the situation where the loop body contains a recursive call to the main function, because this
will lead to mutual recursion.

4

A Purely Logical Approach to Program Termination Eraşcu, Jebelean

in non-nested loops is encountered. It is the loop invariant that encodes them and that it is used in the
further analysis of the program. The details of the formalization are found in [6]. The correctness proof
proceeds similar to the case of primitive recursive functions.

Conclusions and future work. During the construction of a mathematical theory, when we define a
new function in an implicit way, we prove the existence of it in order to avoid introducing a contradiction
in our theory. Likewise, during the construction of a software system, when we program a new function,
we prove the termination of it, in order to insure the effectiveness of our system. The work presented
here is a step towards showing that these two situations essentially reduce to the same logical operations.

Further work includes the investigation of termination theory for programs with multiple recursion
and with nested recursion, as well as the development of methods for proving the verification conditions
by combining logical and algebraic algorithms.

References
[1] A. Bradley, Z. Manna, and H. Sipma, Linear Ranking with Reachability, Proc. 17th Intl. Conference on

Computer Aided Verification (K. Etessami and S. Rajamani, eds.), Lecture Notes in Computer Science, vol.
3576, Springer Verlag, July 2005.

[2] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa, F. Piroi, N. Popov, J. Robu,
M. Rosenkranz, and W. Windsteiger, Theorema: Towards Computer-Aided Mathematical Theory Explo-
ration, Journal of Applied Logic 4 (2006), no. 4, 470–504.

[3] B. Cook, A. Podelski, and A. Rybalchenko, CFL-Termination, Tech. Report MSR-TR-2008-160, Microsoft
Research, 2008.

[4] M. Eraşcu and T. Jebelean, Practical Program Verification by Forward Symbolic Execution: Correctness and
Examples, Austrian-Japan Workshop on Symbolic Computation in Software Science (B. Buchberger, T. Ida,
and T. Kutsia, eds.), 2008, pp. 47–56.

[5] M. Eraşcu and T. Jebelean, A Calculus for Imperative Programs: Formalization and Implementation, Pro-
ceedings of the 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Comput-
ing (S. Watt, V. Negru, T. Ida, T. Jebelean, D. Petcu, and D. Zaharie, eds.), IEEE, 2009, pp. 77– 84.

[6] M. Eraşcu and T. Jebelean, A Purely Logical Approach to Imperative Program Verification, Tech. Report
10-07, Research Institute for Symbolic Computation, Johannes Kepler University, Linz, 2010.

[7] R. Floyd, Assigning Meaning to Programs, Proc. of Symposia in Appl. Math. American Mathematical Soci-
ety, 1967.

[8] A. Gotsman, B. Cook, M. Parkinson, and V. Vafeiadis, Proving that Non-blocking Algorithms don’t Block,
POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages (New York, NY, USA), ACM, 2009, pp. 16–28.

[9] D. Gries, The Science of Programming, Springer, 1981.
[10] C. A. R. Hoare, An Axiomatic Basis for Computer Programming, Communications of the ACM 12 (1969),

no. 10, 576–580.
[11] M. Kaufmann and J. S. Moore, An Industrial Strength Theorem Prover for a Logic Based on Common Lisp,

Software Engineering 23 (1997), no. 4, 203–213.
[12] J. King, Symbolic Execution and Program Testing, Communications of the ACM 19 (1976), no. 7, 385–394.
[13] C. S. Lee, N. Jones, and A. Ben-Amram, The Size-Change Principle for Program Termination, SIGPLAN

Not. 36 (2001), no. 3, 81–92.
[14] J. Loeckx, K. Sieber, and R. Stansifer, The Foundations of Program Verification, John Wiley & Sons, Inc.,

New York, NY, USA, 1984.
[15] A. Podelski and A. Rybalchenko, A Complete Method for the Synthesis of Linear Ranking Functions, VM-

CAI, 2004, pp. 239–251.

5

