
Eingereicht von
Dipl.-Ing.
Peter Gangl,
Bakk. Techn.

Angefertigt am
Doktoratskolleg
“Computational
Mathematics”

Betreuer und
Erstbeurteiler
O.Univ.-Prof.
Dipl.-Ing. Dr.
Ulrich Langer

Zweitbeurteiler
Univ.-Prof. Dr.
Fredi Tröltzsch
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Abstract

This thesis deals with topology and shape optimization methods for finding optimal geome-
tries of devices from electrical engineering. As a model problem, we consider the design
optimization of an electric motor. Here, the performance of the motor depends on the elec-
tromagnetic fields in its interior, which, among other factors, also depend on the geometry
of the motor via the solution to Maxwell’s equations. In our model, we use a special regime
of Maxwell’s equations, namely the partial differential equation (PDE) of nonlinear magne-
tostatics, and consider a two-dimensional setting of the electric motor. Thus, we are facing
a PDE-constrained optimization problem where the unknown is the geometry of a given part
of the motor.

An important tool for solving shape optimization problems is the shape derivative, i.e., the
sensitivity of the domain-dependent objective function with respect to a smooth variation of a
boundary or material interface. We derive the shape derivative for the optimization problem
at hand, which involves a nonlinear PDE constraint, by means of a Lagrangian approach.
We employ the shape derivative to obtain an improved design of the electric motor. One
shortcoming of the class of shape optimization methods is that they can only vary boundaries
or interfaces of given designs and cannot alter their topology, i.e., they cannot introduce holes
or new components.

Using topology optimization methods, also the connectivity of a domain can change during
the optimization procedure. In this thesis, we focus on topology optimization approaches
based on topological sensitivities. On the one hand, we consider the sensitivities of the objec-
tive function with respect to a local variation of the material. On the other hand we rigorously
derive the topological derivative, i.e., the sensitivity of a domain-dependent objective function
with respect to the introduction of a hole in the interior of the domain. The latter approach is
particularly involved in this case due to the nonlinear PDE constraint. The information pro-
vided by these sensitivities can be used for determining optimal designs whose topology may
be different from the topology of the initial design.

In both classes of methods, we start with an initial geometry consisting of several materials
and successively update the material interfaces in the course of the optimization procedure.
The update is based on topological or shape sensitivities, which depend on the solutions to
two PDEs (the state equation and the adjoint equation of the optimization problem). These
PDEs are approximately solved by means of the finite element method on a triangular grid
in each iteration. In order to obtain accurate solutions to these PDEs, the evolving interface
should be resolved by the finite element discretization. We introduce a local mesh adaptation
strategy which modifies the mesh only in a neighborhood of the interface and show optimal
order of convergence as the mesh size approaches zero.
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Finally, we combine the three components mentioned above and apply it to the optimization of
electric motors. In a first step, we perform topology optimization in order to find the optimal
connectivity of the design. In a second step, we use shape optimization together with the
proposed mesh adaptation strategy as a post-processing in order to get smoother designs.



Zusammenfassung

Diese Arbeit behandelt Methoden der Topologie- und Formoptimierung zur Bestimmung von
optimalen Geometrien in Anwendungen aus der Elektrotechnik. Als ein Modellproblem be-
trachten wir die Optimierung der Geometrie eines Elektromotors. Das Verhalten des Motors
wird bestimmt von den elektromagnetischen Feldern im Inneren des Motors, welche wie-
derum, über die Lösung der Maxwell-Gleichungen, auch von der Geometrie des Motors ab-
hängen. Wir verwenden einen Spezialfall der Maxwell-Gleichungen, nämlich die partielle
Differentialgleichung der nichtlinearen Magnetostatik. Desweiteren betrachten wir ein zwei-
dimensionales Modell des Elektromotors. Das Optimierungsproblem besteht also darin, die
Geometrie eines gewissen Teils eines Elektromotors zu identifizieren, welche unter der Ne-
benbedingung einer nichtlinearen partiellen Differentialgleichung das bestmögliche Verhal-
ten des Motors zur Folge hat.

Ein wichtiges Werkzeug zur Behandlung von Formoptimierungs-Problemen ist die Formablei-
tung, also die Sensitivität eines Funktionals, das von der Form eines Gebietes abhängt, be-
züglich einer glatten Variation des Randes dieses Gebietes. Wir berechnen die Formableitung
für das beschriebene Formoptimierungs-Problem, welches eine nichtlineare partielle Diffe-
rentialgleichung beinhaltet, mittels eines Lagrange’schen Zuganges und verwenden die For-
mableitung um eine verbesserte Geometrie des Elektromotors zu erhalten. Ein Nachteil der
Klasse der Formoptimierungs-Verfahren ist, dass diese nur den Rand eines Gebietes variieren
können, nicht aber seine Topologie. Es können also keine Löcher oder neuen Komponenten
eingeführt werden.

Mittels Verfahren der Topologieoptimierung kann auch die Anzahl der zusammenhängen-
den Komponenten eines Gebietes im Laufe des Optimierungsverfahrens verändert werden. In
dieser Arbeit behandeln wir Zugänge zur Topologieoptimierung, die auf topologischen Sen-
sitivitäten beruhen. Einerseits betrachten wir die Sensitivität des Zielfunktionals bezüglich
einer lokalen Variation des Materials. Andererseits berechnen wir rigoros die topologische Ab-
leitung, also die Sensitivität eines Funktionals, welches von einem Gebiet abhängt, bezüglich
der Einführung eines Loches im Inneren des Gebietes. Aufgrund der Nebenbedingung in Form
einer nichtlinearen partiellen Differentialgleichung ist letzterer Zugang besonders aufwändig.
Die Information aus diesen Sensitivitäten kann verwendet werden, um optimale Geometrien
zu erhalten, deren Topologie von jener des ursprünglichen Designs abweicht.

In beiden Klassen von Verfahren gehen wir von einer Anfangsgeometrie aus, welche aus ver-
schiedenen Materialien besteht, und bewegen die Interfaces zwischen den verschiedenen
Materialien in eine Richtung, die mithilfe der Sensitivitäten des Funktionals bezüglich der
Form oder Topologie des Gebietes bestimmt wird. Um diese Sensitivitäten berechnen zu kön-
nen, müssen jedoch zwei partielle Differentialgleichungen gelöst werden (die Zustandsglei-
chung und die adjungierte Gleichung des Optimierungsproblems), was wir näherungsweise
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mittels des Verfahrens der Finiten Elemente auf einem Dreiecksgitter bewerkstelligen. Um
möglichst genaue Nähreungslösungen dieser Gleichungen zu erhalten, sollte das Interface
immer durch die Diskretisierung aufgelöst werden. Zu diesem Zweck führen wir eine loka-
le Gitter-Anpassungs-Strategie ein, welche das Gitter nur in einer Umgebung des Interfaces
modifiziert, und zeigen optimale Konvergenzordnungen bei immer feiner werdendem Gitter.

Schließlich kombinieren wir diese drei Komponenten und wenden sie auf das Problem der Op-
timierung von Elektromotoren an. In einem ersten Schritt wendenwir ein Topologieoptimierungs-
Verfahren an, um die optimale Topologie des Gebietes zu finden. In einem zweiten Schritt
verwenden wir Formoptimierung gemeinsam mit der Modifizierung des Gitters zur Nachbe-
arbeitung, um glattere Geometrien zu erhalten.
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Chapter 1

Introduction

1.1 Motivation

Over the past decades, electrical machines have become an integral part of our everyday life.
They appear in household appliances, industrial applications, and of course also in the context
of electromobility, a sector which is more topical now than ever it has been. It is desirable
that these machines are designed in such a way that they fulfill their purpose in the best
possible way. While, in former times, this design process was mainly based on the intuition
and experience of engineers, nowadays computer-aided engineering tools which use numer-
ical simulation and optimization algorithms have become an indispensable component. So
far, the most commonly used methods for obtaining good designs of electrical machines in-
clude evolutionary algorithms where the design variables are geometric parameters such as
the dimensions of a certain part of the motor. This approach yields a restriction of the set of
possible designs as only a certain number of parameters can be considered. Here, more gen-
eral topology and shape optimization methods allow for a wider variety of optimal designs,
possibly including designs which could not have been imagined beforehand. In particular,
with the rise of 3D printing and additive manufacturing technologies, more and more com-
plex structures can be produced and, therefore, these general design optimization techniques
seem to be a promising tool for optimal design problems not only in the context of electrical
machines, but in many areas of engineering.

1.2 State of the Art in Topology and Shape Optimization

In this section, we give an overview over themost common approaches tomathematical design
optimization and highlight their advantages and challenges, as well as relations between
different approaches. The general goal in these kind of optimization problems is always to
find a layout of a given object, e.g., a mechanical structure or an electrical device, such that
its performance is as good as possible. The performance is always measured by means of an
objective functional which assigns a real number to any given admissible design. Throughout
this thesis, we will denote this objective functional by J and we will always be interested
in the minimization of J , keeping in mind that a maximization of J can be achieved by
a minimization of the functional −J . Although, in a wide range of practical applications,
designs should be as good as possible with respect to several criteria, we restrict ourselves
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2 CHAPTER 1. INTRODUCTION

to the case of a single objective function in this thesis. We remark that the most common
approach to multi-objective optimization is by forming Pareto fronts, see e.g. [73], where
designs obtained by single-objective optimization algorithms can be compared with respect
to their overall performance. We also mention that, in our framework of single-objective
optimization, it is always possible to choose a weighted sum of several performance criteria
as an objective functional. However, it is usually not clear how to choose the weighting factors
in this weighted sum.

Throughout this thesis, the design variable is the geometry of a given device and we assume
all data of the problem such as loads or boundary conditions to be given and fixed.

The field of design optimization has its origins in the optimization of mechanical structures
wheremost often the goal is either tominimize the compliance (i.e., tomaximize the stiffness)
of the structure while satisfying a volume constraint on the material used, or to minimize the
volume while keeping a certain stiffness. However, these methods have also been applied
to a wide variety of other industrial applications over the past decades. Design optimization
methods are often categorized into the following three classes of methods, see e.g. [67]:

1. Sizing optimization: The most common sizing optimization problems involve trusses,
i.e., mechanical structures consisting of several bars, where the goal is to find the op-
timal thickness of each bar in order to minimize the compliance of the structure under
a given load. In this thesis, we will not deal with this class of methods and refer the
reader to the review paper [40] and the references therein.

2. Shape optimization: In shape optimization, one is interested in finding the optimal
shape of a boundary of a domain or of a material interface within a given domain.
Here, we distinguish between parametric and non-parametric shape optimization. As
the term suggests, in parametric shape optimization, the design is described by a set of
parameters such as the dimensions or orientation of an object. This class of methods
results in optimization problems with a finite dimensional design space. We remark
that also shapes represented by spline curves, which are defined by so-called control
points, fall into this category. In this thesis, we will only deal with non-parametric shape
optimization, where (before discretization) the design space is infinite-dimensional.
This class of shape optimization methods is based on the concept of the shape derivative,
see Sections 1.2.2 and 6.1.

3. Topology optimization: The class of topology optimization methods does not only
allow for a variation of boundaries or interfaces of a design, but, in contrast to shape
optimization methods, also allows for a change of the topology. This means that, when
using topology optimization methods, the number of holes or connected parts of the
structure is not fixed from the beginning. This is a serious advantage of this class of
methods over shape optimization methods since, in many practical applications, the
optimal topology of an object is not known a priori.

We remark that the border between shape and topology optimization methods is not always
very sharp, as there exist methods such as the level set method which theoretically are capable
of altering the topology, but are very unlikely to do that in practice, see Section 1.2.1. We give
an overview over design optimization methods which allow for topological changes in Section
1.2.1, and discuss the main aspects of “classical” shape optimization, i.e., smooth variations
of given boundaries or material interfaces, in Section 1.2.2.
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1.2.1 Topology Optimization

The concept of topology optimization originates from mechanical engineering, but has been
applied to a large variety of other applications ranging from fluid dynamics [79, 92] over
acoustics [77] to electromagnetics [102,129,162,173,174]. This subsection is meant to give
a brief overview over the most commonmethods of topology optimization. To a large amount,
it is based on the review articles [60,145,182,208]. For a more detailed introduction to the
single approaches we refer to these papers and the references therein.

The early work by Michell from 1904 on optimality criteria for the optimal design of trusses
[149] is considered to be the first paper on topology optimization [182]. Later, in the 1970s,
Rozvany and collaborators dealt with exact analytical optimization of similar grid-like struc-
tures [171, 180, 181]. However, the starting point of numerical topology optimization is
widely considered to be the seminal paper by Bendsøe and Kikuchi [41] introducing the
homogenization method for topology optimization, followed by the paper [38], where Bend-
søe introduced what is now known as the Solid Isotropic Material with Penalization (SIMP)
method, giving rise to the large class of density-based methods.

1.2.1.1 Homogenization Method

The idea of the homogenization method is to represent a domain as a periodic microstructure
(usually consisting of rectangular cells like a regular quadrilateral finite element grid) and
then to find the optimal layout for each cell. Each of these cells is considered to consist of
material and void regions (often a rectangular hole surrounded by solid material) and the
dimensions and orientations of these holes are the design variables with respect to which
the optimization is performed. Finally, one ends up with a perforated design which can be
interpreted as a microstructure. A black-and-white structure can be obtained by setting those
cells which are mostly occupied with material to solid and the other cells to void [60]. The
method uses several degrees of freedom for each of the cells, amounting in a large number
of degrees of freedom, which is considered a significant drawback of this method. For more
details on the homogenization method, we refer the reader to the research papers [41, 215,
216] as well as the monograph [2].

1.2.1.2 Density Methods

In topology optimization, one is interested in finding the optimal distribution of a given mate-
rial within a design domain. A possible design can be represented by a function ρwhich takes
the value 1 in areas of material and the value 0 elsewhere. We remark that, in applications of
mechanical engineering, if ρ is 0, the elasticity tensor vanishes and the global stiffness matrix
becomes singular. Therefore, it is common practice in density-based topology optimization of
mechanical structures to replace the value of 0 by a small, but positive number ρmin > 0. The
idea of density-based approaches to topology optimization is to relax this strict 0–1 nature of
the problem by allowing the function ρ to attain any value between 0 and 1. The function ρ
is called a density variable. This procedure amounts to the variable thickness sheet problem
introduced in 1973 in [179]. In order to enforce a 0–1 structure of the final design, Bend-
søe combined this idea with a penalization of intermediate density values in [38], i.e., he
replaced the density function ρ in the state equation (and only there) by a penalized version
of the density, ρ̃(ρ) = ρp for some p > 1. In combination with a constraint on the volume of
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the arising structure, the algorithm favors the use of “black” and “white” regions, i.e., regions
where ρ = 1 and ρ = 0, respectively, because intermediate values “give very little stiffness
at an unreasonable cost” [38]. As remarked in [192], a constraint which limits the volume
is important for this penalizing effect to appear. The method described here together with
the choice ρ̃(ρ) = ρp for some p > 0 became well-known as the SIMP method. We remark
that the method is sensitive with respect to the value of p and that good results are usually
obtained by using p = 3 or by gradually increasing the parameter from p = 1 to higher values
in the course of the optimization procedure [192]. For a comparison of different material
interpolation schemes, see [42]. The penalized topology optimization problem is usually
solved by a gradient-based optimization algorithm such as the Optimality Criteria method
(see, e.g. [104]) or the Method of Moving Asymptotes (MMA, [201]).

While the penalization of intermediate density values yields designs with a 0–1 structure,
these problems usually lack existence of a solution, a fact which often results in a mesh de-
pendence of the optimized designs. For a detailed survey on the numerical problems resulting
from the ill-posedness of such problems we refer the reader to [193]. The most popular ap-
proach to regularizing these ill-posed problems is by applying a filter to the sensitivities. This
means that one replaces the actual sensitivity at a point by an average over the sensitivities in
a neighborhood of a certain radius rmin, called the filter radius. Other approaches include a
filtering of the density variable, see e.g. [97], adding a bound on the perimeter of the arising
structure or on the gradient of the density variable ρ, see [193].

A more detailed overview of density-based topology optimization methods can be found in
the monographs [39,43] as well as in the review papers [182,192].

1.2.1.3 Phase-Field Method

The phase-field method for topology optimization is a density-based method using a linear
material interpolation, ρ̃(ρ) = ρ. A regularization is achieved by adding a term to the cost
functional which approximates the total variation of the density variable. This term is a Cahn-
Hilliard type functional, see [59], which itself is a weighted sum of two terms. One of these
two terms causes a regularizing effect whereas the other term penalizes intermediate density
values. We mention that the choices of the weighting factor between these two parts, as well
as the weight of the Cahn-Hilliard type functional relative to the objective function, are often
crucial for obtaining good results. The phase field method has been applied to many topology
optimization problems, see e.g. [55,91,92,197,220].

1.2.1.4 Level Set Methods

In [165], Osher and Sethian introduced a framework for describing interfaces which evolve
along a given velocity field in an implicit way, as zero level sets of an evolving scalar function
ψ = ψ(x, t). This level set function attains positive values in one subdomain and negative
values in the other, while the material interface is given by the zero level set of the function ψ,
Γ(t) = {x|ψ(x, t) = 0}. Here, t is a pseudo-time variable. The evolution of ψ is given by the
solution to the Hamilton-Jacobi equation

∂

∂t
ψ + V · ∇ψ = 0, (1.1)
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where V determines the direction of the evolution and t is a pseudo-time parameter. In [166]
this framework was first applied to structural optimization with the velocity field V given
according to shape sensitivities. This concept has been used by many researchers [5–8, 72,
209]. We make a few comments on level set methods as a tool for optimal design:

• While using this implicit representation of a shape by means of a level set function
alleviates dealing with topological changes, the level set method as described above
must be categorized as a shape optimization method since the optimization process
is guided by shape sensitivities. Therefore, no information about the sensitivity with
respect to topological changes is available. It is possible that components merge or
disappear, but no holes or new components can be created. For this reason, it is a very
common approach to start with a perforated initial design with many circular holes
and to let them merge or disappear in the course of the optimization procedure, see
e.g. [3,8].

• The numerical treatment of the Hamilton-Jacobi equation is non-trivial since it is a
convection-dominated problem. Possible remedies for this issue include the introduction
of an artificial diffusive term or the stabilization using upwinding techniques, see e.g.
[8,209]. We remark that, when using unstructured grids, special upwinding techniques
must be applied, see e.g. [52].

• A further issue which has to be taken care of in the level set method is the fact that
the level set function is likely to become very flat in the course of the optimization
procedure. This problem is usually avoided by repeatedly re-initializing the level set
function to a signed distance function which satisfies |∇ψ| = 1 everywhere. For more
details, see [164,191,208].

For an overview over different aspects of the level set method for shape and topology optimiza-
tion, we refer the reader to the review papers [54,208] as well as the monographs [164,191].

1.2.1.5 Topological Derivative

The concept of the topological derivative was introduced in [78] as a means to allow for
changes of the topology in the course of a classical shape optimization method. The topolog-
ical derivative of a domain-dependent functional at an interior point of the domain describes
its sensitivity with respect to the introduction of a hole around that point. We will deal with
the topological derivative in detail in Chapter 4 and also give a thorough introduction there.

1.2.1.6 On/Off-type methods

Here, we mention two sensitivity-based methods which do not introduce intermediate mate-
rials, but rather switch between only two possible states (on or off).

In [163], Okamoto and Takahashi propose the gradient-based On/Off method for determining
the optimal design of a magnetic shield for a magnetic recording system. After discretization,
for each element of the finite element mesh, the sensitivity of the objective functional with re-
spect to a perturbation of the magnetic reluctivity in only this element is computed. Based on
this information, elements are switched between the two states at the most effective positions.
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The idea of the evolutionary structural optimization (ESO) method in structural mechanics
[212] is to start out from an initial design where all of the design subdomain is occupied with
material and then to gradually remove material at the most favorable positions according to
some sensitivities like the strain energy density. Later, the method was extended to the bi-
directional evolutionary structural optimization method (BESO) which also allowed for the
re-introduction of previously eliminated material, see [175].

