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Summary. The paper is devoted to fast iterative solvers for frequency-domain finite
element equations approximating linear and nonlinear parabolic initial boundary
value problems with time-harmonic excitations. Switching from the time domain to
the frequency domain allows us to replace the expensive time-integration procedure
by the solution of a simple linear elliptic system for the amplitudes belonging to the
sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier
coefficients in the linear and nonlinear case, respectively. The fast solution of the
corresponding linear and nonlinear system of finite element equations is crucial for
the competitiveness of this method.

1 Introduction

In many practical applications, for instance, in electromagnetics and mechan-
ics, the excitation is time-harmonic. Switching from the time domain to the
frequency domain allows us to replace the expensive time-integration proce-
dure by the solution of a simple elliptic system for the amplitudes. This is
true for linear problems, but not for nonlinear problems. However, due to the
periodicity of the solution, we can expand the solution in a Fourier series.
Truncating this Fourier series and approximating the Fourier coefficients by
finite elements, we arrive at a large-scale coupled nonlinear system for de-
termining the finite element approximation to the Fourier coefficients. In the
literature, this approach is called multiharmonic FEM or harmonic-balanced
FEM, and has been used by many engineers in different applications. see, e.g.,
Bachinger et al. [2002] and the references therein.

Bachinger et al. [2005] provided the first rigorous numerical analysis for the
eddy current problem. The practical aspects of the multiharmonic approach,
including the construction of a fast multigrid preconditioned QMR solver for
the Jacobi system arising in every Newton step and the implementation in
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an adaptive multilevel setting, are discussed in Bachinger et al. [2006] by the
same authors. There was no rigorous analysis of the multigrid preconditioned
QMR solver, but the numerical results presented in this paper for academic
and more practical problems indicated the efficiency of this solver.

The construction of fast solvers for such systems is very crucial for the over-
all efficiency of this multiharmonic approach. In this paper, we look at linear
and nonlinear, time-harmonic potential problems. We construct and analyze
an almost optimal preconditioned GMRes solver for the Jacobi systems aris-
ing from the Newton linearization of the large-scale coupled nonlinear system.
This preconditioner is not robust with respect to the excitation frequency. In
the linear case we are able to construct a robust preconditioner used in a Min-
Res solver. The multiharmonic approach is presented in Section 2, whereas
the two different preconditioners and solvers are discussed in Section 3 and
Section 4.

2 Frequency-Domain Finite Element Equations

Let us consider the following nonlinear, parabolic, scalar potential equation
with a homogeneous Dirichlet boundary condition and an inhomogeneous ini-
tial condition as the model problem:α∂u∂t −∇ · (ν(|∇u|)∇u) = f in Ω × (0, T ],

u(x, 0) = u0(x) for x ∈ Ω,
u(x, t) = 0 for (x, t) ∈ ∂Ω × [0, T ],

(1)

where the right-hand side f(x, t) is given by a time-harmonic excitation with
the frequency ω, i.e.

f(x, t) = f c(x) cos(ωt) + fs(x) sin(ωt). (2)

We assume that Ω ⊂ R3 is a bounded Lipschitz domain, α is a given uniformly
positive function in L∞(Ω), and ν : R+

0 → R+ is a continuously differentiable
function satisfying the properties

0 < νmin ≤ ν(s) ≤ νmax for s ≥ 0, (3)
s 7→ sν(s) is Lipschitz and strongly monotone for s ≥ 0. (4)

These conditions ensure that there exists at least a unique weak solution
to the initial boundary value problem (1), see Zeidler [1990]. In the linear
case where the coefficient ν is independent of |∇u|, the solution u(x, t) =
uc(x) cos(ωt) + us(x) sin(ωt) is time-harmonic as well, and we get an elliptic
boundary value problem for defining the unknown amplitudes uc and us which
only depend on the spatial variable x. This is not true in the nonlinear case.
However, the solution u to (1) is still periodic in time, with frequency ω. Thus,
we have the Fourier series representation
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u(x, t) =
∞∑
k=0

uck(x) cos(kωt) + usk(x) sin(kωt),

where the Fourier coefficients are given by

uck(x) =
2
T

∫ T

0

u(x, t) cos(kωt) dt and usk(x) =
2
T

∫ T

0

u(x, t) sin(kωt) dt.