The biggest difference between these two methods is probably that ESO/BESO comes from
mechanical engineering and the On/Off method by the group of Takahashi was introduced
with regard to applications from electrical engineering. The main difference between these
two areas is that, in electromagnetics, void can be regarded as just another material with a dif-
ferent positive material coe�cient and does not have to be excluded from the computational
domain like in mechanics.

In Chapter 3, we will analyze in detail the On/Off method. In Chapter 5 we will draw a
comparison between the material sensitivities used in the On/Off method and the topological
derivative in the framework of linear and nonlinear two-dimensional magnetostatics.

1.2.1.7 Derivative-Free Approaches

We also mention the class of nature-inspired, derivative-free stochastic optimization algo-
rithms which are widely used among engineers. Their big advantage over derivative-based
methods is that they are not as prone to getting stuck in local minima. However, this comes at
the price of much larger computational costs. Wemention the class of genetic algorithms [94],
the particle swarm optimization method [210] and the firefly algorithm [1]. An overview over
this class of methods can be found in [214].

1.2.1.8 Interrelations

Finally, we mention some connections between some of the approaches mentioned above,
which have been studied in the literature.

A very widely used approach is to couple the level set method, which is guided by shape
sensitivity information, with the topological derivative in order to allow for a change of the
topology in the course of the optimization procedure. We mention the papers [5,6,53,105].

A different level set approach is given in [16, 19]. In contrast to the level set method intro-
duced above, in these papers, the evolution of a level set function is guided by the topological
derivative rather than by the shape derivative. This way, large topological changes can easily
be achieved. We will make use of this algorithm in the numerical examples of Section 4.8 and
Chapter 8.

We also mention the results from [17], where it is shown that, for a density method with a
certain choice of the material interpolation function ρ̃(ρ), the sensitivity with respect to the
density variable coincides with the topological derivative, and the recent extension of this
result [21]. In [21], the authors additionally establish a connection between the material
sensitivities and the shape derivative on the material interface. Both results are only shown
for the case of a linear PDE constraint.

Finally, we mention the approach presented in [213], which is a combination of a level set
method and the phase field method. One feature of the approach presented there, which is
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very useful in practice, is that the complexity of the arising final design can be adjusted by a
parameter.

1.2.2 Shape Optimization

In contrast to topology optimization, in shape optimization the connectivity of a domain is
assumed to be fixed. Here, one is interested in finding the shape of a domain or subdomain
which is optimal with respect to a given criterion by means of smooth variations of the bound-
ary or of a material interface. In this thesis, we will study transmission problems, i.e., we are
looking for an optimal subdomain of a given hold-all domain. Therefore, we will describe all
techniques for this case noting that all of these methods can be applied in a similar way to
the case where the whole computational domain is varied, too.

Historically, the first contribution to shape optimization was the early work of Hadamard [96]
who derived the shape derivative for the first eigenvalue of the clamped plate in 1907. The
fields of shape calculus and shape optimization have become active areas of research since the
1970s, see [64, 142, 152, 170, 194]. For a comprehensive overview over the fields, see also
the monographs [51,75,100,101,196].

In shape optimization, wemake the distinction between parametric and non-parametric shape
optimization. As mentioned above, in parametric shape optimization, the shape sensitivities
are sensitivities with respect to certain parameters representing dimensions or orientations
of an object. When a shape is represented by a spline curve or surface, the shape sensitivities
may also be related to the position of the control points representing this curve or surface.
In parametric shape optimization, the design space is represented by a certain, finite num-
ber of parameters, which results in a limitation of the possible designs. A comprehensive
introduction to parametric shape optimization can be found in [67,100].

In non-parametric shape optimization, on the contrary, one is interested in general shapes and
the sensitivity of a shape function with respect to an arbitrary smooth perturbation of these
shapes, called the shape derivative. In this thesis, we will only deal with non-parametric shape
optimization.

For a (non-parametric) shape optimization problem, we consider a shape functional

J : A → R
Ω 7→ J (Ω),

whereA is a set of admissible subsets of a hold-all domainD ∈ Rd. For such shape functionals,
one is interested in their sensitivity with respect to a perturbation of the domain Ω which
motivates the definition of the shape derivative of a shape function J . However, it is important
to note that the definition of the shape derivative is not straightforward since the domain
of definition A of the shape functional does not have a vector space structure. The shape
functional J is said to be shape differentiable if the limit

dJ (Ω;V ) = lim
t↘0

J (Ωt)− J (Ω)

t

exists and the mapping V 7→ dJ (Ω;V ) is linear and continuous, see also Definition 6.1. Here,
Ωt = Tt(Ω) denotes the transformed domain under the flow Tt generated by a smooth vector
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field V . We mention that there are two ways to define this flow given a smooth vector field V .
In the perturbation of identitymethod, the transformation is given by Tt(X) = X+ t V (X) for
all X ∈ Rd and t ≥ 0, whereas in the velocity or speed method, it is given as Tt(X) = x(t,X)
with x(t,X) the solution to the initial value problem

d

dt
x(t,X) = V (x(t,X)), 0 < t < τ,

x(0, X) = X,

which, for small τ > 0 has a unique solution, see [75, 196]. Note that, for simplicity, we
assumed the vector field V to be autonomous. We remark that both approaches are equivalent
for the derivation of first order shape derivatives, but differ by an acceleration term in the case
of second order shape derivatives [75]. In Chapter 6, we will consider the latter approach.

A class of shape optimization problems, which is very important in engineering applications,
is the class of PDE-constrained shape optimization problems where the shape function J
depends on the shape of a domain via the solution of a boundary value problem posed on this
domain. In this thesis, we will only focus on this class of problems.

Among shape optimization methods there is not such a big variety of different approaches
as in the case of topology optimization. The overall procedure in shape optimization could
roughly be summarized in the following three steps:

1. Compute the shape sensitivity.

2. Extract a descent direction.

3. Move the shape in direction of this descent direction.

1.2.2.1 Computation of Shape Derivative

The idea of the shape derivative goes back to the early work of Hadamard [96] who showed
for the first eigenvalue of a clamped plate that the shape sensitivity only depends on the
normal component of the shape perturbation on the boundary. Later, Zolésio generalized this
observation to general shape functions and showed that, for domains with smooth enough
boundaries, the shape derivative can always be written as

dJ (Ω;V ) =

∫
∂Ω
gΓ V · nds (1.2)

with an integrable function gΓ ∈ L1(Γ), see [75, Theorem 3.6]. This form is often called the
Hadamard form of the shape derivative, but it is actually due to J.-P. Zolésio.

Besides this boundary integral form, the shape derivative can also be represented as a volume
integral over the whole domain,

dJ (Ω;V ) =

∫
Ω
g(V,DV )dx (1.3)

for some function g. This representation has the advantage that it requires less regularity
of the solutions to the PDE constraint as well as to the adjoint equation. We will give a
comparison of these two possible representations in Section 6.1.2.

We will give a quick overview over different approaches of deriving the shape derivative using
the velocity method in Section 6.1.1.



1.2. STATE OF THE ART IN TOPOLOGY AND SHAPE OPTIMIZATION 9

1.2.2.2 Extraction of Descent Direction

The shape derivative represents the sensitivity of a shape function with respect to a perturba-
tion of the domain Ω in the direction of a smooth vector field V . Given the analytic formula for
the shape derivative of a cost function J , it remains to extract such a vector field that yields
a decrease of the objective function, i.e., such that dJ (Ω;V ) < 0. If the shape derivative is
given in the Hadamard form (1.2), it can easily be seen that the vector field V = −gΓ n is a
descent direction. On the other hand, in the case of a volume formulation of the kind (1.3),
one can extract a descent vector field V by solving the additional auxiliary boundary value

b(V,W ) = −dJ (Ω;V ),

where b(·, ·) denotes some positive definite bilinear form defined on a suitable Hilbert space,
see also Section 6.6.1.2. This trick is also known as the “traction method”, see e.g. [27, 28],
and has become a standard tool when dealing with the volume form of the shape derivative.
Although this volume-based form seems to come at the costs of the additional solution of an
auxiliary boundary value problem, there are several good reasons for choosing this represen-
tation of the shape derivative, which we will discuss in Section 6.1.2. A common and natural
choice for b(·, ·) is the bilinear form from linear elasticity, see [28,153,187], which gives the
interpretation of V as a displacement field under loads represented by the shape derivative.
Note that the solution V to the auxiliary boundary value problem above can be seen as the
negative shape gradient in terms of the elliptic bilinear form b(·, ·) by the Riesz representation
theorem, see e.g. [9].

1.2.2.3 Evolution of the Shape

Once a descent vector field V is available, it remains to advect the shape in the direction of V .
In principle, there are two different ways to represent a shape: explicitly or implicitly.

If the interface is given explicitly, e.g., by a spline or polygonal interface, whichmay ormay not
be aligned with an underlying finite element discretization, one simply moves the interface
a certain distance into the direction given by V . If the interface is aligned with the mesh
then it is advantageous if the vector field V is supported not only on the interface, but at
least in a neighborhood of the interface, or on the whole computational domain. Thus, even
though it is possible to extract a descent direction V from the boundary form of the shape
derivative (1.2), this vector field is only defined on the interface and must be extended to a
neighborhood in a suitable way.

In the level set method, the shape is represented in an implicit way, by means of a level set
function ψ and its evolution is steered by the Hamilton-Jacobi equation (1.1) with V chosen
as a descent vector field.

We alsomention that, while themost widely used approach to numerical shape optimization is
based on gradient descent methods, in recent years more and more authors have developed
Newton-like methods for shape optimization which exploit second order shape sensitivity
information. We mention the publications [160,188,199].
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1.3 Finite Element Methods for Interface Problems

Throughout this thesis, we are concerned with finding the optimal distribution of ferromag-
netic material within a given design subdomain. In the course of the optimization process,
interfaces between different materials are moving in a direction determined by shape or topo-
logical sensitivities. In each iteration of the optimization algorithm, we have to solve the
boundary value problem of two-dimensional magnetostatics as well as an adjoint equation in
order to be able to evaluate these sensitivities for the next iteration. We solve these problems
by means of a finite element method. When using standard finite element methods, the ma-
terial interfaces where the solution exhibits lower regularity due to a jump of the material
coe�cient must be resolved by the finite element discretization in order to obtain accurate
solutions [29]. Creating a new mesh which resolves the material interfaces at each iteration
is very ine�cient and should be avoided. A wide range of approaches dealing with this kind
of interface problems is available in the literature. Of course, these methods are not restricted
to applications from design optimization, but can be applied to a great variety of problems
involving moving material interfaces such as, e.g., fluid-structure interaction or multi-phase
flow problems. We give a brief overview over some of the most widely used methods.

The extended finite element method (XFEM)was introduced in [151] motivated by the problem
of simulating crack propagation in structural mechanics without the need to resolve the small-
scale features of the crack by the finite elementmesh. Since then, themethod has been applied
to a wide variety of interface problems, see e.g. [37,84,157] and the references therein. The
idea of the method is to enrich the finite element basis by additional basis functions which
are modified or cut-off versions of the standard basis functions, see e.g. Figure 1.1(a) for
the case of piecewise linear finite elements. The solution is seeked in the enriched space
V Γ
h = Vh ⊕ V x

h where Vh is a standard finite element space, and V x
h the space of standard

finite element functions which are supported at the interface, multiplied with a so-called
enrichment function [136]. Depending on the kind of discontinuity arising in the particular
problem, this enrichment function is typically a distance function (for weak discontinuities,
i.e., kinks) or a Heaviside function (for strong discontinuities, i.e., jumps), see e.g. [37,84]. A
thorough introduction to the XFEM from an application point of view can be found in [125].
The idea of enriching the basis is the same in the so-called partition of unity method (PUM),
also referred to as generalized finite element method (GFEM), introduced in [31,147], but here
the enrichment functions are not necessarily local, but can have global support. Note that the
interpretation of the term generalized finite element method is not always straightforward
and often different authors mean different methods. We remark that XFEM, GFEM and PUM
are closely related.

The immersed interface methodwas introduced in [138] in the framework of a finite difference
method and adopted to what is now called the immersed finite element method in [139]. The
idea of the method is similar to that of the XFEM. However, rather than adding basis functions
to the basis, existing basis functions of the finite element space which are supported across
the interface are modified in such a way that the interface jump conditions are satisfied, see
Figures 1.1(b)–(c). Optimal order of convergence in the L2(D) and H1(D) norm have been
established [119,140].

In the unfitted Nitsche method introduced in [99], which is based on Nitsche’s idea [155],
a discontinuity of the solution across an interface is enforced in a weak sense, similar to
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(a) (b) (c)

Figure 1.1: (a) Example of an enriched basis function in XFEM ([136]). (b)–(c) Examples of
immersed basis functions satisfying a jump condition for the gradient in 1D and 2D ([140]).

discontinuous Galerkin methods, see e.g. [176]. This way of treating the interface conditions
is often used in combination with XFEM, called the Nitsche-XFEM. In this method, just like
in all other methods mentioned above, a crucial task is to establish stability of the method
with respect to the location of the interface relative to the mesh. Generally, if an element
of the underlying unfitted background mesh is cut by the interface very close to one of the
vertices, the condition of the system becomes very bad. This issue is treated in the CutFEM
[57], which is a stabilized version of the Nitsche-XFEM using a so-called ghost penalty term
[56]. We also mention the recent work [58] where the CutFEM is combined with level-set
based shape optimization. An alternative approach to getting stability of the Nitsche-XFEM
by preconditioning was shown in [137].

All of the methods mentioned so far use a fixed background mesh and treat the interface by
means of the finite element space. An alternative to these approaches is to modify the mesh
and always work with a fitted discretization while still guaranteeing a certain quality of the
mesh. We mention the mesh optimization approach of [34–36] and the deformable simplicial
complex (DSC) method [68,150].

In [83], an interface finite element method on a fixed mesh is introduced where the interface
is resolved by locally modifying the finite element basis functions. Optimal order of conver-
gence and also, when choosing a special hierarchical basis, optimal conditioning of the system
matrix are shown. We note that this parametric approach can be equivalently interpreted as a
fitted finite element method where some of the mesh nodes close to the interface are moved
in such a way that the interface is resolved by the mesh. In Chapter 7, we will follow this
approach and translate it to the case of triangular finite elements.

1.4 Organization of the Thesis

In this thesis, we combine the three concepts we introduced in Sections 1.2.1, 1.2.2 and
1.3 in the framework of electrical machines. The thesis consists of three theoretical parts
dealing with topology optimization, shape optimization as well as a finite element method
for resolving material interfaces, as well as a final part where the technologies we developed
are combined and applied to some practical applications.

Here, we briefly highlight the main contributions of the author:
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• Starting out from the On/Off method which has been applied to the optimization of
electrical equipment and is defined on a discrete level, we generalized this method to
the continuous level taking into account perturbations of the material coe�cients in
arbitrary smooth subdomains.

• The largest part of this thesis is concerned with the rigorous derivation of the topolog-
ical derivative under the PDE constraint of two-dimensional nonlinear magnetostatics.
Here, while the overall procedure is similar to the previous work done in [20,46], the
extension was by no means trivial. Furthermore, we put a strong emphasis on the ap-
plicability of the resulting formula. In particular, we derived an explicit form for the
matricesM andM(2), which are related to the concept of polarization matrices, and
found a way how the final formula can be computed e�ciently in a numerical optimiza-
tion algorithm. Moreover, we derived the topological derivative for the two different
scenarios: introducing an inclusion of air inside ferromagnetic material, and introduc-
ing ferromagnetic material inside an air region. This is important for the usage of the
formula in bi-directional optimization algorithms.

• We analyzed the relation between the material sensitivities used in the On/Off method,
which are very similar to the sensitivities used in density-based topology optimization,
and the topological derivative.

• We derived the shape derivative for the case of two-dimensional nonlinear magnetostat-
ics in a rigorous way.

• We adapted the interface finite element method introduced in [83] to the case of trian-
gular meshes.

• We combined topology and shape optimization with the interface finite element method
and applied this combined algorithm to the optimization of electric motors.

The remainder of this thesis is organized as follows: In Chapter 2, we introduce the physical
model used throughout this thesis and analyze its mathematical properties. Part I of the the-
sis deals with topology optimization and comprises Chapters 3–5. In Chapter 3 we consider
the On/Off method, a topology optimization method based on sensitivities with respect to
the material coe�cient. The topological derivative for the case of two-dimensional nonlinear
magnetostatics is investigated in great detail in Chapter 4. In Chapter 5, we compare these
two kinds of sensitivities and point out their similarities and differences. Part II, which con-
sists of Chapter 6, is concerned with shape optimization for the same magnetostatic problem.
In Part III, consisting of Chapter 7, we introduce a finite element method which is suitable
for tracking evolving interfaces. We combine all of these methods in Part IV of the thesis,
and apply the developed techniques to two practical examples of the optimization of electric
motors.



Chapter 2

Physical Background for Simulation of
Electrical Machines

2.1 Introduction to Electrical Machines

Electrical machines convert electrical and mechanical energy into each other. An electric mo-
tor converts electrical energy into mechanical movement, whereas a generator produces elec-
trical from mechanical energy. Electric motors can cause a linear or a rotational movement.
Rotating electric motors generally consists of a fixed part, called the stator, and a rotating
part, the rotor. Electric current is induced in coil areas in at least one of these two parts,
which generates a magnetic field. The overall magnetic field in the electric motor, including
a possible contribution from permanent magnets, is responsible for its rotation.

The most important classes of electric motors are DC motors, where direct current is induced,
induction motors and synchronous motors, the latter two classes working on alternating cur-
rent. As opposed to induction motors, which are of asynchronous type, the rotation of the
rotor in a synchronous motor coincides with the rotating magnetic field caused by the al-
ternating current in the coils. Throughout this thesis, we will be dealing with rotating syn-
chronous electric motors. The magnetic field inside the motor may or may not be additionally
influenced by the presence of permanent magnets, which can be placed in the interior of the
motor or mounted on its surface. Figure 2.1 depicts an interior permanent magnet (IPM)
synchronous electric motor which is of the same kind as the model problem introduced in
Section 2.3 which we will consider throughout this thesis. In Section 8.4 we will, in addition,
consider a synchronous reluctance motor without permanent magnets. For a comprehensive
and thorough introduction to electrical machines, we refer the reader to [45].

Important criteria for the design of electric motors include high e�ciency, high torque capa-
bility, high smoothness of the rotation and low production costs. In our model problem, we
will consider a functional which is related to the smoothness of the rotation, and in Section
8.4 we will perform optimization to maximize the average torque of the motor. Most often,
some of these criteria are conflicting and one has to find the best possible trade-off between
different criteria, which is usually done by forming Pareto fronts, see e.g. [73, 218]. In this
thesis, we will restrict ourselves to the case of single-objective optimization problems.

13
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Figure 2.1: Interior permanent magnet synchronous motor as produced by Hanning Elektro-
Werke GmbH & Co KG. Photo credit: LCM GmbH.

2.2 Physical Model

Electromagnetic phenomena are described by Maxwell’s equations which were first published
by James Clerk Maxwell in 1862, see [146]. The full set of equations reads

curlH = J +
∂D

∂t
, (2.1a)

curlE = −∂B
∂t
, (2.1b)

divB = 0, (2.1c)

divD = ρ, (2.1d)

where the unknown quantities are the electric field intensityE, the electric flux densityD, the
magnetic field intensity H and the magnetic flux density B. Note that all of these quantities
are vector-valued functions from R3 to R3. Furthermore, the equations involve the electric
charge density ρ and the electric current density J. This set of equations is complemented by
the constitutive relations [120,128]

B = µH + M, D = εE + P, J = Ji + σE, (2.2)

where M is the magnetization which vanishes outside permanent magnets, P denotes an
electric polarization and Ji an impressed current density (e.g., in the current-loaded coils).
Furthermore, µ denotes the magnetic permeability, ε the electric permittivity and σ the elec-
tric conductivity of a material. In general, these quantities can bematrices, but we will assume
isotropic material throughout this thesis such that they become scalar quantities. Further-
more, we neglect possible effects of hysteresis. For the mathematical models used in the
rest of this thesis, we will always be dealing with the reciprocal of the magnetic permeability
which is called the magnetic reluctivity and is denoted by ν. The magnetic reluctivity ν and
satisfies the relation

H = ν (B−M). (2.3)
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In the framework of electrical machines, we will be concerned with ferromagnetic materials
where the magnetic reluctivity is a nonlinear function of the magnitude of the magnetic flux
density, ν = ν(|B|). Note that the magnetic reluctivity ν is a constant in the areas where
the magnetization M does not vanish [106]. For more details on the system of Maxwell’s
equations, we refer the reader to [116,122,128,207].

For low-frequency applications like electrical machines, the displacement currents ∂D
∂t in

(2.1a) can be neglected such that equation (2.1d) decouples from the other equations. The
arising system (2.1a)–(2.1c) is called the magnetoquasistatic problem or eddy current prob-
lem. Since B is divergence-free according to (2.1c), there exists a vector potential A, which
is unique up to a gradient field, such that

B = curlA. (2.4)

Substituting this relation into (2.3), (2.1b) and (2.1a) yields the vector potential formulation
for the magnetoquasistatic problem [122,128],

σ
∂A

∂t
+ curl (ν(|curlA|)curlA) = Ji + curl (νM) . (2.5)

In the context of electric motors, this quasistatic model is used for the starting phase when
the motor is accelerated from its resting position.

Once the rotor has reached a constant rotational speed, all involved electromagnetic quan-
tities can be regarded as time-independent such that all time derivatives ∂

∂t vanish. Under
these assumptions, the magnetostatic model can be used to obtain the magnetic flux density
B = curlA,

curl (ν(|curlA|)curlA) = Ji + curl(νM). (2.6a)

In order to be able to solve equation (2.6a) numerically by the finite element method, a
bounded computational domain D̂ has to be introduced. This domain should be chosen in
such a way that the magnetic fields are negligible outside the domain. Possible choices of
boundary conditions for the magnetic fields are to force the tangential component of the
magnetic field intensity H to vanish, or to require the normal component of the magnetic
flux density B to disappear. Splitting the boundary of the computational domain D̂ into two
parts ΓH and ΓB such that ∂D̂ = ΓH ∪ ΓB with ΓH ∩ ΓB = ∅, this amounts to the boundary
conditions

H× n = 0 on ΓH , (2.6b)

B · n = 0 on ΓB, (2.6c)

where n denotes the outer unit normal vector to D̂. Condition (2.6b) is called the perfect
magnetic conductor (PMC) boundary condition and models materials with very high perme-
ability, whereas the so-called induction boundary condition (2.6c) means that no magnetic
flux leaves the computational domain, see [116, 128, 217]. The system of magnetostatic
equations is completed by the interface conditions. Let ΓI represent the material interfaces
where the magnetic reluctivity ν jumps, and let JvK denote the jump of a function v across
the interface ΓI , i.e.,

JvK = v+|ΓI − v
−|ΓI ,
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where v+ and v− denote the restrictions of v to the respective subdomains. Then, the interface
conditions for B and H read

JB · nK = 0 on ΓI , JH× nK = 0 on ΓI . (2.6d)

They follow from the integral forms of (2.1c) and (2.1a), respectively.

For the simulation of rotating electrical machines at a fixed rotational speed, a sequence of
magnetostatic problems for a range of different rotor positions have to be solved. The current
density Ji is piecewise constant for each rotor position, but changes in the course of the
rotation.

Under certain assumptions on the geometry of the computational domain D̂, as well as on
the sources Ji and M and the arising magnetic field, the model (2.6) can be approximated
by a two-dimensional model. The assumptions are that

• one dimension of the computational domain is much larger than the other two,

D̂ = D × (−l, l) with l� diam(D),

• the data Ji and M as well as the magnetic field H are constant with respect to x3 and
of the form

Ji =

 0
0

J3(x1, x2)

 , M =

 M1(x1, x2)
M2(x1, x2)

0

 , H =

 H1(x1, x2)
H2(x1, x2)

0

 ,

for (x1, x2) ∈ D.

Under these assumptions, it follows from the constitutive relation (2.2) that B is of the same
form as H and M. Regarding the equation (2.4), this form of B is guaranteed by the ansatz

A =

 0
0

u(x1, x2)

 ,

which also yields that the so-called Coulomb gauging condition divA = 0 is satisfied and that
|B| = |∇u|. It can also be seen that, in this setting, H×n = ν(|∇u|)∇u ·n and B ·n = ∇u · τ
with τ the tangential unit vector. This yields the boundary value problem of two-dimensional
magnetostatics in the domain D ⊂ R2,

Find u such that

−div(ν(x, |∇u|)∇u) = J3 − ν divM⊥, x ∈ D, (2.7a)

u = 0, x ∈ ΓD, (2.7b)

ν(x, |∇u|)∇u · n = 0, x ∈ ΓN , (2.7c)

JuK = 0 x ∈ ΓI , (2.7d)

Jν(x, |∇u|)∇u · nK = 0 x ∈ ΓI , (2.7e)

where M⊥ = (−M2,M1)> is the perpendicular of the first two components of the magneti-
zation M and ΓD and ΓN denote the part of the boundary ∂D where we require B · n = 0
and H× n = 0, respectively.

Remark 2.1. The quantity M vanishes in materials without permanent magnetization. In per-
manent magnets, it holds the relation M = µmagH0 where −H0 denotes the magnetic field
intensity such that the magnetic flux density vanishes [120].
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Figure 2.2: Left: Computational domain representing electric motor with different subdo-
mains. Right: Zoom on upper left quarter with design region Ωd highlighted (for a different
rotor-to-stator constellation).

2.3 Model Problem

As a model problem, we consider an interior permanent magnet (IPM) synchronous electric
motor. We are interested in the magnetic flux density B in the motor due to the permanent
magnets and the electric currents after the motor has reached a constant rotational speed. In
this setting, considering one fixed rotor position, we can assume that the sources and, there-
fore, the electric and magnetic fields are time-independent and we can use the magnetostatic
model (2.6a). Furthermore, since the axial dimension of the motor is large compared to its
diameter, the assumptions for the reduction to a two-dimensional model are satisfied very
well. This allows us to compute the magnetic field via the boundary value problem (2.7a)–
(2.7e). This model is commonly used for the simulation of electrical machines [26, 45] and
allows for a significant reduction of the computational costs, which is particularly useful in
the context of design optimization. For a comparison between two- and three-dimensional
models of electric motors, see [127,206].

The geometry of the two-dimensional model is depicted in Figure 2.2. Let the hold-all domain
D ⊂ R2, which we assume to have a boundary of class C2, denote the computational domain
which comprises all of the components of the motor as well as the air regions. The motor
consists of a rotating inner part, called the rotor, and a fixed outer part, the stator. These
two parts are separated by a thin air gap, which we denote by Ωg. We will be particularly
interested in the magnetic field inside this air gap, because it has a big influence on the
behavior of the electric motor. Both the rotor and the stator have an iron core consisting of
ferromagnetic material, see the brown area in the left picture of Figure 2.2. We denote this
ferromagnetic reference domain by Ωref

f and its (open) complement by Ωref
air , i.e., Ωref

air =

D \ Ωref
f . The subdomain Ωref

air represents all the materials that are not ferromagnetic and
also contains the coil areas Ωc, the magnet areas Ωmag as well as the air gap Ωg. Let Ωd ⊂
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Ωref
f denote the open design subdomain, which consists of the highlighted regions in the

right picture of Figure 2.2. Note that, Ωd consists of eight parts. We are interested in the
optimal distribution of ferromagnetic material and air regions in Ωd. Note the circular ring of
ferromagnetic material between the design region and the air gap, which is fixed. This design
restriction was chosen for mechanical reasons. For a given design we denote the subdomain
of Ωd that is currently occupied with ferromagnetic material by Ω. For any given configuration
of ferromagnetic material inside Ωd, the set of all points of the motor that are occupied with
ferromagnetic material is then given by

Ωf :=
(

Ωref
f \ Ωd

)
∪ Ω. (2.8)

Then, introducing Ωair = D \ Ωf , we always have that D = Ωf ∪ Ωair. The magnetic re-
luctivity function ν = ν(x, |∇u|) introduced in (2.3) attains different values in the different
subdomains of the motor. More precisely, we have

ν(x, |∇u|) =


ν̂(|∇u|) x ∈ Ωf ,

ν0 x ∈ Ωair \ Ωmag,

νmag x ∈ Ωmag,

(2.9)

where ν̂ is a nonlinear function that is defined via the B–H relation which will be discussed
in Section 2.4. Here, the constant

ν0 = 107/(4π) (2.10)

is the magnetic reluctivity of vacuum (expressed in the unit A2 s2 kg−1 m−1), which is practi-
cally the same as that of air, and νmag denotes the material-dependent, but constant magnetic
reluctivity of the permanent magnets. The value of νmag is usually close to that of ν0. For sake
of more compact presentation, we will set νmag = ν0 for the rest of this thesis and remark that
in all numerical examples the realistic value νmag = ν0/1.086 was chosen. Note that also the
ferromagnetic behavior of the coils, which consist of copper, are the same as that of air and
we have ν = ν0 also in Ωc. Since the magnetic reluctivity in the electric motor also depends
on the current design Ω, we write ν =νΩ. Then we have

νΩ(x, |∇u|) = χΩf (x) ν̂(|∇u|) + χD\Ωf (x) ν0

=

(
χ

Ωreff \Ωd(x) + χΩ(x)

)
ν̂(|∇u|) +

(
χ
D\Ωreff

(x) + χΩd\Ω(x)

)
ν0,

(2.11)

where χS denotes the characteristic function of a given set S. Note that the expression above
is meaningful since Ω ⊂ Ωd ⊂ Ωref

f .

The typical boundary condition for the simulation of electrical machines in the setting of two-
dimensional magnetostatics is to prescribe the homogeneous Dirichlet boundary conditions
(2.7b) on the entire boundary ∂D, which impliesB·n|∂D = 0, i.e., that nomagnetic flux leaves
the domain. Note that the computational domain includes a layer of air outside the actual
motor, such that this boundary condition is actually realistic. Therefore, both our ansatz and
test functions will be from the space H1

0 (D).
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We introduce the nonlinear operator AΩ : H1
0 (D)→ H−1(D) representing the left hand side

of equation (2.7a) defined by

〈AΩ(u), η〉 =

∫
D
νΩ(x, |∇u|)∇u · ∇η dx, (2.12)

for all u, η ∈ H1
0 (D). The right hand side of equation (2.7a) comprises two different sources,

the impressed currents and the magnetization. For a fixed rotor position, the current density
J3 is piecewise constant in the coil areas Ωc and vanishes outside Ωc. Likewise, the mag-
netization is piecewise constant and vanishes outside the magnet areas Ωmag. Given a test
function η ∈ H1

0 (D), the weak form of the right hand side of equation (2.7a) reads

〈F, η〉 =

∫
D
J3 η + νmagM

⊥ · ∇η dx, (2.13)

where 〈·, ·〉 is to be understood as a duality product between H−1(D) and H1
0 (D). The inter-

face conditions (2.7d) and (2.7e) are automatically included in the weak formulation of the
problem. Now, the weak formulation of boundary value problem (2.7) reads

Find u ∈ H1
0 (D) such that 〈AΩ(u), η〉 = 〈F, η〉 for all η ∈ H1

0 (D). (2.14)

Our goal is to find a set Ω such that a given domain-dependent shape functional J is mini-
mized. In the case of electric motors, this objective function J generally is supported only in
the air gap Ωg ⊂ Ωref

air . Therefore, a perturbation of the material coe�cient inside the design
domain Ωd will not directly affect the functional and the functional depends on the configu-
ration of the design subdomain Ωd only via the solution u of the state equation, J = J (u).
In our model optimization problem, we consider one fixed rotor position and no electric cur-
rents, i.e., J3 = 0. Thus, the magnetic field is generated solely by the permanent magnets.
We are interested in the radial component of the magnetic flux density B along a circular
curve in the air gap, see the blue curve in Figure 2.3. Note that the radial component of B
in the air gap is positive in regions close to magnets whose magnetization is pointing out-
wards, and negative close to the other magnets. The smoothness of this curve is related to
the smoothness of the rotation of the motor at nominal speed. Therefore, our goal is to find
the ferromagnetic set Ω ⊂ Ωd such that the radial component of B in the air gap comes as
close as possible to a given smooth sine curve. Noting that B = B(u) = curl((0, 0, u)>), this
amounts to minimizing the functional

J (u) =

∫
Ωg

|B(u) · ng −Bd|2dx =

∫
Ωg

|∇u · τg −Bd|2dx, (2.15)

where, for xm = (xm,1, xm,2)> denoting the center of the electric motor and x a point in the
air gap Ωg, the vector fields

ng(x) =
1

|x− xm|

(
x1 − xm,1
x2 − xm,2

)
and τg(x) =

1

|x− xm|

(
−(x2 − xm,2)

x1 − xm,1

)
(2.16)

denote the unit vectors pointing in radial and tangential directions, respectively. The desired
radial component Bd is here given by Bd(x) = 1

2 sin(4θ(x)) where θ(x) denotes the angular
coordinate of a point x ∈ Ωg in a polar coordinate system centered at xm. Minimizing this
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Figure 2.3: Radial component of the magnetic flux density Br along a circular curve inside
the air gap for initial design (blue) compared with desired curve Bd (green)

functional leads to a reduction of the total harmonic distortion (THD; see [45,66]) of the flux
density which causes the rotor to rotate more smoothly. We will denote the radial component
of the magnetic flux density in the air gap by Br,

Br(u)(x) := B(u(x)) · ng(x) = ∇u(x) · τg(x), x ∈ Ωg.

Summarizing, we consider the PDE-constrained optimization problem

inf
Ω∈A
J (u) (2.17a)

subject to 〈AΩ(u), η〉 = 〈F, η〉 ∀η ∈ H1
0 (D), (2.17b)

where J is defined in (2.15), AΩ and F are defined in (2.12) and (2.13), respectively, and
the state variable u = u(Ω) is from H1

0 (D). Here, the set A denotes a set of admissible
shapes which will be specified later. In Chapter 8 we will consider more complicated objective
functions including the case of rotating electrical machines.

2.4 Physical Properties

In this section, we have a closer look at the relation between themagnetic field intensityH and
themagnetic flux densityB. Recall that we are only considering the case of isotropic materials
such that these two fields are parallel, and that we neglect possible effects of hysteresis.

The magnetic field intensity H is also called the magnetizing force because it creates a mag-
netic flux B and thus induces magnetic behavior of a body. The magnitude of the generated
magnetic field B := |B| depends on the magnitude of the magnetizing force H := |H| and
on the material properties [169]. In many materials, this relation is linear and, assuming
the absence of permanent magnetization, we have that B = µH with a constant magnetic
permeability µ. In ferromagnetic materials on the contrary, the magnetic flux density B is
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amplified and the relation between B and H is a nonlinear one, described by the so-called
B–H-curve

f : R+
0 → R+

0 : H 7→ B = f(H),

where R+
0 denotes the non-negative real numbers. For a given material, the magnetic per-

meability µ and the magnetic reluctivity ν introduced in (2.2) and (2.3), respectively, are
defined based on this notion,

µ(s) := f(s)/s, and ν(s) := f−1(s)/s, (2.18)

such that we have

B = µ(|H|)H, and H = ν(|B|)B.

Remark 2.2. In the presence of permanent magnetization, the amount of magnetization B in-
duced in the body is the sum of the magnetizing forceH and the permanent magnetizationM, see
(2.2). Recall that the relation betweenB andH in permanent magnets is in general linear [106].
In view of Remark 2.1, we have that B = µH + M = µ(H + H0).

Figure 2.4 depicts the B–H-curve used in the ferromagnetic subdomains Ωf of the electric
motors considered in this thesis, as well as the corresponding magnetic permeability and the
magnetic reluctivity, which we will denote by µ̂ and ν̂, respectively. The following natural
assumptions on the B–H-curve f follows from physical properties (cf. [169]):

Assumption 1. Let f : R+
0 → R+

0 be a B–H-curve. Then the following holds:

1. f is continuously differentiable on R+
0 ,

2. f(0) = 0,

3. f ′(s) ≥ µ0 for all s ≥ 0,

4. lim
s→∞

f ′(s) = µ0.

Here, µ0 denotes the magnetic permeability in vacuum and is the reciprocal of the magnetic
reluctivity of vacuum defined in (2.10), µ0 = 1/ν0. The following properties are immediate
consequences of Assumption 1:

Lemma 2.3. Let Assumption 1 hold. Then, the function ν̂ is continuously differentiable on [0,∞)
and there exists ν > 0 such that, for all s ∈ R+

0 , we have

ν ≤ ν̂(s) ≤ ν0, (2.19a)

ν ≤ (ν̂(s) s)′ ≤ ν0. (2.19b)

Proof. A proof can be found in, e.g. [168].

Note that (2.19b) yields that the mapping s 7→ ν̂(s)s is strongly monotone with monotonicity
constant ν, i.e.,

(ν̂(s)s− ν̂(t)t) (s− t) ≥ ν (s− t)2 ∀s, t ∈ R+
0 , (2.20)
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Figure 2.4: Left: B–H-curve f of ferromagnetic material used in simulation of electric motor.
Center: magnetic permeability µ̂. Right: magnetic reluctivity ν̂ in semi-logarithmic plot.

and Lipschitz continuous with Lipschitz constant ν0, i.e.,

|ν̂(s)s− ν̂(t)t| ≤ ν0 |s− t| ∀s, t ∈ R+
0 . (2.21)

We will see in Section 2.5 that properties (2.20) and (2.21) are important for the well-
posedness of the boundary value problem (2.14).

Remark 2.4. Since (2.20) and (2.21) obviously also hold for the constant magnetic reluctivity
function ν(s) = ν0, we get these relations also for the global magnetic reluctivity function of the
motor defined in (2.11). This means that also the mapping s 7→ νΩ(x, s)s is strongly monotone
and Lipschitz continuous with constants the same constants ν and ν0, independent of the spatial
position x ∈ D.

For ferromagnetic materials, the B–H relations are generally not known analytically. In prac-
tice, they are usually interpolated or approximated from measured values. It is an essential
task in the numerical computation of electromagnetic fields in the presence of nonlinear mate-
rial to approximate this B–H-curve suitably. In particular, it must be ensured that properties
(2.20) and (2.21) remain fulfilled, even in the presence of uncertainties on the given data
due to, e.g., measurement errors. This issue was addressed in [121] from the perspective of
inverse problems, and in [169] by a monotonicity-preserving interproximation of the given
data points. We remark that in all numerical computations of this thesis, the B–H-curve was
computed by a software library which implements the approach presented in [169] that was
kindly provided by Dr. Clemens Pechstein.