Here, the period is T = 2π/ω. Similarly, the potential

Ψ [u](x, t) := ν(|∇u|)∇u(x, t)

can be expressed as a Fourier series

Ψ [u](x, t) =
∞∑
k=0

Ψ ck [u](x) cos(kωt) + Ψsk [u](x) sin(kωt)

with vector-valued Fourier coefficients Ψ ck and Ψsk . Approximating u and Ψ by
the truncated series

u(x, t) ≈ ũ(x, t) :=
N∑
k=0

uck(x) cos(kωt) + usk(x) sin(kωt) (5)

and

Ψ [u](x, t) ≈ Ψ̃ [ũ](x, t) :=
N∑
k=0

Ψ ck [ũ](x) cos(kωt) + Ψsk [ũ](x) sin(kωt)

yields the following system of nonlinear equations for the Fourier coefficients:

αω


0 1
−1 0

. . .
0 N
−N 0




uc1
us1
...
ucN
usN

−∇ ·

Ψ c1 [ũ]
Ψs1 [ũ]
...
Ψ cN [ũ]
ΨsN [ũ]

 =


f c1
fs1
...
f cN
fsN

 . (6)

Throughout this paper, we denote by u := (uc1, u
s
1, . . . , u

c
N , u

s
N )T the vector

of 2N Fourier coefficients and by ũ the approximation to u given by the
finite series (5). We shall solve a variational problem for u in H1

0 (Ω)2N :=
(H1

0 (Ω))2N , where H1
0 (Ω) is the Sobolev space of order 1 on Ω, with vanishing

trace on the boundary of Ω. Note that the Fourier coefficients corresponding
to k = 0 need not be solved for due to the initial condition, cf. Copeland and
Langer [2009].

The finite element approximation to (6) leads to a large nonlinear system
of finite element equations of the form
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Fh(uh) = fh (7)

for determining the finite element solution

S1
h :=

(
span{φj}Nh

j=1

)2N

3 ũh ↔ uh = (uc1,h, u
s
1,h, . . . , u

c
N,h, u

s
N,h)T ∈ R2N ·Nh

to the Fourier coefficients u ∈ H1
0 (Ω)2N . Here, φj are piecewise linear ba-

sis functions in H1
0 (Ω). Thus the multiharmonic approach yields a time-

independent nonlinear system for the solution of which highly parallel solvers
can be constructed.

Following Bachinger et al. [2005] we can show that under standard reg-
ularity assumptions, the discretization error behaves like O(h + N−1) with
respect to the L((0, T ), H1(Ω)) norm.

Solving (7) by Newton’s method (τn = 1)

un+1
h = unh + τnwn

h = unh + τnF′h(unh)−1(fh − Fh(unh)), (8)

we have to solve the large-scale linear system

F′h(unh)wn
h = rnh := fh − Fh(unh), (9)

with the Jacobi matrix Fh
′(unh) as system matrix and the residual rnh as right-

hand side.
Copeland and Langer [2009] show that the Jacobi-systems (9) can success-

fully be solved by the preconditioned GMRes method using a special domain
decomposition preconditioner. We will explain the construction of this pre-
conditioner for the corresponding linear problem in the next section, but the
results remain valid for the Jacobi-systems (9) too.

In the remainder of this paper, we discuss preconditioned iterative methods
for solving linear systems of the form(

Kh σMh

−σMh Kh

)(
uch
ush

)
=
(
f c
h
fs
h

)
, (10)

arizing from the time-domain finite element discretization of the initial-
boundary value problem (1) with the time-harmonic excitation (2) in the
linear case where the coefficient ν is independent of |∇u|. The coefficient σ is
equal to αω. Here and in the following, we assume that α is a positive con-
stant. The stiffness matrix Kh and the mass matrix Mh are computed from
the bilinear forms∫

Ω

ν(x)∇φ(x) · ∇ψ(x) dx and
∫
Ω

φ(x)ψ(x) dx,

respectively. The system matrix Dh in (10) is obviously positive definite and
non-symmetric (block skew-symmetric).
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3 Domain Decomposition Solver

Following Xu and Cai [1992], we propose a non-symmetric two-level Schwarz
preconditioner for (10) of the form