2.5 Analysis of Two-dimensional Nonlinear Magnetostatics

2.5.1 Existence and Uniqueness of a Solution to the State Equation

The physical properties of B–H-curves presented in Section 2.4 allow us to show existence
and uniqueness of the boundary value problem (2.14). The result follows from the Theorem
of Zarantonello [219, pp. 503], which can also be regarded as a nonlinear extension of the
lemma of Lax-Milgram.
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Theorem 2.5 (Zarantonello, 1960). LetX be a real Hilbert space andA : X → X∗ a nonlinear
operator satisfying the following conditions:

1. A is strongly monotone on X, i.e., there exists a constant c > 0 such that, for all u, v ∈ X,
it holds

〈A(u)−A(v), u− v〉 ≥ c ‖u− v‖2, (2.22)

2. A is Lipschitz continuous onX, i.e., there exists a constantL > 0 such that, for all u, v ∈ X,
it holds

‖A(u)−A(v)‖ ≤ L ‖u− v‖. (2.23)

Then, for each b ∈ X∗, the operator equation A(u) = b, u ∈ X, has a unique solution which
depends continuously on b. More precisely, it follows from A(uj) = bj , j = 1, 2, that

‖u1 − u2‖ ≤ c−1‖b1 − b2‖.

In order to apply this theorem to the two-dimensional magnetostatic boundary value prob-
lem (2.14), we need the strong monotonicity and the Lipschitz continuity of the operator AΩ

defined in (2.12) on the real Hilbert space H1
0 (D). Both results were shown in [106] under

the (rather restrictive) assumption that the magnetic reluctivity ν̂ is monotonically increasing,
and in, e.g., [168] in the more general setting (2.20)–(2.21) where the mapping s 7→ ν̂(s)s
is monotone, but not necessarily ν̂ itself. Note that this is the case for a large class of ferro-
magnetic materials including the one used in the numerical experiments, see also Figure 2.4
and Figure 4.1.

Lemma 2.6 ([168, 222]). Assume that the mapping s 7→ νΩ(s)s is strongly monotone and
Lipschitz continuous from R+

0 to R+
0 with monotonicity constant ν and Lipschitz constant ν0.

Then the operator AΩ defined in (2.12) is strongly monotone with monotonicity constant ν and
Lipschitz constant ν0.

Since the right hand F defined in (2.13) is an element of the dual space H1
0 (D)∗ = H−1(D),

we get the well-posedness of boundary value problem (2.14):

Theorem 2.7. Let ν̂ be the magnetic reluctivity according to a B–H-curve f which satisfies
Assumption 1. Then, the two-dimensional magnetostatic boundary value problem defined by
(2.14), (2.12), (2.13) has a unique solution u ∈ H1

0 (D) and there exists a constant c > 0 such
that

‖u‖H1
0 (D) ≤ c‖F‖H−1(D).

Proof. Since the underlying B–H-curve f satisfies Assumption 1, we have the strong mono-
tonicity and the Lipschitz continuity of the reluctivity function ν̂ in the ferromagnetic subdo-
main Ωf and also of the global reluctivity function νΩ as stated in Remark 2.4. Therefore,
Lemma 2.6 implies that Theorem 2.5 is applicable to the operator AΩ introduced in (2.12)
along with the right hand side F (2.13) for the real Hilbert space X = H1

0 (D), which yields
the statement with c = ν.

A solution to the nonlinear variational equation (2.14) can be computed by Newton’s method
(see e.g. [156]). In Newton’s method, one chooses an initial guess u0, and iteratively solves
a linearized version of (2.14) to obtain an update for the solution u. The method converges
quadratically provided that the initial guess is chosen su�ciently close to the true solution.
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2.5.2 Newton Operator and Adjoint Equation

In order to apply Newton’s method to (2.14), we need the Fréchet derivative A′Ω of the opera-
torAΩ. The same operatorA′Ω will also show up later in the boundary value problem defining
the adjoint state of the PDE-constrained optimization problem (2.17).
For sake of better readability we introduce the operator T : R2 → R2 given by

T (W ) := ν̂(|W |)W (2.24)

with its Jacobian

DT (W ) =

{
ν̂(|W |)I + ν̂′(|W |)

|W | W ⊗W, W 6= (0, 0)>

ν̂(|W |)I W = (0, 0)>,
(2.25)

where W ∈ R2, I denotes the identity matrix in R2 and ⊗ the outer product between two
column vectors,

a⊗ b := a b>,

for a, b ∈ R2. Note that DT is continuous also inW = 0. Let further

TΩ(x,W ) : = νΩ(x,W )W = χΩf (x)T (W ) + χD\Ωf (x) ν0W (2.26)

=

(
χ

Ωreff \Ωd(x) + χΩ(x)

)
T (W ) +

(
χ
D\Ωreff

(x) + χΩd\Ω(x)

)
ν0W,

such that 〈AΩ(u), η〉 =
∫
D TΩ(x,∇u) · ∇η dx, and note that

DTΩ(x,W ) = χΩf (x) DT (W ) + χD\Ωf (x) ν0I.

The Fréchet derivative of the operator AΩ : H1
0 (D)→ H−1(D) is then given by

A′Ω : H1
0 (D)→ L(H1

0 (D), H−1(D)),

〈A′Ω(u)w, η〉 =

∫
D

DTΩ(x,∇u)∇w · ∇η dx, (2.27)

where u,w, η ∈ H1
0 (D). For W = (w1, w2)> ∈ R2, let θW the angle between W and the x1-

axis such that cos θW = 〈W/|W |, e1〉with e1 = (1, 0)>, and denoteRθW the counter-clockwise
rotation matrix around an angle θW , i.e.,

RθW =

(
cos θW −sin θW
sin θW cos θW

)
.

Note that

DT (W ) = RθW

(
ν̂(|W |) + ν̂ ′(|W |)|W | 0

0 ν̂(|W |)

)
R>θW (2.28)

for allW ∈ R2. From this, it is easy to see that the eigenvalues and corresponding eigenvectors
of DT (W ) are

λ1 = λ1(|W |) = ν̂(|W |), v1 =

(
−w2

w1

)
,

λ2 = λ2(|W |) = ν̂(|W |) + ν̂ ′(|W |)|W |, v2 =

(
w1

w2

)
.

(2.29)
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Note that DT (W ) is symmetric and, due to (2.19a) and (2.19b), positive definite for all
W ∈ R2. Now we can show the existence of a unique solution to a problem that represents a
linearization of the boundary value problem (2.14).

Lemma 2.8. Let u ∈ H1
0 (D) fixed and define the bilinear form au(w, η) := 〈A′Ω(u)w, η〉 with

A′Ω : H1
0 (D) → L(H1

0 (D), H−1(D)) given in (2.27). Let furthermore b ∈ H−1(D). Then the
variational problem

Find w ∈ H1
0 (D) such that au(w, η) = 〈b, η〉 ∀η ∈ H1

0 (D) (2.30)

has a unique solution.

Proof. It can easily be seen from (2.19) that the bilinear form au(·, ·) is elliptic,

au(w,w) = 〈A′Ω(u)w,w〉 =

∫
D

DTΩ(x,∇u)∇w · ∇w dx

≥
∫
D
min{λ1(|∇u|), λ2(|∇u|)}|∇w|2 dx

≥ ν‖∇w‖2L2(D) ≥ C ν‖w‖
2
H1(D),

and bounded,

au(w, η) = 〈A′Ω(u)w, η〉 =

∫
D

DTΩ(x,∇u)∇w · ∇η dx

≤
∫
D
max{λ1(|∇u|), λ2(|∇u|)}|∇w| |∇η|dx

≤ ν0‖∇w‖L2(D) ‖∇η‖L2(D) ≤ C ν0‖w‖H1(D) ‖η‖H1(D),

inH1(D) for any given u ∈ H1
0 (D). Here, we exploited the equivalence of the norm inH1(D)

and the L2(D) norm of the gradient due to the Friedrichs inequality, see e.g. [47], since
w, η ∈ H1

0 (D). Thus, the statement follows by the lemma of Lax-Milgram, see e. g. [47].

Remark 2.9 (Newton’s method). Boundary value problem (2.14) can be solved by applying
Newton’s method to the operator equation RΩ(u) := AΩ(u) − F = 0 in H−1(D). For that
purpose, we start with an initial guess u0 ∈ H1

0 (D) and, for k = 0, 1, 2, . . . , compute the next
iterate uk+1 as the sum of the current iterate uk and an updatewk. Here, the updatewk ∈ H1

0 (D)
is the solution to the problem

Find w ∈ H1
0 (D) such that 〈A′Ω(uk)w, η〉 = −〈RΩ(uk), η〉 ∀η ∈ H1

0 (D),

which is well-posed due to Lemma 2.8. The fact that Newton’s method converges only locally
can be overcome by using the damped version of Newton’s method, i.e., by making the update
step uk+1 = uk + τk wk with a damping parameter τk ∈ (0, 1] which is chosen small enough
such that ‖RΩ(uk + τkwk)‖ < ‖RΩ(uk)‖. It can be shown that such a choice of τk is always
possible [156,222].

Remark 2.10 (Adjoint equation). We will also encounter equation (2.30) as the equation defin-
ing the adjoint state p of the PDE-constrained optimization problem (2.17). The adjoint problem
reads

Find p ∈ H1
0 (D) such that 〈A′Ω(u)η, p〉 = −〈∂J

∂u
(u), η〉 ∀η ∈ H1

0 (D), (2.31)
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where u is the solution to the primal problem (2.14). Note that A′Ω(u) is symmetric for all
u ∈ H1

0 (D), i.e., we have 〈A′Ω(u)η, w〉 = 〈A′Ω(u)w, η〉 for all u, η, w ∈ H1
0 (D), and thus the

above equation is equivalent to (2.30).

Because of these contexts, we call the operator A′Ω defined in (2.27) the adjoint operator or
the Newton operator.



Part I

Topology Optimization
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Chapter 3

Material Sensitivities in Takahashi’s
On/Off Method

In this chapter, we investigate a first sensitivity-based design optimization method for the
optimization of electrical equipment. The gradient-based On/Off method was introduced by
the group around Norio Takahashi in [163] and, since then, has been successfully applied
to a wide range of problems in the electrical engineering community, see, e.g., [161, 162,
202–205]. The method uses sensitivities of the objective functional with respect to a local
perturbation of the magnetic reluctivity and distributes ferromagnetic material according to
this sensitivity information.

The On/Off method acts on the discrete level, i.e., after a discretization of the computational
domain. It is based on the fact that the difference between having ferromagnetic material or
air in an element of the finite element (FE) mesh is only reflected in the value of the magnetic
reluctivity. Recall that the magnetic reluctivity of air is the constant ν0, see (2.10), whereas it
is a nonlinear function ν̂ = ν̂(|∇u|) depending on the absolute value of the magnetic flux den-
sity, |B| = |∇u|, in the ferromagnetic material, see Section 2.4. Note that, for ferromagnetic
materials, this value is usually much smaller than the reluctivity of air, ν̂(|∇u|) � ν0. Then,
for each element of the mesh inside the design area, the sensitivity of the objective function
with respect to a perturbation of the material coe�cient only in this one element is calcu-
lated. If this sensitivity is negative, a larger value of the magnetic reluctivity ν is favorable
for reducing the value of the objective function, which is realized by assigning the reluctivity
value of air to this element. The element is said to be switched “off”. On the other hand, if
the sensitivity is positive, it is favorable to have ferromagnetic material in this element, i.e.,
the element is switched “on”. Note that this procedure is based on a monotonicity assumption
which cannot be rigorously guaranteed. Therefore, the method is heuristic.

Thus, the principle of the method is very similar to classical density-based topology optimiza-
tion methods where a density variable ρ which can attain values between 0 and 1 is used to
interpolate between two materials. In density-based methods, the optimization is driven by
the sensitivity of the objective function with respect to this density variable, see, e.g. [43].
In the context of structural mechanics, this sensitivity is called the strain energy density. The
On/Off method does not introduce a density variable and does not allow for intermediate
values of the material coe�cient, but still uses the same kind of sensitivities. In particular,
the On/Off method is very similar to the evolutionary structural optimization (ESO) method,

29
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see [50, 212]. Also the ESO is based on an implicit monotonicity assumption which is not
always satisfied, see also the discussion in [50, Section 7.6].

Later, in Chapter 5, we will draw a comparison between the sensitivities with respect to
the material coe�cient used in the On/Off method (henceforth referred to as the On/Off
sensitivities), and the topological derivative, which is derived in Chapter 4, for both the case
of linear and nonlinear material behavior in the ferromagnetic subdomain.

In Section 3.1, we present the sensitivity analysis method proposed in [163] where the sensi-
tivities are calculated for each element of the FE mesh inside the design area. In Section 3.2,
we generalize this idea to the continuous level where we consider perturbations of coe�cients
in arbitrary, smooth subdomains ω of the design domain Ωd. We conclude the chapter with
numerical results for problem (2.17) obtained by the On/Off method.
This chapter is based on [88].

3.1 Discrete Sensitivity Analysis

In this section, we present the On/Off method introduced in [163]. The On/Off sensitivities
of the objective function have to be computed for every element of the finite element mesh
inside the design area. By introducing and adjoint variable, only one linear problem has to
be solved in order to determine the On/Off sensitivities for all elements.

In this section, we will consider problem (2.17) in the case of the nonlinear state equation
with ν given in (2.9). Note that the case of a linear state equation where ν̂ is replace by a
constant ν1 < ν0 is a special case. The discretization of the state equation (2.17b) by means
of linear triangular finite elements yields a system of nonlinear finite element equations of
the form

K(u)u = F, (3.1)

where u denotes the nodal parameter vector that we have to determine, see, e.g., [106].
Given an objective function J = J (νk,u), we are interested in the sensitivities

dJ
dνk

=
∂J
∂νk

+
∂J
∂u

> ∂u

∂νk
, (3.2)

where the design parameter νk is the magnetic reluctivity in a triangular element Tk in the
FE mesh inside the design area. Since we are using linear triangular elements, the gradient
of the finite element function is constant in every finite element. Thus, for the finite element
solution, the reluctivity is constant in every finite element as well. In our model problem, the
objective functional J defined in (2.15) does not depend explicitly on the reluctivity inside
the design area, therefore ∂J

∂νk
= 0. In order to determine the sensitivities ∂u

∂νk
, we consider

the residual identity

r(νk, ν(u(νk)),u(νk)) := K(νk, ν(u(νk)))u(νk)− F ≡ 0 (3.3)

at the solution, where the dependencies on νk are now explicitly specified. Differentiating
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both sides of (3.3) with respect to νk, we obtain

0 =
dr

dνk
=

∂r

∂νk
+
∂r

∂ν

∂ν

∂u

∂u

∂νk
+
∂r

∂u

∂u

∂νk

=
∂K

∂νk
u + (N + K)

∂u

∂νk
,

where we introduced

N :=
∂r

∂ν

∂ν

∂u
= u>

∂K

∂ν

∂ν

∂u
= u>

dK

du
.

From this, it can be seen that the sensitivity ∂u
∂νk

is given by

∂u

∂νk
= −(N + K)−1 ∂K

∂νk
u. (3.4)

Here we used the fact that, for our model problem, ∂F∂νk = 0 since the right hand side F, which
is the finite element discretized version of the linear functional (2.13), does not explicitly
depend on the reluctivity νk in elements Tk located in the design area. Inserting (3.4) into
(3.2) yields the formula for the On/Off sensitivities,

dJ
dνk

= p>
(
∂K

∂νk
u

)
(3.5)

where the adjoint state p solves the adjoint equation

(K + N)> p = −∂J
∂u

. (3.6)

Remark 3.1. Note that the matrix K + N depends on the solution vector u and is the finite
element matrix corresponding to the adjoint operator A′Ω(u) introduced in (2.27).

Remark 3.2. In the case of a linear state equation, the On/Off sensitivities are of the same form
(3.5). The only differences lie in the computation of the direct state u from (3.1) as the nonlinear
operator K(·) degenerates to the linear operator K, the stiffness matrix of the boundary value
problem (2.17b), and in the computation of the adjoint state p from (3.6) since the matrix N
vanishes.

3.2 Generalization to Continuous Level

In this section, we will generalize the idea of [163], which is based on a FE discretization, to
the continuous level. We will consider perturbations of the material parameter on arbitrary,
smooth subdomains ω of the design domain Ωd rather than only on the single elements of the
FE mesh, and we will derive the formula for the sensitivities in terms of operators rather than
FE vectors.

Let ω ⊂ Ωd be fixed and let g : H1
0 (D)→ L2(D) be defined by

g(u) := |∇u(·)|,
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with the Fréchet derivative g′ : H1
0 (D)→ L(H1

0 (D), L2(D)) given by

g′(u) =
1

|∇u|
∇u · ∇(·).

Moreover, we define ν̃ : H1
0 (D)→ L∞(D),

ν̃(u) := ν̂(g(u)), (3.7)

where ν̂ : R→ R is a nonlinear function given via a B–H-curve which fulfills Assumption 1,
see Section 2.4. Then we have ν̃ ′ : H1

0 (D)→ L(H1
0 (D), L∞(D)) given by

ν̃ ′(u) = ν̂ ′(g(u))g′(u) =
ν̂ ′(|∇u|)
|∇u|

∇u · ∇(·). (3.8)

Recall the notation introduced in Section 2.3. For the rest of this chapter, let Ω = Ωd, i.e.,
all of the design subdomain Ωd is occupied by ferromagnetic material. Then, it holds that
ω ⊂ Ωd ⊂ Ωf and the global reluctivity function (2.11) can be rewritten as ν : D×H1

0 (D)→
L∞(D) defined by

ν(x, u) :=χΩf (x) ν̃(u) + χΩair(x) ν0

=χω(x) ν̃ω(u) + χΩf\ω(x) ν̃(u) + χΩair(x) ν0 ∀x ∈ D a.e., (3.9)

where χA denotes the characteristic function of a set A, and ν̃ω denotes the restriction of ν̃
onto ω. Here, for a more compact presentation, we used the magnetic reluctivity of air ν0 also
inside the magnet areas Ωmag ⊂ Ωair.

We will derive the sensitivity of a functional J = J (ν, u(ν)) with respect to a perturbation of
the magnetic reluctivity inside ω, i.e., with respect to a perturbation of ν̃ω. Application of the
chain rule yields

dJ
dν̃ω

=
∂J
∂ν

∂ν

∂ν̃ω
+
∂J
∂u

∂u

∂ν̃ω
. (3.10)

Again the sensitivity ∂u
∂νω

is obtained by setting the residual operator to zero and forming the
Fréchet derivative of both sides. For that purpose, we introduce the operators

R1(ν̃ω) :=

∫
ω
ν̃(u(ν̃ω))∇u(ν̃ω) · ∇(·)dx,

R2(ν̃ω) :=

∫
Ωf\ω

ν̃(u(ν̃ω))∇u(ν̃ω) · ∇(·)dx+

∫
Ωair

ν0∇u(ν̃ω) · ∇(·)dx,

and define the residual operator R(ν̃ω) := R1(ν̃ω) +R2(ν̃ω)− F , i.e.,

R(ν̃ω) =

∫
ω
ν̃(u(ν̃ω))∇u(ν̃ω) · ∇(·)dx

+

∫
Ωf\ω

ν̃(u(ν̃ω))∇u(ν̃ω) · ∇(·)dx+

∫
Ωair

ν0∇u(ν̃ω) · ∇(·)dx− F,
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where F defined in (2.13). Note that, for the solution u of the boundary value problem
(2.17b), the residual R vanishes, i.e.,

R(ν̃ω) ≡ 0. (3.11)

Also note that, in our case, the right hand side F as defined in (2.13) is independent of the
magnetic reluctivity ν in the design subdomain Ωd. We differentiate both sides of (3.11) with
respect to ν̃ω. We begin with R1:

dR1

dν̃ω
hω = lim

t→0

1

t
(R1(ν̃ω + thω)−R1(ν̃ω))

=lim
t→0

1

t

{∫
ω
ν̃(u(ν̃ω + thω))∇u(ν̃ω + thω) · ∇(·)dx

−
∫
ω
ν̃(u(ν̃ω))∇u(ν̃ω) · ∇(·)dx+ t

∫
ω
hω(u(ν̃ω + thω))∇u(ν̃ω + thω) · ∇(·)dx

}
.

Using the expansions

u(ν̃ω + thω) = u(ν̃ω) + t
∂u

∂ν̃ω
(hω) +O(t2), (3.12)

ν̃

(
u(ν̃ω) + t

∂u

∂ν̃ω
(hω)

)
= ν̃(u(ν̃ω)) + t ν̃ ′(u(ν̃ω))

∂u

∂ν̃ω
(hω) +O(t2), (3.13)

we obtain

dR1

dν̃ω
hω =

∫
ω
ν̃(u(ν̃ω))∇ ∂u

∂ν̃ω
(hω) · ∇(·)dx+

∫
ω
ν̃ ′(u(ν̃ω))

∂u

∂ν̃ω
(hω)∇u(ν̃ω) · ∇(·)dx

+

∫
ω
hω(u(ν̃ω))∇u(ν̃ω) · ∇(·)dx.

(3.14)

Note that, here, ∂u
∂ν̃ω

(hω) denotes the sensitivity of the state variable u when the material
coe�cient ν̃ω inside ω is perturbed by hω ∈ L∞(ω). For R2, we get

dR2

dν̃ω
hω = lim

t→0

1

t
(R2(ν̃ω + thω)−R2(ν̃ω))

=lim
t→0

1

t

{∫
Ωf\ω

ν̃(u(ν̃ω + thω))∇u(ν̃ω + thω) · ∇(·)dx

−
∫

Ωf\ω
ν̃(u(ν̃ω))∇u(ν̃ω) · ∇(·)dx+

∫
Ωair

ν0(∇u(ν̃ω + thω)−∇u(ν̃ω)) · ∇(·)dx

}
.

Again, using expansions (3.12) and (3.13), we get

dR2

dν̃ω
hω =

∫
Ωf\ω

ν̃(u(ν̃ω))∇ ∂u

∂ν̃ω
(hω) · ∇(·)dx

+

∫
Ωf\ω

ν̃ ′(u(ν̃ω))
∂u

∂ν̃ω
(hω)∇u(ν̃ω) · ∇(·)dx+

∫
Ωair

ν0∇
∂u

∂ν̃ω
(hω) · ∇(·)dx.

(3.15)
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Combining (3.11), (3.14) and (3.15), as well as using the notation (3.9) yields

0 =
dR

dν̃ω
hω =

dR1

dν̃ω
hω +

dR2

dν̃ω
hω

=

∫
D
ν(x, u(ν̃ω))∇ ∂u

∂ν̃ω
(hω) · ∇(·)dx+

∫
D
ν ′(x, u(ν̃ω))

∂u

∂ν̃ω
(hω)∇u(ν̃ω) · ∇(·)dx

+

∫
ω
hω(u(ν̃ω))∇(u(ν̃ω)) · ∇(·)dx,

where the differentiation in ν ′(x, u(ν̃ω)) is to be understood with respect to u as in (3.8).
Here, hω ∈ L∞(ω) is the direction of the perturbation we are considering. For our purposes,
it is su�cient to consider constant perturbations of ν̃ω, therefore we set

hω ≡ 1. (3.16)

Note that by using general hω ∈ L∞(ω), a weighted perturbation of ν̃ω can be simulated.
Plugging in (3.16) as well as (3.9), (3.7) and (3.8), we get the equality

0 =

∫
Ωf

ν̂(|∇u|)∇ ∂u

∂ν̃ω
· ∇(·)dx+

∫
Ωf

ν̂ ′(|∇u|)
|∇u|

(∇u · ∇ ∂u

∂ν̃ω
)(∇u · ∇(·))dx

+

∫
Ωair

ν0∇
∂u

∂ν̃ω
· ∇(·)dx+

∫
ω
∇u · ∇(·)dx,

from which we can obtain ∂u
∂ν̃ω

. Introducing the linear operators

Ku : H1
0 (D)→ H−1(D),

Kuw =

∫
Ωf

ν̂(|∇u|)∇w · ∇(·)dx+

∫
Ωair

ν0∇w · ∇(·)dx,

Nu : H1
0 (D)→ H−1(D),

Nuw =

∫
Ωf

ν̂ ′(|∇u|)
|∇u|

(∇u · ∇w)(∇u · ∇(·))dx,

for fixed u ∈ H1
0 (D), we can formally write

∂u

∂ν̃ω
= −(Ku +Nu)−1Mωu, (3.17)

with

Mω : H1
0 (D)→ H−1(D),

Mωu =

∫
ω
∇u · ∇(·)dx.

Note that the operator Ku + Nu is nothing but the operator A′Ω(u) defined in (2.27), which
is invertible due to Lemma 2.8. Combining (3.10) and (3.17) gives

dJ
dνω

=
∂J
∂ν

∂ν

∂νω
− ∂J
∂u

(Ku +Nu)−1Mωu

=
∂J
∂ν

∂ν

∂νω
+ p∗Mωu (3.18)
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Figure 3.1: Top left: Initial design (all elements on). Top right: On/Off sensitivities. Bottom
left: Design after first iteration. Bottom right: Final design after 30 iterations of Algorithm 1.

where the adjoint state p ∈ H1
0 (D) is given by the adjoint equation

(Ku +Nu)∗ p = −∂J
∂u

, (3.19)

which is the same as (2.31). Again, if J does not depend on ν explicitly as it is the case in
our model problem with J given by (2.15), (3.18) simplifies to

dJ
dνω

= p∗Mωu =

∫
ω
∇u · ∇pdx,

with p defined by (3.19).

Remark 3.3. Again, note that this formula is the same for the case of a linear or a nonlinear
state equation. Like in the case of Section 3.1, the only difference lies in the computation of
the direct and adjoint states u and p, respectively, as problem (2.17b) becomes linear and the
operator Nu vanishes.

3.3 Application to Model Problem

In this section, we apply the On/Off method described in Section 3.1 to the minimization
problem (2.17) in the case of a nonlinear state equation (2.17b). The idea of the method
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Figure 3.2: Final design after 30 iterations of Algorithm 1 with magnetic field.

is that, for elements occupied with ferromagnetic material where the sensitivity is negative,
switching these elements to air (i.e., switching them off) will (most likely) yield a decrease
of the objective function. Likewise, switching elements with positive sensitivity from air to
ferromagnetic material (i.e., switching them on) should also decrease the objective function.
However, it is important to note that the sensitivity in a triangle indicates how the objective
function is affected if the material coe�cient in this and only this element is modified. Thus,
switching all elements to the state indicated by their sensitivity at the same time might even
yield a deterioration of the objective value.

There are basically two ways to use the On/Off Sensitivities in an iterative optimization pro-
cedure. One approach, which is used in [162, 163] is to consider the absolute value of the
sensitivities and to switch all elements whose sensitivity exceeds a certain threshold value
(e.g. (1− γ) times the maximum sensitivity for some γ ∈ (0, 1)). This approach is also used
in a similar way in [63,80] using the topological derivative. Another approach, which we will
follow in this Section, is to consider the element of the design region with the largest (in terms
of absolute value) sensitivity and to switch all elements around this extremal element within
a certain radius r which contain the same material as the extremal element. Both approaches
involve a parameter (γ and r) which influences the evolution of the design and should be
chosen small enough such that an improvement of the objective function is achieved. Thus,
we recommend to use a line search in this parameter.

The optimization procedure using this second approach is summarized in Algorithm 1:

Algorithm 1. Initialization: Set j = 0, choose initial design Ω0 compute J (Ω0) and On/Off
Sensitivities (3.5). Set positive sensitivities in Ωf and negative sensitivities in Ωair to zero.
Choose the parameter r̄.

(i) Determine element Text with extremal sensitivity

(ii) Switch state of all elements within a radius rj of the element Text which have the same
state as Text and set Ωj+1 the updated geometry, where rj = r̄max{1, 1/2, 1/4, . . . }
such that J (Ωj+1) < J (Ωj).
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Figure 3.3: Left: Radial component of magnetic flux density for initial and final design to-
gether with desired curve. Right: Evolution of objective function (2.15) during the optimiza-
tion procedure.

(iii) Compute On/Off Sensitivities (3.5) for updated geometry Ωj and set positive sensitivi-
ties in Ωf and negative sensitivities in Ωair to zero.

(iv) If On/Off Sensitivities are zero everywhere, stop, else set j ← j + 1 and go to (i).

Note that for every evaluation of the objective function J , the state equation (3.1) has to be
solved, and for every evaluation of the On/Off sensitivities (3.5), in addition the adjoint state,
i.e., the solution to (3.6), is needed. The parameter r̄ determines the maximum radius of the
holes that are introduced and must be set by the user.

In our experiments, we chose r̄ to be four times the length of the smallest edge in the mesh of
the design area. In order to decide whether an element is in a neighborhood of radius rj of the
extremal element, we considered the distance between the centroids of these triangles. The
results of Algorithm 1 applied to our model problem (2.17) can be seen in Figures 3.1–3.2.
Figure 3.1 shows the initial configuration of one of the eight parts of the design subdomain
Ωd, as well as the On/Off sensitivity and the design after one iteration of the algorithm. In
each iteration, we modified each of the eight subdomains in two positions due to symmetry.
The final design after 33 iterations of Algorithm 1 can be seen in the last picture of Figure 3.1
as well as in Figure 3.2. We treated the eight parts of Ωd individually. The difference in the
designs in the eight parts is probably due to the mesh which was not chosen as periodic. In
Figure 3.2, we can see the final design along with the field lines of the magnetic flux density.
Figure 3.3 shows the radial component of the B-field of the improved design compared to the
initial design and the desired curve, as well as the decrease of the objective function in the
course of the optimization procedure. Note that the desired curve Bd is not reachable, i.e.,
functional (2.15) cannot become zero, due to the definition of the design area Ωd.
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Chapter 4

Topological Derivative for
Magnetostatic Problem

The goal of this chapter is the rigorous derivation of the topological derivative for the design
optimization problem (2.17) constrained by the nonlinear partial differential equation (PDE)
of two-dimensional magnetostatics introduced in Section 2.3.

The topological derivative of a domain-dependent shape functionalJ = J (Ω) indicates whether
a perturbation of the domain (i.e., an introduction of a hole) around a spatial point x0 would
lead to an increase or decrease of the objective functional. The idea of the topological deriva-
tive was first introduced for the compliance functional in linear elasticity in [78,189] in the
framework of the bubble method, where classical shape optimization methods are combined
with the repeated introduction of holes (so-called “bubbles”) at optimal positions. The math-
ematical concept of the topological derivative was rigorously introduced in [195]. Given an
open set Ω ⊂ Rd with d the space dimension, and a fixed bounded, smooth domain ω con-
taining the origin, the topological derivative of a shape functional J = J (Ω) at a spatial point
x0 is defined as the quantity G(x0) satisfying a topological asymptotic expansion of the form

J (Ωε)− J (Ω) = f(ε)G(x0) + o(f(ε)), (4.1)

where Ωε = Ω \ ωε with ωε = x0 + ε ω denotes the perturbed domain, and f is a positive
first order correction function that vanishes with ε → 0. We remark that, in the case where
J depends on the domain Ωε via the solution of a boundary value problem on Ωε, boundary
conditions also have to be specified on the boundary of the hole, i.e., on ∂ωε. Then, the
choice of the boundary conditions on this boundary has a great influence on the resulting
formula for the topological derivative G. In the original paper [195], the authors introduced
the topological derivative concept with f(ε) being the volume of the ball of radius ε in Rd.
Later, in [143], the concept was generalized to the form (4.1) which also allowed to deal with
Dirichlet boundary conditions on the boundary of the hole, see also [63,159].

Topological asymptotic expansions of the form (4.1) have been derived for many different
problems constrained by linear PDEs. We refer the interested reader to [13,14,22–24,61,65,
80, 144] as well as the monograph [159]. Besides the field of shape and topology optimiza-
tion, topological derivatives are also used in applications from mathematical imaging, such as
image segmentation [108] or electric impedance tomography [109,133], or other geometric
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inverse problems such as the detection of obstacles, of cracks or of impurities of a materials,
see e.g. [65,95] and the references therein.

In the context of magnetostatics, introducing a hole into a domain does not correspond to
excluding this hole from the computational domain, but rather corresponds to the presence of
an inclusion of a different material, namely air. Thus, in this scenario, both the perturbed and
the unperturbed configuration live on the same domain Ω, and only the material coe�cient
of the underlying PDE constraint is perturbed. Let uε and u0 denote the solutions to the
perturbed and unperturbed state equation and Jε and J0 the objective functionals defined on
the perturbed and unperturbed configurations, respectively. Then, the asymptotic expansion
corresponding to (4.1) reads

Jε(uε)− J0(u0) = f(ε)G(x0) + o(f(ε)), (4.2)

where, again, the function f is positive and tends to zero with ε. The quantity G(x0) is
then often referred to as the configurational derivative of the shape functional J at point
x0, see [159]. This sensitivity is analyzed for a class of linear PDE constraints in [14]. We
remark that, in the limit case where the material coe�cient inside the inclusion tends to zero,
the classical topological derivative defined by (4.1) with homogeneous Neumann boundary
conditions on the boundary of the hole is recovered, see [159, Remark 5.3]. In our case, the
function f in (4.2) will be given by f(ε) = εd with d = 2 the space dimension. Under a
slight abuse of notation, we will refer to the configurational derivative defined by (4.2) as the
topological derivative.

In this thesis, we derive the topological derivative for a design optimization problem that is
constrained by the quasilinear equation of two-dimensional magnetostatics. As opposed to
the linear case, only a few problems constrained by nonlinear PDEs have been studied in the
literature. We mention the paper [158] where the topological derivative is estimated for the
p-Poisson problem and the papers [15] and [117] for the topological asymptotic expansion in
the case of a semilinear elliptic PDE constraint. In the recent work [20] which is based on [46],
the authors considered a class of quasilinear PDEs and rigorously derived the topological
derivative according to (4.2), which consists of two terms: a first term that resembles the
topological derivative in the linear case, and a second termwhich accounts for the nonlinearity
of the problem.

The quasilinear PDE we consider in this thesis does not exactly fit the framework of [20,46].
However, it is similar and wewill follow the steps taken there in order to derive the topological
derivative for the electromagnetic design optimization problem (2.17) introduced in Section
2.3.

The rest of this chapter is organized as follows: We collect some mathematical preliminaries
of our problem in Section 4.1 and show the main steps for the derivation of the topological
derivative in the case of a linear PDE constraint in Section 4.2. In Section 4.3, we collect
some assumptions and estimates on the nonlinearity of the problem and introduce suitable
spaces which we will need later on. The rigorous derivation of the topological asymptotic
expansion for two different cases is performed in Sections 4.4 and 4.5. In Section 4.4, we
consider the case where an inclusion of air is introduced into a domain of ferromagnetic
material, whereas Section 4.5 deals with the reverse scenario. We derive explicit formulas
for the matrices occurring in these formulas, which are related to the concept of polarization
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matrices, in Section 4.6, before considering computational aspects of the derived formulas,
which ensure the practical applicability of the result, in Section 4.7. Finally, we apply the
derived formulas to the optimization of a model electric motor in Section 4.8 by means of a
level set algorithm.

4.1 Preliminaries

We aim at solving problem (2.17) by exploiting topological sensitivity information, or, more
precisely, by means of the topological derivative introduced in (4.2). It is important to note
that the topological derivative for introducing air in ferromagnetic material is different from
that for introducing ferromagnetic material in a domain of air. Therefore, we distinguish
between the following two cases:

1. Case I:An inclusion of air is introduced inside an area that is occupiedwith ferromagnetic
material, see Figure 4.2 on page 58.

2. Case II: An inclusion of ferromagnetic material is introduced inside an area that is occu-
pied with air, see Figure 4.3 on page 105.

In order to distinguish these two sensitivities, we denote the topological derivative in Case I
by Gf→air and in Case II by Gair→f . It is important to have access to both these sensitivities
for employing bidirectional optimization algorithms which are capable of both introducing
and removing material at the most favorable positions. In Section 4.2, we will see that, in
the case of a linear state equation (2.17b), the two sensitivities Gf→air and Gair→f differ
only by a constant factor. In the more realistic case introduced in Section 2.3 however, where
the nonlinear material behavior of ferromagnetic material is accounted for, the two topolog-
ical derivatives must be derived individually. We will rigorously derive Gf→air for Case I in
Section 4.4. Most of the steps for deriving Gair→f in Case II are similar to Case I. In Case
II however, we have nonlinear material inside the inclusion and linear material outside the
inclusion, which simplifies some of the steps. We will show the main steps for the derivation
of Gair→f in Section 4.5.

Throughout this chapter, for sake of more compact presentation, we will drop the differential
dx in the volume integrals whenever there is no danger of confusion.

4.1.1 Simplified Model Problem

In order to alleviate some calculations, we introduce a simplified model of the PDE constraint
(2.17b). The model we introduce here, is meant for Case I. The analogous simplified model
for Case II will be introduced in the beginning of Section 4.5.

The simplification consists in the fact that, in the unperturbed configuration, we assume the
material coe�cient ν to be homogeneous in the entire bounded domain D. In the notation
of Section 2.3, we assume that Ωref

f = D and, in the unperturbed case, Ω = Ωd. Then, the
unperturbed state equation (2.17b) simplifies to

Find u0 ∈ H1
0 (D) such that

∫
D
T (∇u0) · ∇η = 〈F, η〉 ∀η ∈ H1

0 (D), (4.3)
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as can be seen from the definitions of the operator AΩ (2.12) and the reluctivity function νΩ

(2.11), as well as the definition of the operator T (2.24). Here, F ∈ H−1(D) is as in (2.13)
and represents the sources due to the electric currents in the coil areas of the motor and the
permanent magnetization in the magnets.

We will assume this simplified setting for the rest of this chapter and derive the formula for
the topological derivative under these assumptions.

Remark 4.1. The reason why we have to make this simplification will come clear in the proofs
of Proposition 4.27 and Lemma 4.35. We remark that the topological derivative denotes the
sensitivity of the objective function with respect to a perturbation inside an inclusion whose radius
tends to zero. Therefore, the material coefficients “far away” from the point of perturbation,
e.g., outside the design subdomain Ωd when the point of perturbation is inside Ωd, should not
influence the formula for the sensitivity and it is justified to use the same formula also for the
realistic setting introduced in Section 2.3. Note that, for all numerical computations, the realistic
state equation (2.17b) and adjoint equation (2.31) were solved.

4.1.2 Perturbed State Equation

We are interested in the sensitivity of the objective functional J with respect to a local per-
turbation of the material coe�cient around a fixed point x0 in the design subdomain Ωd. For
that purpose, we introduce a perturbed version of the simplified state equation (4.3).

Let supp(F ) denote the support of the distribution F ∈ H−1(D), i.e., the complement in D
of the largest open set where F vanishes, see [113]. We assume that supp(F ) is compactly
contained in D, supp(F ) ⊂⊂ D, and that the design subdomain Ωd is open and compactly
contained in D \ supp(F ),

Ωd ⊂⊂ D \ supp(F ).

Let x0 be a fixed point in Ωd. Let furthermore ω ⊂ R2 be a bounded open domain with C2

boundary which contains the origin, and let ωε = x0 +ε ω represent the inclusion of different
material in the physical domain. For simplicity and without loss of generality, we assume that
x0 = (0, 0)>. Furthermore, let 0 < ρ < R and λ ∈ (0, 1] such that

λω ⊂⊂ B(0, ρ) ⊂ B(0, R) ⊂⊂ D \ supp(F ). (4.4)

Note that such a choice of λ, ρ, R is always possible if x0 ∈ Ωd.