C−1
h = IhHD−1

H IHh + βB−1
h , (11)

where DH is a coarse grid version of Dh, IHh and IhH are appropriate restriction
and prolongation operators, Bh is a symmetric positive definite (SPD) precon-
ditioner for the SPD part Ah = blockdiag(Kh,Kh) of Dh, and β is a positive
scaling constant. Dryja et al. [1994] proposed a wire-basket-based domain
decomposition method that gives an effective preconditioner Bh for the sym-
metric positive definite matrix Ah, with a condition number estimate which is
independent of jumps in the coefficient and depends only polylogarithmically
on H/h, see also Toselli and Widlund [2005]. Using this wire-basket domain
decomposition preconditioner Bh in (11), we arrive at the following conver-
gence estimate for the GMRes preconditioned by the XuCai-preconditioner
(11):

Theorem 1 Assume that the adjoint linear problem is H1+s(Ω)2-coercive
with some s ∈ (0, 1], and H is sufficiently small, specifically Hs < c(1 +
log(H/h))−2. Then the GMRes method preconditioned by the preconditioner
(11) with the wire-basket component Bh converges and the convergence esti-
mate

‖rmh ‖Ah
≤
(

1− c c−4
log

(
1 + c2log

)−2
)m/2

‖r0
h‖Ah

:= γ(H/h)m/2‖r0
h‖Ah

holds for the preconditioned residual rmh = C−1
h (fh − Dhumh ) at the m-th

iteration, where clog := 1 + log(H/h), 0 < γ(H/h) < 1, and the constant c
depends on ν and σ, but not on H and h.

The proof of this theorem can be found in Copeland and Langer [2009]. In the
same paper we present our numerical results which show that our precondi-
tioned GMRes method is a quite efficient solver for the linear system (10) and
can efficiently be used for solving the Jacobi-systems (9) as well. The number
of iterations only polylogarithmically depends on H/h. In order to clarify the
dependence on σ, Kolmbauer [2009] performed a Fourier analysis of the pre-
conditioned matrix C−1

h Dh for the one-dimensional problem with constant ν,
where the exact SPD part Ah was used as Bh, and H = 2h. This analysis
shows that this preconditioner is not robust with respect to σ, see also the
second line of Table 2. In the next section we present a robust preconditioner
for the linear system (10) in an equivalent symmetric, but indefinite setting.

4 A Symmetric and Indefinite Reformulation

The non-symmetric and positive definite system (10) can be reformulated in
the following equivalent form
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Mh Kh

Kh −σ2Mh

)(
ush
1
σu

c
h

)
=
( 1
σf

c

h
fs
h

)
(12)

with a symmetric but indefinite system matrix Dh. For simplicity, we use the
same notation Dh for the system matrix in (10) and (12). It follows from
Schöberl and Zulehner [2007] that the block-diagonal preconditioner

Ch =
1
σ

(
σMh +Kh 0

0 −σ2(σMh +Kh)

)
(13)

is robust with respect to both the discretization parameter h and the bad
parameter σ. More precisely, the condition number

κ(Ch
−1Dh) = ‖Ch

−1Dh‖Ch
‖Dh

−1Ch‖Ch
= |λ2Nh

|/|λ1| ≤ c = const (14)

can be estimated by a positive constant c that is independent of both h and
σ, where the eigenvalues of the preconditioned matrix Ch

−1Dh are ordered
in such a way that |λ2Nh

| ≥ |λ2Nh−1| ≥ · · · ≥ |λ1| > 0. Therefore, solving

Ch
−1Dhuh = Ch

−1fh

by means of the MinRes method proposed by Paige and Saunders [1975], we
can ensure that the preconditioned residual r2m

h = Ch
−1fh −Ch

−1Dhu2m
h of

the 2m-th MinRes iterate satisfies the iteration error estimate

‖r2m
h ‖ ≤

2qm

1− q2m
‖r0
h‖ (15)

with q = (κ(Ch
−1Dh)− 1)/(κ(Ch

−1Dh) + 1), see e.g. Voss [1993] or Green-
baum [1997]. Thus, the number of MinRes iterations required for reducing the
initial error by some fixed factor ε ∈ (0, 1) is independent of both h and σ. Of
course, in practice, the diagonal blocks σMh +Kh in the preconditioner (13)
should be replaced by appropriate preconditioners, e.g. by appropriate do-
main decompostion or multigrid preconditioners, see e.g. Toselli and Widlund
[2005].