Recall the notation introduced in Section 2.3. In the perturbed configuration, the inclusion
ωε of radius ε is occupied by air. Therefore, we have Ω = Ωd \ ωε, and, according to (2.8),
Ωf = Ωref

f \ Ωd ∪ Ω = D \ ωε the set of points occupied by ferromagnetic material, see

Figure 4.2. Here we used that, in the simplified setting introduced in Section 4.1.1, Ωref
f = D.

We define the operator

Tε(x,W ) := χD\ωε(x)T (W ) + χωε(x)ν0W, (4.5)

for ε > 0, x ∈ D andW ∈ R2 with its Jacobian given by

DTε(x,W ) = χD\ωε(x)DT (W ) + χωε(x)ν0I.
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Note that, given the special setting introduced above, Tε(x,W ) = TΩd\ωε(x,W ) according to
(2.26).

Thus, in the simplified setting introduced in Section 4.1.1, the perturbed state equation reads

Find uε ∈ H1
0 (D) such that

∫
D
Tε(x,∇uε) · ∇η = 〈F, η〉 ∀η ∈ H1

0 (D). (4.6)

Remark 4.2. In this thesis, the rigorous derivation of the topological derivative will be carried
out for the case where ω is the unit disk in R2, ω = B(0, 1). In the linear case of Section 4.2, a
generalization to ellipse-shaped inclusions is possible, see Remark 4.73 in Section 4.6. Concerning
the nonlinear case, which is treated in the rest of this chapter, the possibility of an extension of
the results to more general shapes of ω is discussed in Remark 4.45.

4.1.3 Expansion of Cost Functional

We assume that the functional to be minimized is of the following form:

Assumption 2. For ε ≥ 0 small enough, let Jε : H1
0 (D)→ R such that

Jε(uε) = J0(u0) + 〈G̃, uε − u0〉+ δJε
2 +R(ε) (4.7)

where

1. G̃ denotes a bounded linear form on H1
0 (D)

2. δJ ∈ R

3. the remainder R(ε) is of the form

R(ε) = O

(∫
D\B(0,α̂εr̃)

|∇(uε − u0)|2
)

(4.8)

for a given α̂ > 0 and a given r̃ ∈ (0, 1).

In the case of electric motors, the objective function J is generally supported only in the air
gap Ωg ⊂ Ωref

air . Therefore, a perturbation of the material coe�cient inside the design domain
Ωd will only affect the functional via the solution u of the PDE constraint, but not in a direct
way. For that reason, we assume that the functional for the perturbed and the unperturbed
configuration coincide, i.e., Jε = J0 = J in the expansion (4.2), for the rest of this chapter.

Remark 4.3. Functional (2.15) in our model problem does not depend explicitly on ε, i.e., Jε =
J0 = J , and fulfills an expansion of the form (4.7) with G̃ = DJ (u0), δJ = 0:

J (uε)− J (u0) = 2

∫
Ωg

(∇uε · τg −∇u0 · τg)(∇u0 · τg −Bd) +

∫
Ωg

|∇uε · τg −∇u0 · τg|2

= 〈DJ (u0),∇uε −∇u0〉+

∫
Ωg

|∇uε · τg −∇u0 · τg|2.

Since J is integrated over the air gap region Ωg which is not part of the design subdomains Ωd,
see Figure 2.2, it can be seen that the remainder R(ε) =

∫
Ωg
|∇uε · τg − ∇u0 · τg|2 is of the

form (4.8).
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4.2 Linear Case

This section is based on [14, 46, 88]. In this section, we illustrate the procedure of deriving
the topological derivative according to (4.2) for the simpler case of a linear state equation.
For this purpose, we consider linear material behavior in both materials, i.e., we replace the
nonlinear reluctivity function ν̂ by a constant reluctivity value ν1 satisfying 0 < ν1 < ν0.
Note that also ferromagnetic materials exhibit linear behavior in regions of low magnetic flux
density, see Figure 2.4. However, we remark that, in most applications involving electrical
machines, this simplified linear model is not a realistic model. For ε ≥ 0 small enough, we
introduce the piecewise constant reluctivity function νε : D → R defined by

νε(x) = χD\ωε(x) ν1 + χωε(x) ν0,

and, for u, η ∈ H1
0 (D), the bilinear form

aε(u, η) =

∫
D
νε∇u · ∇η, x ∈ D.

Then, the state equation in the perturbed (ε > 0) or unperturbed setting (ε = 0) reads,

Find uε ∈ H1
0 (D) such that aε(uε, η) = 〈F, η〉 ∀η ∈ H1

0 (D),

with F ∈ H−1(D) representing the currents and the magnetization. With this setting, it is
possible to apply the following result from [14] in order to obtain the topological derivative
of a given cost functional.

Proposition 4.4 ([14]). Let V be a real Hilbert space. For all parameters ε ∈ [0, ε0), ε0 > 0,
consider a function uε ∈ V solving a variational problem of the form

aε(uε, η) = lε(η) ∀η ∈ V, (4.9)

where aε and lε are a bilinear and a linear form on V , respectively. Consider a cost function

j(ε) = Jε(uε).

Suppose that the following hypotheses hold:

1. There exists G̃ ∈ V ∗ and a number δJ such that

Jε(uε) =J0(u0) + 〈G̃, uε − u0〉+ f(ε) δJ + o(f(ε)), (4.10)

2. There exist two numbers δa and δl and a function f(ε) ≥ 0 such that, when ε goes to zero,

(aε − a0)(u0, pε) = f(ε) δa+ o(f(ε)), (4.11)

(lε − l0)(pε) = f(ε) δl + o(f(ε)), (4.12)

lim
ε→0

f(ε) = 0,

where pε ∈ V is an adjoint state satisfying

aε(ϕ, pε) = −〈G̃, ϕ〉 ∀ϕ ∈ V. (4.13)
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Then the first variation of the cost function with respect to ε is given by
j(ε)− j(0) = f(ε) (δa− δl + δJ) + o(f(ε)).

Proof. Due to (4.9), we have

j(ε)− j(0) = [Jε(uε)− J0(u0)] + [aε(uε, pε)− a0(u0, pε)]− [lε(pε)− l0(pε)] .

Using (4.11) and (4.12), we get

j(ε)− j(0) = Jε(uε)− J0(u0) + aε(uε − u0, pε) + f(ε)(δa− δl) + o(f(ε)).

It follows from (4.10) that

j(ε)− j(0) = 〈G̃, uε − u0〉+ aε(uε − u0, pε) + f(ε)(δa− δl + δJ) + o(f(ε)).

The adjoint equation (4.13) yields the claimed result.

4.2.1 Application to the Model Problem

In this section, we apply Proposition 4.4 to the simplifiedmodel problem introduced in Section
4.1.1 in the linear setting introduced in the beginning of Section 4.2. We show the main steps
for deriving the variations δa, δl, δJ1, δJ2. The derivation of δa will not be done in detail, but
we rather just outline the main steps. Starting in Section 4.3, we will perform the rigorous
derivation for the topological derivative in the case of a nonlinear reluctivity function ν̂ in one
of the subdomains, which, of course, also covers the linear case by setting ν̂ = ν1 = const > 0.
The rigorous derivation of the variation of the bilinear form δa specifically for the linear case
can be found in [14].

4.2.1.1 Variation of the Linear Form

In Section 4.1.2, we assumed for the point x0 around which we perturb the material that
x0 ∈ Ωd ⊂⊂ D \ supp(F ), such that, for all η ∈ H1

0 (D),

lε(η) = l0(η) = 〈F, η〉,

and therefore relation (4.12) trivially holds with δl = 0.

4.2.1.2 Variation of the Cost Function

By Assumption 2, we have

Jε(uε) = J0(u0) + 〈G̃, uε − u0〉+ δJε
2 +O

(∫
D\B(0,α̂εr̃)

|∇(uε − u0)|2
)
,

for some α̂ > 0 and r̃ ∈ (0, 1). As we will see later by combining (4.68) and (4.71), it holds
that ‖uε − u0‖2H1(D\B(0,α̂εr̃))

= o(ε2) for all α̂ > 0 and r̃ ∈ (0, 1). Thus we get (4.10) with δJ
as in (4.7) and f(ε) = ε2. In particular, for a functional of type (2.15) which only depends
on the values of the state variable outside the design region,

Jε(u) = J0(u) = J (u|D\Ωd),

we get that δJ = 0, see Remark 4.3.
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4.2.1.3 Variation of the Bilinear Form

The rigorous derivation of a variation δa of the bilinear form is more involved and we will
only sketch the main steps in this section.

First, we introduce the boundary value problem defining the variation of the direct state
ũε := uε − u0. The problem reads

Find ũε ∈ H1
0 (D) such that∫

D
νε∇ũε · ∇η + (ν0 − ν1)

∫
ωε

∇u0 · ∇η = 0 ∀η ∈ H1
0 (D). (4.14)

This problem is derived from (4.9) by subtracting the variational equation for ε = 0 from the
same equation with ε > 0, noting that lε = F is independent of ε.

Analogously, we deduce the boundary value problem defining the variation of the adjoint
state, p̃ε := pε − p0. From (4.13), we get

Find p̃ε ∈ H1
0 (D) such that∫

D
νε∇η · ∇p̃ε + (ν0 − ν1)

∫
ωε

∇p0 · ∇η = 0 ∀η ∈ H1
0 (D). (4.15)

Then, by plugging in the definition and using (4.14) with η = p̃ε, we get

(aε − a0)(u0, pε) = (ν0 − ν1)

∫
ωε

∇u0 · ∇pε

= (ν0 − ν1)

∫
ωε

∇u0 · ∇p̃ε + (ν0 − ν1)

∫
ωε

∇u0 · ∇p0

= −
∫
D
νε∇ũε · ∇p̃ε + (ν0 − ν1)

∫
ωε

∇u0 · ∇p0. (4.16)

Assuming enough regularity for the unperturbed direct and adjoint state, it can be seen that,
for the second term in (4.16), we have

(ν0 − ν1)

∫
ωε

∇u0 · ∇p0 = |ω|ε2 (ν0 − ν1)∇u0(x0) · ∇p0(x0) + o(ε2) (4.17)

as ε approaches zero.

In order to treat the first term in (4.16), we define ν̃(x) = χR2\ω(x)ν1 + χων0 for x ∈ R2,
and introduce ε-independent approximations to boundary value problems (4.14) and (4.15).
After a change of scale, we get the transmission problem defining the variation of the direct
state at scale 1,

Find H ∈ H such that∫
R2

ν̃∇H · ∇η + (ν0 − ν1)

∫
ω
∇u0(x0) · ∇η = 0 ∀η ∈ H, (4.18)

approximating (4.14), and the problem defining the variation of the adjoint state at scale 1,

Find K ∈ H such that∫
R2

ν̃∇η · ∇K + (ν0 − ν1)

∫
ω
∇p0(x0) · ∇η = 0 ∀η ∈ H, (4.19)
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as an approximation of (4.15), where H is a suitable Hilbert space which will be defined in
Section 4.3.4. The solutions H, K are approximations to ũε and p̃ε, respectively, at scale 1
and it holds

ũε(x) ≈ εH(ε−1x) and p̃ε(x) ≈ εK(ε−1x),

for almost every x ∈ D. An important ingredient for deriving the variation of the bilinear
form (4.11) is to show that these ε-independent approximations of ũε and p̃ε have a su�ciently
fast decay as |x| approaches infinity. This would imply that the impact of the local variation of
the material is small “far away” from the inclusion. In the case of a linear state equation, this
su�ciently fast decay can be established by convolution of the right hand side of problems
(4.18) and (4.19) with the fundamental solution of the Laplace equation. Exploiting these
su�ciently fast decays will allow us to show that∫

D
νε∇ũε · ∇p̃ε = ε2

∫
R2

ν̃∇H · ∇K + o(ε2),

which, by means of (4.18) tested with η = K, together with the term (4.17), yields (4.11)
with

δa = (ν0 − ν1)

∫
ω
∇u0(x0) · (∇K +∇p0(x0)).

It can be seen from (4.19) that K depends linearly on ∇p0(x0) and, therefore, δa can be
represented by means of a matrixM. Finally, we get

δa = ∇u0(x0)>M∇p0(x0), (4.20)

f(ε) = ε2.

Here, M = ν1P(ω, ν0/ν1) where the matrix P(ω, ν0/ν1) only depends on the shape of the
inclusion ω and the contrast ν0/ν1 and is called a polarization matrix, see, e.g., [11]. Explicit
formulas for these matrices are available if ω is a disk or ellipse in two space dimensions, or a
ball or ellipsoid in three space dimensions, see also [11,14,65] as well as Section 4.6 of this
thesis. We mention that in the case where ω is the unit disk in R2, the polarization matrix in
the linear setting reads

Pω,ν0/ν1 = 2
ν0/ν1 − 1

ν0/ν1 + 1
|ω|I, (4.21)

where I is the identity matrix.

4.2.1.4 Summary

Summarizing, by applying Proposition 4.4, we have found the topological asymptotic expan-
sion

Jε(uε)− J0(u0) =ε2
(
ν1∇u0(x0)>Pω,ν0/ν1∇p0(x0)

)
+ o(ε2).

Choosing ω = B(0, 1) as the unit disk, it follows from (4.21) that the topological derivative
at a point x0 for introducing air with material coe�cient ν0 inside another material with
coe�cient ν1 reads

Gf→air(x0) = 2ν1
ν0/ν1 − 1

ν0/ν1 + 1
π∇u0(x0) · ∇p0(x0). (4.22)
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Remark 4.5. Of course, in the reverse scenario of introducing material with coefficient ν1 inside
an area of air with coefficient ν0, the topological derivative is obtained in the exact same way
and we get the corresponding formula by just exchanging the values of ν0 and ν1 in (4.22):

Gair→f (x0) = 2ν0
ν1/ν0 − 1

ν1/ν0 + 1
π∇u0(x0) · ∇p0(x0). (4.23)

Note that this equivalence is not given in the case of nonlinear material behavior in one of the
two subdomains. Then, the two cases have to be considered individually, see Section 4.4 for the
case of introducing air inside ferromagnetic material and Section 4.5 for the reverse scenario, as
well as Chapter 5.

4.3 Preliminaries for the Nonlinear Case

This section serves as a preparation for Section 4.4 where the rigorous derivation of the topo-
logical derivative in the case of nonlinear ferromagnetic material in one of the subdomains is
performed. Here, we collect some requirements and properties of the nonlinear function ν̂,
i.e., the magnetic reluctivity function in the ferromagnetic subdomain, which was replaced by
the constant ν1 in the simplified setting of Section 4.2. We remark that the nonlinear case of
Section 4.4 is an extension of the linear case, for which we sketched the procedure in Section
4.2. This means that all steps taken in Section 4.2 also occur in Section 4.4. In addition, we
will have to deal with another term which accounts for the nonlinearity of the function ν̂.

Recall the operator T : R2 → R2 : W 7→ ν̂(|W |)W introduced in (2.24) and its Jacobian DT
(2.25). For V,W ∈ R2, we introduce the operator

SW (V ) := T (W + V )− T (W )−DT (W )V. (4.24)

For ε > 0 and ωε = x0 + εω as in Section 4.1.2, define

SεW (x, V ) := χD\ωε(x)SW (V ), (4.25)

Note that, if ν̂ is a constant as it was the case in Section 4.2, the operator T is linear and thus
SW (V ) and SεW (x, V ) vanish for all V,W ∈ R2. The operator defined in (4.24) can be seen
as a characterization of the nonlinearity of the problem.

Furthermore, for ε > 0, we define the scaled version of the domain D as

D/ε = {y = x/ε|x ∈ D}.

4.3.1 Summary of the Procedure

We give a brief overview over the main steps taken in the rest of this chapter.

We are interested in a topological asymptotic expansion of the form (4.2). By Assumption 2,
this reduces to showing that

〈G̃, uε − u0〉 = ε2G(x0) + o(ε2) and R(ε) = o(ε2).

with the remainder R(ε) of the form (4.8), where we chose f(ε) = ε2. In order to show these
relations, we investigate in detail the difference uε − u0, called the variation of the direct
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state. We introduce an approximation of this variation which is independent of the small
parameter ε. This approximation, which we will denote byH, is the solution to a transmission
problem on the entire planeR2 and is an element of a weighted Sobolev space as introduced in
Section 4.3.4. We establish relations between this approximationH and the variation uε−u0

on the domainD. A very important ingredient for this is to show thatH satisfies a su�ciently
fast decay towards infinity, meaning that this approximation to the difference between the
perturbed and unperturbed state is small “far away” from the inclusion. This result, which
is rather technical, is obtained in Theorem 4.24. All of these steps are shown in detail in
Section 4.4.1.

Similar results are needed for the variation of the adjoint state pε−p0 which is approximated
by the function K. Again, a su�ciently fast decay of K towards infinity is important. We
remark that, also in the case of a nonlinear state equation, the boundary value problem defin-
ing the adjoint state is always linear. Therefore, the treatment of the variation of the adjoint
state is less technical. These steps are carried out in Section 4.4.2.

Given the relations of Sections 4.4.1 and 4.4.2, a topological asymptotic expansion of the form
(4.2) is shown in Section 4.4.3. The topological derivative G consists of two terms. The first
term is very similar to (4.20) involving a matrixM the explicit form of which is derived in
Section 4.6. The second term is specific for the nonlinear case and its numerical computation
is treated in Section 4.7.

Finally we apply the obtained formula to the model problem of Section 2.3 in Section 4.8
using a level set algorithm which is based on topological sensitivity information.

4.3.2 Requirements

In addition to Assumption 1, which yields the physical properties (2.19a) and (2.19b), we
have to make further assumptions on the nonlinear function ν̂ representing the magnetic
reluctivity in the ferromagnetic subdomains.

Assumption 3. We assume that the nonlinear magnetic reluctivity function ν̂ satisfies the
following:

1. ν̂ ∈ C3(R+
0 ).

2. There exists c̃ > 0 such that |ν̂
′(s)|
s ≤ c̃ for all s ≥ 0.

3. There exist non-negative constants c̃4, c̃5, c̃
′, c̃′′ such that it holds∣∣∣(f−1

)′′
(s)
∣∣∣ ≤ c̃4, ∀s ≥ 0, (4.26)∣∣∣(f−1

)′′′
(s)
∣∣∣ ≤ c̃5, ∀s ≥ 0, (4.27)

|ν̂ ′(s)| ≤ c̃′, ∀s ≥ 0, (4.28)

|ν̂ ′′(s)| ≤ c̃′′, ∀s ≥ 0, (4.29)

where
(
f−1

)′′
(s) = 2ν̂ ′(s) + ν̂ ′′(s)s and

(
f−1

)′′′
(s) = 3ν̂ ′′(s) + ν̂ ′′′(s)s denote the

second and third derivative of the inverse of theB–H-curve, f−1(s) = ν̂(s)s, see (2.18),
respectively.
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Figure 4.1: (a) Magnetic reluctivity of ferromagnetic subdomain ν̂ in semilogarithmic scale.
(b) Zoom of reluctivity ν̂. (c) First derivative of magnetic reluctivity, ν̂ ′. (d) Zoom of first
derivative of magnetic reluctivity, ν̂ ′.

Assumption 4. Let δν̂ := inf
s>0

(ν̂ ′(s)s)/ν̂(s). We assume that

δν̂ > max
{
δR1
ν̂ , δR2

ν̂

}
where δR1

ν̂ = −1/3 and δR2
ν̂ = − (1+k1)2

(1+k1)2+2
with k1 = (ν − ν0)/ν0.

Note that the first assumption implies that ν̂ is Lipschitz continuous on [0,∞) and we denote
the Lipschitz constant by Lν̂ . According to Lemma 2.3, the reluctivity function ν̂ is once con-
tinuously differentiable. However, in our asymptotic analysis, we will make use of derivatives
of order up to three and thus assume ν̂ ∈ C3(R+

0 ). This assumption is realistic in practice,
since the function ν̂ is not known explicitly but only approximated from measured data by
smooth functions, see [169]. Assumption 3.2 does not automatically follow from physical
properties, but it is satisfied for the (realistic) set of data we used for all of the numerical
computations, see Figure 4.1. Note that Assumption 3.2 implies that ν̂ ′(0) = 0.

Assumption 4 is needed to show Propositions 4.21 and 4.22 which will then yield the asymp-
totic behavior of the variation of the direct state at scale 1, see Theorem 4.24. Due to the big
contrast betweenmaximum andminimum value of the magnetic reluctivity, see Figure 4.1(a),
the value of δR2

ν̂ < 0 is very close to zero such that, in order for ν̂ to fulfill Assumption 4, the
function ν̂ would have to be almost monotone. This would rule out a big class of reluctivity
functions including the one used throughout this thesis where δν̂ = −0.3091. However, we
remark that Assumption 4 is only a su�cient condition for the result of Theorem 4.24 and it
may very well be possible to show the result with weaker assumptions on δν̂ . The relaxation
of Assumption 4 is subject of future investigation.

In the Section 4.3.3, we will make use of the following estimates:

Lemma 4.6. Let Assumption 3 hold. Then there exist constants c4, c5 such that, for all ϕ ∈ R2

the following estimates hold:

4|ν̂ ′(|ϕ|)|+ |ν̂ ′′(|ϕ|)| |ϕ| ≤ c4, (4.30)

|ν̂ ′′′(|ϕ|)| |ϕ|+ 9|ν̂ ′′(|ϕ|)|+ 12
|ν̂ ′(|ϕ|)|
|ϕ|

≤ c5. (4.31)
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Proof. Estimate (4.30) can be easily seen using (4.26) and (4.28):

4|ν̂ ′(|ϕ|)|+
∣∣ν̂ ′′(|ϕ|)∣∣ |ϕ| = 4|ν̂ ′(|ϕ|)|+

∣∣ν̂ ′′(|ϕ|) |ϕ| ∣∣
= 4|ν̂ ′(|ϕ|)|+

∣∣ν̂ ′′(|ϕ|) |ϕ| + 2ν̂ ′(|ϕ|)− 2ν̂ ′(|ϕ|)
∣∣

≤ 4|ν̂ ′(|ϕ|)|+
∣∣ν̂ ′′(|ϕ|) |ϕ| + 2ν̂ ′(|ϕ|)

∣∣+ 2|ν̂ ′(|ϕ|)|
≤ c̃4 + 6c̃′ =: c4.

Similarly, from (4.27) and (4.29), it follows that

|ν̂ ′′′(|ϕ|)| |ϕ| =
∣∣ν̂ ′′′(|ϕ|) |ϕ| ∣∣

=
∣∣ν̂ ′′′(|ϕ|) |ϕ|+ 3ν̂ ′′(|ϕ|)− 3ν̂ ′′(|ϕ|)

∣∣
≤
∣∣ν̂ ′′′(|ϕ|) |ϕ|+ 3ν̂ ′′(|ϕ|)

∣∣+ 3
∣∣ν̂ ′′(|ϕ|)∣∣

≤ c̃5 + 3c̃′′,

which yields estimate (4.31) with c5 := c̃5 + 12c̃′′ + 12c̃ by means of estimate (4.29) and
Assumption 3.2.

4.3.3 Properties

Given the physical properties of Section 2.4 as well as the additional requirements of Section
4.3.2, we can show the relations of Lemmas 4.7 and 4.8, whichwewill make use of throughout
this chapter.

Lemma 4.7. Let Assumption 1 hold. Then, for the mapping T : R2 → R2 given in (2.24), the
following properties hold:

1. For all ϕ ∈ R2, we have that
ν|ϕ| ≤ |T (ϕ)| ≤ ν0|ϕ|.

2. There exist 0 < c1 ≤ c1 such that

c1|ψ|2 ≤ ψ>DT (ϕ)ψ ≤ c1|ψ|2 ∀ϕ,ψ ∈ R2. (4.32)

3. There exists c2 > 0 such that

(T (ϕ+ ψ)− T (ϕ)) · ψ ≥ c2|ψ|2 ∀ϕ,ψ ∈ R2. (4.33)

4. There exists a Lipschitz constant c3 > 0 such that

|T (ϕ+ ψ)− T (ϕ)| ≤ c3|ψ| ∀ϕ,ψ ∈ R2. (4.34)

Proof. 1. By definition of the operator T and property (2.19a) which follows from Assump-
tion 1, we have

ν|ϕ| ≤ |T (ϕ)| = ν̂(|ϕ|)|ϕ| ≤ ν0|ϕ|.

2. Let ϕ = (ϕ1, ϕ2)> ∈ R2. According to (2.29), the eigenvalues of the 2×2 matrix DT (ϕ)
are given by λ1 = ν̂(|ϕ|), λ2 = ν̂(|ϕ|) + ν̂ ′(|ϕ|)|ϕ|. Properties (2.19a) and (2.19b) yield
the claimed result with c1 = ν and c1 = ν0.
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3. Property (4.33) can be seen in the same way. It holds that

(T (ϕ+ ψ)− T (ϕ)) · ψ =

∫ 1

0
ψ>DT (ϕ+ tψ)ψ dt ≥ c1|ψ|2,

which yields (4.33) holds with c2 = c1.

4. In a similar way, we obtain (4.34) with c3 = ν0,

|T (ϕ+ ψ)− T (ϕ)| =
∣∣∣∣∫ 1

0
DT (ϕ+ tψ)ψdt

∣∣∣∣ ≤ ∫ 1

0
|DT (ϕ+ tψ)ψ|dt

≤
∫ 1

0
max {λ1(ϕ+ tψ), λ2(ϕ+ tψ)}|ψ|dt ≤ ν0|ψ|.

Here, we used (2.29) as well as (2.19a) and (2.19b).

Lemma 4.8. Let Assumption 3 hold. Then, the mapping T : R2 → R2,W 7→ ν̂(|W |)W given in
(2.24) has the following properties:

1. T ∈ C3(R2).

2. For the constant c4 ≥ 0 in (4.30), it holds

|Sϕ(ψ2)− Sϕ(ψ1)| ≤ c4|ψ2 − ψ1|(|ψ1|+ |ψ2|) ∀ϕ,ψ1, ψ2 ∈ R2. (4.35)

3. For the constant c5 ≥ 0 in (4.31), it holds

|Sϕ2(ψ)− Sϕ1(ψ)| ≤ c5|ϕ2 − ϕ1||ψ|2 ∀ϕ1, ϕ2, ψ ∈ R2. (4.36)

Proof. 1. We consider the first, second and third derivative of T :

• Recall the Jacobian of the mapping T given in (2.25),

DT (ϕ)(ψ) =

{
ν̂(|ϕ|)ψ + ν̂′(|ϕ|)

|ϕ| (ϕ⊗ ϕ)ψ, ϕ 6= (0, 0)>

ν̂(|ϕ|)ψ ϕ = (0, 0)>,

for ψ ∈ R2, and note that DT is continuous also in ϕ = 0 due to

lim
|ϕ|→0

|DT (ϕ)(ψ)−DT (0)(ψ)| ≤ lim
|ϕ|→0

(
|(ν̂(|ϕ|)− ν̂(0))ψ|+

∣∣∣∣ ν̂ ′(|ϕ|)|ϕ|
(ϕ⊗ ϕ)ψ

∣∣∣∣)
≤ lim
|ϕ|→0

(
|(ν̂(|ϕ|)− ν̂(0))| |ψ|+

∣∣ν̂ ′(|ϕ|)|ϕ| |ψ|∣∣) = 0.

because of (4.28) and the continuity of ν̂.

• For D2T , we get for all ϕ 6= 0 and all ψ, η ∈ R2,

D2T (ϕ)(ψ, η) =
ν̂ ′(|ϕ|)
|ϕ|

(ϕ⊗ η + (ϕ · η)I + η ⊗ ϕ)ψ

+

(
ν̂ ′′(|ϕ|)
|ϕ|2

− ν̂ ′(|ϕ|)
|ϕ|3

)
(ϕ · η)(ϕ⊗ ϕ)ψ.

(4.37)



4.3. PRELIMINARIES FOR THE NONLINEAR CASE 53

In the point ϕ = 0, the Fréchet derivative of DT is given by D2T (0)(ψ, η) = 0,
which can be seen as follows:

lim
|η|→0

|DT (η)(ψ)−DT (0)(ψ)− 0|
|η|

= lim
|η|→0

∣∣∣∣ ν̂(|η|)− ν̂(0)

|η|
ψ + ν̂ ′(|η|)

(
η

|η|
⊗ η

|η|

)
ψ

∣∣∣∣
≤ 2 |ν̂ ′(0)||ψ| = 0,

since ν̂ ′(0) = 0 due to Assumption 3.2. Thus, we have, D2T (0)(ψ, η) = 0. Also
here, we can see the continuity in ϕ = 0 as, for any ψ, η ∈ R2, it holds

lim
|ϕ|→0

|D2T (ϕ)(ψ, η)−D2T (0)(ψ, η)|

= lim
|ϕ|→0

[
ν̂ ′(|ϕ|)

(
ϕ

|ϕ|
⊗ η +

(
ϕ

|ϕ|
· η
)
I + η ⊗ ϕ

|ϕ|
−
(
ϕ

|ϕ|
· η
)(

ϕ

|ϕ|
⊗ ϕ

|ϕ|

))
+ ν̂ ′′(|ϕ|)(ϕ · η)

(
ϕ

|ϕ|
⊗ ϕ

|ϕ|

)]
ψ = 0,

where, we used that ϕ/|ϕ| is a unit vector and, again, that ν̂ ′(0) = 0 due to As-
sumption 3.2, as well as (4.29).

• By differentiating (4.37), we obtain for all ϕ,ψ, η, ξ ∈ R2 with ϕ 6= 0 that

D3T (ϕ)(ψ, η, ξ) =
1

|ϕ|2

(
ν̂ ′′(|ϕ|)− ν̂ ′(|ϕ|)

|ϕ|

)
ϕ · ξ [(ϕ · η)ψ + (ϕ · ψ)η + (ψ · η)ϕ]

+
ν̂ ′(|ϕ|)
|ϕ|

[(ξ · η)ψ + (ξ · ψ)η + (ψ · η)ξ]

+
1

|ϕ|2

(
ν̂ ′′(|ϕ|)− ν̂ ′(|ϕ|)

|ϕ|

)
[(ξ · η)(ϕ · ψ)ϕ+ (ϕ · η)(ξ · ψ)ϕ+ (ϕ · η)(ϕ · ψ)ξ]

+

(
ν̂ ′′′(|ϕ|)
|ϕ|3

− 3
ν̂ ′′(|ϕ|)
|ϕ|4

+ 3
ν̂ ′(|ϕ|)
|ϕ|5

)
(ϕ · ξ)(ϕ · η)(ϕ · ψ)ϕ,

(4.38)

where we used that
d

dϕ

(
ν̂ ′(|ϕ|)
|ϕ|

)
η =

1

|ϕ|2

(
ν̂ ′′(|ϕ|)− ν̂ ′(|ϕ|)

|ϕ|

)
ϕ · η.

We show that, under Assumption 3.2, the Fréchet derivative of D2T at the point
ϕ = 0 is given by

D3T (0)(ψ, η, ξ) = ν ′′(0) (ξ ⊗ η + (ξ · η)I + η ⊗ ξ)ψ. (4.39)

Exploiting that D2T (0)(ψ, η) = 0, we get

lim
|ξ|→0

|D2T (ξ)(ψ, η)−D2T (0)(ψ, η)−D3T (0)(ψ, η, ξ)|
|ξ|

= lim
|ξ|→0

∣∣∣∣ ν̂ ′(|ξ|)|ξ|

(
ξ

|ξ|
⊗ η + (

ξ

|ξ|
· η)I + η ⊗ ξ

|ξ|

)
ψ

+

(
ν̂ ′′(|ξ|)− ν̂ ′(|ξ|)

|ξ|

)
(
ξ

|ξ|
· η)(

ξ

|ξ|
⊗ ξ

|ξ|
)ψ

− ν ′′(0)

(
ξ

|ξ|
⊗ η + (

ξ

|ξ|
· η)I + η ⊗ ξ

|ξ|

)
ψ

∣∣∣∣ .



54 CHAPTER 4. TOPOLOGICAL DERIVATIVE FOR MAGNETOSTATIC PROBLEM

Noting that, under Assumption 3.2, we have ν̂ ′(0) = 0 and thus

lim
t→0

ν ′(t)/t = lim
t→0

(ν ′(t)− ν ′(0))/(t− 0) = ν ′′(0),

we see that the above expression vanishes, which proves the form (4.39). The
continuity of D3T (ϕ)(ψ, η, ξ) is clear for ϕ 6= 0 and can be seen for the point
ϕ = 0 noting that lim

t→0
ν ′(t)/t = ν ′′(0) which finishes the proof of statement 1 of

Lemma 4.8.

2. We follow the lines of the proof of Proposition 4.1.3(7) on page 73 of [46]:
Since T ∈ C3(R2), we can apply the fundamental theorem of calculus and get

Sϕ(ψ2)− Sϕ(ψ1) = T (ϕ+ ψ2)− T (ϕ+ ψ1)−DT (ϕ)(ψ2 − ψ1)

=

∫ 1

0
[DT (ϕ+ ψ1 + t(ψ2 − ψ1))−DT (ϕ)] (ψ2 − ψ1)dt

=

∫ 1

0

∫ 1

0
D2T (ϕ+ s [(1− t)ψ1 + tψ2])((1− t)ψ1 + tψ2, ψ2 − ψ1)dtds.

From (4.37), it follows that

|D2T (ϕ)(ψ, η)| ≤ 3
|ν̂ ′(|ϕ|)|
|ϕ|

|ϕ| |ψ| |η|+
(
|ν̂ ′′(|ϕ|)|
|ϕ|2

+
|ν̂ ′(|ϕ|)|
|ϕ|3

)
|ϕ|3|ψ| |η|

=
(
4|ν̂ ′(|ϕ|)|+ |ν̂ ′′(|ϕ|)| |ϕ|

)
|ψ| |η|. (4.40)

Estimate (4.40), together with requirement (4.30), yields that

|Sϕ(ψ2)− Sϕ(ψ1)|

≤
∫ 1

0

∫ 1

0

∣∣D2T (ϕ+ s [(1− t)ψ1 + tψ2]))
∣∣ |(1− t)ψ1 + tψ2| |ψ2 − ψ1|dtds

≤ c4|(1− t)ψ1 + tψ2||ψ2 − ψ1|
≤ c4(|ψ1|+ |ψ2|)|ψ2 − ψ1|.

3. Since T is three times continuously differentiable, we get by the fundamental theorem
of calculus that

|Sϕ2(ψ)− Sϕ1(ψ)|
=|T (ϕ2 + ψ)− T (ϕ2)−DT (ϕ2)ψ − (T (ϕ1 + ψ)− T (ϕ1)−DT (ϕ1)ψ) |

=

∣∣∣∣∫ 1

0
(DT (ϕ2 + t ψ)−DT (ϕ2))ψ dt−

∫ 1

0
(DT (ϕ1 + t ψ)−DT (ϕ1))ψ dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

∫ 1

0
D2T (ϕ2 + s t ψ)(ψ, tψ)dsdt−

∫ 1

0

∫ 1

0
D2T (ϕ1 + s t ψ)(ψ, tψ)dsdt

∣∣∣∣
≤
∫ 1

0

∫ 1

0

∣∣D2T (ϕ2 + s t ψ)(ψ, tψ)−D2T (ϕ1 + s t ψ)(ψ, tψ)
∣∣

≤
∫ 1

0

∫ 1

0

∫ 1

0
t|D3T (ϕ1 + s t ψ + r(ϕ2 − ϕ1))(ψ,ψ, ϕ2 − ϕ1)|dr dsdt.
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From (4.38), it is seen that

|D3T (ϕ)(ψ,ψ, ξ)| ≤6

∣∣∣∣(ν̂ ′′(|ϕ|)− ν̂ ′(|ϕ|)
|ϕ|

)∣∣∣∣ |ψ|2|ξ|+ 3
|ν̂ ′(|ϕ|)|
|ϕ|

|ψ|2|ξ|

+

∣∣∣∣(ν̂ ′′′(|ϕ|)|ϕ| − 3ν̂ ′′(|ϕ|) + 3
ν̂ ′(|ϕ|)
|ϕ|

)∣∣∣∣ |ψ|2|ξ|
≤
(
|ν̂ ′′′(|ϕ|)| |ϕ|+ 9|ν̂ ′′(|ϕ|)|+ 12

|ν̂ ′(|ϕ|)|
|ϕ|

)
|ψ|2|ξ|.

Denoting ϕtr,s = ϕ1 + s t ψ + r(ϕ2 − ϕ1) for 0 ≤ r, s, t ≤ 1, we get

|Sϕ2(ψ)− Sϕ1(ψ)| ≤
∫ 1

0

∫ 1

0

∫ 1

0
|D3T (ϕtr,s)(ψ,ψ, ϕ2 − ϕ1)|dr dsdt

≤
∫ 1

0

∫ 1

0

∫ 1

0

∣∣∣∣∣|ν̂ ′′′(|ϕtr,s|)| |ϕtr,s|+ 9|ν̂ ′′(|ϕtr,s|)|+ 12
|ν̂ ′(|ϕtr,s|)|
|ϕtr,s|

∣∣∣∣∣ |ψ|2|ϕ2 − ϕ1|dr dsdt

≤ c5|ψ|2|ϕ2 − ϕ1|,

where we used (4.31), which holds under Assumption 3.
This concludes the proof of Lemma 4.8

Remark 4.9. It is easy to see that the statements of Lemma 4.7 and Lemma 4.8 also hold for
the x-dependent operators Tε, DTε introduced in (4.5) and the operator Sε defined in (4.25) for
each point in their domain of definition with the same constants.

Remark 4.10. Note that relation (4.35) implies that

|Sϕ(ψ)| ≤ c4|ψ|2. (4.41)

4.3.4 Weighted Sobolev Spaces

In order to analyze the asymptotic behavior of the variation of the direct and adjoint state at
scale 1 in Sections 4.4.1 and 4.4.2 as well as in Sections 4.5.4 and 4.5.5, we need to define
an appropriate function space. We follow the presentation given in [46]. For more details on
weighted Sobolev spaces, we refer the reader to [12]. Let the weight function w : R2 → R be
defined as

w(x) =
1

(1 + |x|2)1/2(log(2 + |x|))
. (4.42)

Note that w ∈ L2(R2) and w(x) > 0 for all x ∈ R2 with

inf
x∈R2

w(x) = 0 and sup
x∈R2

w(x) <∞.

For all open O ⊂ R2, the space of distributions in O is denoted by D′(O). We define the
weighted Sobolev space

Hw(O) :=
{
u ∈ D′(O) : w u ∈ L2(O),∇u ∈ L2(O)

}
,

together with the inner product

〈u, v〉Hw(O) := 〈w u,w v〉L2(O) + 〈∇u,∇v〉L2(O), u, v ∈ Hw(O),
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and the norm

‖u‖Hw(O) := 〈u, u〉
1
2

Hw(O), u ∈ Hw(O).

The following result is shown in [46].

Lemma 4.11. The spaceHw(O) endowed with the inner product 〈·, ·〉Hw(O) is a separable Hilbert
space.