Applying again the Fourier analysis (FA) to our one-dimensional problem
gives quantitative rates which are displayed in Table 1, for σ ranging from
10−10 to 1010.

Table 2 provides the MinRes iteration numbers which are needed for re-
ducing the initial error by the factor ε = 10−5 for different h and σ. The sec-
ond line contains the preconditioned GMRes iterations for the constellation
h = 1/60 and H = 1/10, where we use the preconditioner (11) with Bh = Ah.
Both the FA (Table 1) and the numerical exeriments (Table 2) were per-
formed for the one-dimensional linear problem resulting in the stiffness matrix
Kh = h−1tridiag(−1, 2,−1) and in the mass matrix Mh = (h/6)tridiag(1, 4, 1)
for the case ν = 1. However, due to the estimates (14) and (15) the numerical
behavior observed in our one-dimensional example is characteristic for the
three-dimensional linear problem as well.
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Table 1. Convergence rate q resulting from the FA (ε = 10−5).

log10σ -10 -8 -6 -4 -2 0 2 4 6 8 10

h = 1/60 < ε < ε < ε < ε 0.0005 0.046 0.17 0.17 0.021 0.0002 < ε
h = 1/120 < ε < ε < ε < ε 0.0005 0.046 0.17 0.17 0.072 0.0009 < ε
h = 1/1200 < ε < ε < ε < ε 0.0005 0.046 0.17 0.17 0.17 0.072 0.0009
h = 1/12000 < ε < ε < ε < ε 0.0005 0.046 0.17 0.17 0.17 0.17 0.072
h = 1/120000 < ε < ε < ε < ε 0.0005 0.046 0.17 0.17 0.17 0.17 0.17

Table 2. Number of GMRes and MinRes iterations for ε = 10−5.

log10σ -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

GMRes 1 1 1 1 1 1 2 2 2 3 4 5 9 18 36 52 52 52 52 52 52

h = 1/60 1 1 1 1 1 1 3 3 3 5 7 11 13 13 14 10 6 4 4 2 2
h = 1/120 1 1 1 1 1 1 3 3 3 5 7 11 13 13 14 12 8 4 4 2 2
h = 1/1200 1 1 1 1 1 1 3 3 3 5 7 11 15 13 14 13 12 10 6 4 4
h = 1/12000 1 1 1 1 1 1 3 3 3 5 7 11 15 13 14 13 12 12 11 10 6
h = 1/120000 1 1 1 1 1 1 3 3 3 5 7 11 15 13 14 13 12 12 11 10 10

5 Conclusions, Outlook, and Acknowledgments

In this paper we have considered the harmonic and multiharmonic approach to
the solution of linear and nonlinear parabolic initial-boundary value problems
with harmonic excitation. We have proposed two solution strategies based on
a preconditioned GMRes method for the positive definite and non-symmetric
problem formulation and a preconditioned MinRes iteration method for the
symmetric and indefinite reformulation of the problem. The preconditioner
for the GMRes method is a two-level Schwarz preconditioner consisting of a
coarse grid solver for the original non-symmetric problem and a wire-basket-
based domain decomposition preconditioner for the SPD part. This iterative
solver works well for both the linear system (10) arizing from the linear time-
harmonic problem and the Jacobi-systems (9) arizing in every step of the
Newton iteration (8) for solving the nonlinear equations (7). This precondi-
tioner is highly parallel, but not robust with respect to the bad parameter
σ. A robust preconditioner can be constructed for the linear case where ν is
independent of |∇u|. The preconditioner used in the MinRes method has a
block-diagonal structure and is robust with respect to both the discretization
parameter h and the bad parameter σ. Of course, other iterative methods
are possible like the symmetric Uzawa CG method considered in Schöberl
and Zulehner [2007] or the QMR method used in Bachinger et al. [2006]. Fur-
thermore, the robust all-at-once multigrid solvers developed by Schöberl et al.
[2009] for solving saddle point problems can be an alternative to the precondi-
tioned Krylov-subspace methods considered in this paper. The preconditioned
GMRes and MinRes solvers presented in this paper can be generalized to non-
linear eddy current problems studied in Bachinger et al. [2005] and Bachinger
et al. [2006].
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