We define the weighted quotient Sobolev space

H(R2) := Hw(R2)/R

where we factor out the constants, and equip it with the quotient norm

‖[u]‖H(R2) := inf
m∈R
‖ũ+m‖Hw(R2), [u] ∈ H(R2),

where ũ ∈ Hw(R2) is any element of the class [u]. We note that H(R2) is a Hilbert space
because Hw(R2) is a Hilbert space and R is a closed subspace. For the space H(R2), we can
state the following Poincaré inequality, which is proved in [46]:

Lemma 4.12. There exists cP > 0 such that

‖[u]‖H(R2) ≤ cP ‖∇ũ‖L2(R2), ∀[u] ∈ H(R2),

where ũ ∈ Hw(R2) is any element of the class [u].

For all [u] ∈ H(R2), let ũ ∈ H(R2) denote any element of the class [u]. We endowH(R2) with
the semi-norm

|[u]|H(R2) := ‖∇ũ‖L2(R2).

The following corollary follows directly from Lemma 4.12.

Corollary 4.13. The semi-norm |[·]|H(R2) is a norm and is equivalent to the norm ‖[·]‖H(R2)

in H(R2).

4.3.5 Relation to Previous Work

As we mentioned in the introduction of Chapter 4, large parts of this chapter are following
the lines of [20,46]. Here, we want to give a brief overview over the main differences to the
results obtained there.

The main technical difference of the considered problems can be seen from the definition of
the perturbed operator Tε given in Section 4.1.2. In this thesis, we consider the perturbation
of a nonlinear subdomain by an inclusion of linear material or the other way around,

Tε(x,W ) =

{
ν0W in ωε,
T (W ) in D \ ωε,

T (2)
ε (x,W ) =

{
T (W ) in ωε,
ν0W in D \ ωε,
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with T (W ) = ν̂(|W |)W for W ∈ R2, whereas in [20, 46], the authors consider the same
nonlinear function multiplied by a different constant factor inside and outside the inclusion.
In our notation, this would correspond to

Tε(x,W ) =

{
γ1Ta(W ) in ωε,
γ0Ta(W ) in D \ ωε.

There, the operator Ta(W ) represents a regularized version of the p-Laplace operator, Ta(W ) =
(a2 + |W |2)(p−2)/2W for some a > 0 and p ≥ 2. On the one hand, many of the steps taken for
the derivation of the topological derivative can be used analogously in our context. The func-
tion space setting and the majority of the estimations even simplify here since all involved
quantities are defined in the Hilbert spaces H1(D) and H(R2) rather than in the Sobolev
space W 1,p(D) or the corresponding weighted Sobolev space over R2. On the other hand,
especially the proof of Theorem 4.24, which is based on Propositions 4.21 and 4.22, required
some additional effort.

On the other hand, the work presented in this thesis extends the results of [20, 46] in sev-
eral directions. Our work is motivated by a concrete application from electrical engineering.
Therefore, our focus is not only on the rigorous theoretical derivation of the correct formula
for the topological derivative, but also on the practical applicability of this formula. In order
to be able to use the derived formula for computational shape and topology optimization, we
had to consider the following additional aspects:

• We compute both sensitivities Gf→air (see Section 4.4) and Gair→f (see Section 4.5)
in order to be able to apply a bi-directional optimization algorithms which is capable
of both introducing and removing ferromagnetic material. Note that, in [20, 46], the
derivation of the topological derivative in the reverse scenario cannot be achieved by
simply exchanging the values for γ0 and γ1 since the result that corresponds to our
Theorem 4.24 assumes that γ1 < γ0.

• We derive explicit formulas for the matricesM,M(2), see (4.233) and (4.234).

• It is a priori not clear, how the new terms J2, J
(2)
2 defined in (4.104) and (4.211),

respectively, which account for the nonlinearity of the problem, can be computed nu-
merically in an e�cient way. In Section 4.7, we show a way to e�ciently evaluate these
terms by precomputing some values in an off-line stage and looking them up during the
optimization process.

4.4 Topological Asymptotic Expansion: Case I

In this section, we derive the topological asymptotic expansion (4.2) for the introduction of
an inclusion of air, which has linear material behavior, inside ferromagnetic material, which
behaves nonlinearly. For the reader’s convenience, we moved all longer, technical proofs of
this section to Section 4.4.4.

We begin the topological asymptotic expansion by the expansion of our cost function. Due to
Assumption 2, we have the expansion (4.7) , i.e.,

Jε(uε) = J0(u0) + 〈G̃, uε − u0〉+ δJε
2 +R(ε)
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Figure 4.2: Left: Unperturbed configuration for Case I, D = Ωf . Right: Perturbed configura-
tion for Case I, D = Ωf ∪ ωε.

with δJ ∈ R, G̃∈ H−1(D) and the remainder R of the form (4.8). Estimate (4.73) in Section
4.4.1.6 will allow us to show that, under condition (4.8), it holds R(ε) = o(ε2). This is
important for showing a topological asymptotic expansion of the form (4.2) with the first
order correction function f(ε) = ε2. The goal of the rest of this section is to identify the
topological derivative G(x0) at the point x0 such that

〈G̃, uε − u0〉 = ε2G(x0) + o(ε2). (4.43)

For dealing with this term, we will first collect some properties about the behavior of the
difference between the solution of the perturbed and the unperturbed problem, uε − u0, in
Section 4.4.1. We will refer to this difference as the variation of the direct state. Then, in
Section 4.4.2, we will introduce an adjoint boundary value problem with the bounded linear
form G̃ on the right hand side, again in the unperturbed (ε = 0) and perturbed (ε > 0)
setting, and investigate the difference between the solutions to these problems, pε − p0, the
variation of the adjoint state. In Section 4.4.3, we will combine our findings to derive the final
formula for the topological derivative G(x0).

4.4.1 Variation of Direct State

In this section, we first define a boundary value problem whose solution is the variation of
the direct state, uε − u0 (Section 4.4.1.2), and introduce an approximation to this problem
(Section 4.4.1.3). Note that the left hand side of (4.43) depends on ε only via the solution to
the perturbed equation uε, whereas, on the right hand side, the dependence of ε is explicit and
the quantity G(x0) is independent of ε. The key to achieve a relation like (4.43) is to define
a transmission problem at scale 1 which is defined on the entire plane R2 and independent
of ε (see Section 4.4.1.4) and show subsequently the relation between the solution H of this
problem and the variation uε−u0 in terms of ε, see Section 4.4.1.6. An important ingredient
for the estimates in Section 4.4.1.6 will be a su�ciently fast decay ofH as |x| tends to infinity,
which is provided in Section 4.4.1.5.

4.4.1.1 Regularity Assumptions

In order to perform the asymptotic analysis for the derivation of the topological derivative, we
need some regularity of the solution to the unperturbed state problem (4.3) in a neighborhood
of the point of the perturbation x0 ∈ Ωd. Henceforth, we make the following assumption:
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Assumption 5. There exists β > 0 such that

u0|Ωd ∈ C1,β(Ωd).

Remark 4.14. If the right hand side of the quasilinear boundary value problem (4.3) is given
by a smooth function f ∈ C0,γ(D), Assumption 5 follows from [141, Theorem 3.20] (assuming
that u0 ∈ L∞(D)). In the case of the model problem introduced in Section 2.3, the right hand
side is a distribution F ∈ H−1(D), which is, however, only supported outside the design area.
Therefore, the assumption that the solution u0 is smooth in the design area is reasonable.

Assumption 5 immediately implies the following regularity properties:

∇u0|Ωd ∈ C0,β(Ωd), (4.44)

∇u0|Ωd ∈ L∞(Ωd). (4.45)

4.4.1.2 Step 1: Variation uε − u0

Subtracting the perturbed problem (4.3) from the unperturbed problem (4.6) and noting that
the right hand sides coincide, we get

0 =

∫
D
Tε(x,∇uε) · ∇η −

∫
D
T (∇u0) · ∇η

=

∫
D

(Tε(x,∇uε)− Tε(x,∇u0)) · ∇η +

∫
ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇η.

The boundary value problem defining the variation of the direct state at scale ε, ũε := uε − u0,
is therefore given by

Find ũε ∈ H1
0 (D) such that∫

D
(Tε(x,∇u0 +∇ũε)− Tε(x,∇u0)) · ∇η

= −
∫
ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇η ∀η ∈ H1
0 (D).

(4.46)

4.4.1.3 Step 2: Approximation of Variation uε − u0

We approximate problem (4.46) by the same boundary value problem where we replace the
function ∇u0 by its value at the point of interest x0 = (0, 0)>, i.e., we replace ∇u0 by the
constant U0:= ∇u0(x0). Note that this point evaluation makes sense due to Assumptions 5.
Denoting the solution to the arising boundary value problem by hε, we get

Find hε ∈ H1
0 (D) such that∫

D
(Tε(x, U0 +∇hε)− Tε(x, U0)) · ∇η

= −
∫
ωε

(ν0 − ν̂(|U0|))U0 · ∇η ∀η ∈ H1
0 (D).

(4.47)

The relation between the solutions to boundary value problems (4.46) and (4.47) will be
investigated in Proposition 4.28.
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4.4.1.4 Step 3: Change of Scale

Next, we make another approximation to boundary value problem (4.47). First, we perform a
change of scale, i.e., we go over from the domainD with the inclusion ωε of size ε to the much
larger domain D/ε with the inclusion ω of unit size, e.g., ω = B(0, 1). In a second step we
approximate this scaled version of (4.47) by sending the boundary of the “very large” domain
D/ε to infinity. This yields a transmission problem on the plane R2 which is independent of ε.
We introduce the ε-independent operators corresponding to (4.5) and (4.25) at scale 1,

T̃ (x,W ) := χR2\ω(x)T (W ) + χω(x)ν0W,

S̃W (x, V ) := χR2\ω(x)SW (V ), (4.48)

for x ∈ R2 and V,W ∈ R2 with T and S given in (2.24) and (4.24), respectively, and note
that

DT̃ (x,W ) = χR2\ω(x)DT (W ) + χω(x)ν0I.

Remark 4.15. Again, the statements of Lemma 4.7 and Lemma 4.8 also hold for the x-dependent
operators T̃ , DT̃ , S̃ for each point in their domain of definition with the same constants.

With this notation, we arrive at the nonlinear transmission problem on R2 defining H, the
variation of the direct state at scale 1:

Find H ∈ H(R2) such that∫
R2

(
T̃ (x, U0 +∇H)− T̃ (x, U0)

)
· ∇η

= −
∫
ω

(ν0 − ν̂(|U0|))U0 · ∇η ∀η ∈ H(R2).

(4.49)

Remark 4.16. We remark that, for U0 = (0, 0)>, problems (4.47) and (4.49) only admit the
trivial solution which yields that H, ∇H, hε, ∇hε are identical zero and also SU0(∇H) and
SU0(∇hε) vanish. In this case, many computations simplify significantly. For the rest of this
chapter, we exclude the trivial case and assume that U0 6= (0, 0)>.

Next, we show existence and uniqueness of a solution to (4.49) using Theorem 2.5 (Zaran-
tonello).

Proposition 4.17. Let Assumption 1 hold. Then there exists a unique solution H ∈ H(R2) to
problem (4.49).

Proof. We apply Theorem 2.5 to problem (4.49) rewritten in the form

Find H ∈ H(R2) such that AH = L,

where the operator A : H(R2)→ H(R2)∗ and the right hand side L ∈ H(R2)∗ are defined by

〈Aη1, η2〉 =

∫
R2

(
T̃ (x, U0 +∇η1)− T̃ (x, U0)

)
· ∇η2,

〈L, η〉 =

∫
ω

(ν̂(|U0|)− ν0)U0 · ∇η,
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for η1, η2, η ∈ H(R2). We verify the strong monotonicity (2.22) and Lipschitz continuity
(2.23) of the operator A.

Property (4.33) together with Remark 4.15 gives

〈Aη1 −Aη2, η1 − η2〉 =

∫
R2

(
T̃ (x, U0 +∇η1)− T̃ (x, U0 +∇η2)

)
(∇η1 −∇η2)

≥ c2

∫
R2

|∇η1 −∇η2|2 = c2‖∇η1 −∇η2‖2L2(R2).

The Poincaré inequality of Lemma 4.12 yields the strongmonotonicity property (2.22) inH(R2).

For the Lipschitz condition, we get by property (4.34) together with Remark 4.15, Cauchy’s
inequality and the norm equivalence of Corollary 4.13 that

‖Aη1 −Aη2‖H(R2)∗ = sup
η 6=0

1

‖η‖H(R2)
|〈Aη1 −Aη2, η〉|

= sup
η 6=0

1

‖η‖H(R2)

∣∣∣∣∫
R2

(
T̃ (x, U0 +∇η1)− T̃ (x, U0 + η2)

)
· ∇η

∣∣∣∣
≤ c3 sup

η 6=0

1

‖η‖H(R2)

∫
R2

|∇η1 −∇η2| |∇η|

≤ c3 sup
η 6=0

1

‖η‖H(R2)
‖∇η1 −∇η2‖H(R2) ‖η‖H(R2)

= c3 ‖∇η1 −∇η2‖H(R2).

Therefore, Theorem (2.5) yields the existence of a unique solution H ∈ H(R2) to the varia-
tional problem (4.49) since L ∈ H(R2)∗.

4.4.1.5 Step 4: Asymptotic Behavior of Variations of Direct State

In this section, we investigate the asymptotic behavior of the solution H to problem (4.49) as
|x| goes to infinity. In order to show (4.43), we need a su�ciently fast decay of H “far away”
from the inclusion.

For that purpose, we introduce the function Hε : D → R, which brings back the solution H
of problem (4.49) from the plane R2 to the bounded domain D. For H ∈ H(R2) the solution
to (4.49), Ĥ ∈ Hw(R2) a given element of the class H and ε > 0, Hε is defined by

Hε(x) := εĤ(ε−1x), x ∈ D. (4.50)

Note that, when one is only interested in the gradient of Hε, the specific choice of Ĥ in the
class H does not matter. Noting that

w := inf
x∈D

w
(x
ε

)
> 0,

it is easy to see that Ĥ ∈ Hw(R2) implies Hε ∈ H1(D). We can show some first estimates
which we will make use of in later estimations:
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Lemma 4.18. Let Assumption 1 and Assumption 5 hold. Then

‖∇ũε‖2L2(D) = O(ε2), (4.51)

‖∇hε‖2L2(D) = O(ε2), (4.52)

‖∇Hε‖2L2(D) = O(ε2). (4.53)

The proof of Lemma 4.18 can be found in Section 4.4.4.1 on page 72.

Remark 4.19. By the triangle inequality, it follows immediately from estimates (4.51), (4.52)
and (4.53) that

‖∇ũε −∇hε‖2L2(D) = O(ε2), (4.54)

‖∇hε −∇Hε‖2L2(D) = O(ε2). (4.55)

In Section 4.4.1.6, we will show more estimates for the difference between the solution ũε of
(4.46) and hε of (4.47) on the one hand, and for the difference between hε and Hε on the
other hand, which will allow us to derive the topological derivative G(x0) in Section 4.4.3.
In particular, we will show stronger estimates of the type (4.54) in (4.71), and of (4.55) in
(4.67).

In order to show estimate (4.67), we need that there exists a representative H̃ of the solution
H to (4.49) which satisfies a su�ciently fast decay for |x| → ∞. For that purpose, let the
nonlinear operator Q : H(R2)→ H(R2)∗ be defined by

〈Qη1, η2〉 :=

∫
R2

[
T̃ (x, U0 +∇η1)− T̃ (x, U0)

]
· ∇η2 +

∫
ω
(ν0 − ν̂(|U0|))U0 · ∇η2. (4.56)

Note that for H the solution of (4.49), we have that

〈QH, η〉 = 0 for all η ∈ H(R2). (4.57)

In the following, we show that there exist a supersolution R1 satisfying 〈QR1, η〉 ≥ 0 and a
subsolution R2 such that 〈QR2, η〉 ≤ 0 for all test functions η in a subset of H(R2), both of
which satisfy a su�cient decay at infinity. Then we make use of a comparison principle to
show that there exists a representative H̃ of the solution H of (4.57) which satisfies R2(x) ≤
H̃(x) ≤ R1(x) almost everywhere and conclude that H̃ must have the same decay at infinity
as R1 and R2.

For that purpose, we first introduce a coordinate system that is aligned with the fixed vector
U0. Since we excluded the trivial case where U0 = (0, 0)> (see Remark 4.16), we can intro-
duce the unit vector e1 = U0/|U0| and the orthonormal basis (e1, e2) of R2. We denote (x1, x2)
the system of coordinates in this basis and introduce the half spaceR2

+ := {x ∈ R2 : U0·x ≥ 0}.
We first show that there exists a representative H̃ of the solutionH to (4.49) that is odd with
respect to the first coordinate.

Lemma 4.20. Let H ∈ H(R2) be the unique solution to the operator equation QH = 0 with Q
defined in (4.56) and assume that ω is symmetric with respect to the line {x ∈ R2 : U0 · x = 0}.
Then there exists an element H̃ of the class H such that, for all (x1, x2) ∈ R2,

H̃(−x1, x2) = −H̃(x1, x2).

In particular, H̃(0, x2) = 0 for all x2 ∈ R.
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A proof of Lemma 4.20 can be found in Section 4.4.4.1 on page 73.

Lemma 4.20 allows us to investigate the asymptotic behavior of H̃ only in the half plane R2
+.

However, Lemma 4.20 is based on the assumption that ω is symmetric with respect to the line
{x ∈ R2 : U0 · x = 0}. In order to fulfill this assumption for any given U0 ∈ R2, we will from
now on assume that ω = B(0, 1).

Proposition 4.21. Let ω = B(0, 1) and let Assumption 4 hold. Then there exists σ > 1 and
k ∈ (0, 1] such that the function R1 ∈ H(R2) ∩ L∞(R2) defined by

R1(x) :=

{
k(U0 · x)|x|−σ x ∈ R2 \ ω,
k(U0 · x) x ∈ ω,

(4.58)

satisfies

〈QR1, η〉 ≥ 0 ∀η ∈ H(R2) : supp(η) ⊂ R2
+, η ≥ 0 a.e. (4.59)

for the operator Q defined in (4.56).

The proof of Proposition 4.21 is very technical and can be found in Section 4.4.4.1 on page
74.

Next, we provide a subsolution R2 satisfying 〈QR2, η〉 ≤ 0 for all η from the same set of test
functions.

Proposition 4.22. Let ω = B(0, 1) and let Assumption 4 hold. Then there exists σ > 1 such
that the function R2 ∈ H(R2) ∩ L∞(R2) defined by

R2(x) :=

{
k(U0 · x)|x|−σ x ∈ R2 \ ω,
k(U0 · x) x ∈ ω,

(4.60)

with

k =
ν − ν0

ν0 + ν(σ − 1)
∈ (−1, 0)

satisfies

〈QR2, η〉 ≤ 0 ∀η ∈ H(R2) : supp(η) ⊂ R2
+, η ≥ 0 a.e. (4.61)

for the operator Q defined in (4.56).

The technical proof of Proposition 4.22 can be found in Section 4.4.4.1 on page 80.

Next, we can show that there exists an element H̃ of the class H, where H ∈ H(R2) is the
solution to (4.49), which has the same asymptotic behavior as R1 and R2 defined in (4.58)
and (4.60), respectively, by means of a comparison principle.

Proposition 4.23. Let ω = B(0, 1) and let Assumption 4 hold. Let R1 the supersolution defined
in Proposition 4.21, R2 the subsolution defined in Proposition 4.22 and H ∈ H(R2) the unique
solution to the operator equationQH = 0 withQ defined in (4.56). Then there exists an element
H̃ of the class H such that

R2(x) ≤ H̃(x) ≤ R1(x) ∀x ∈ R2
+ a.e. (4.62)
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The proof of Proposition 4.23 can be found in Section 4.4.4.1 on page 85.

Finally, collecting the results of Propositions 4.21, 4.22 and 4.23, we can state the following
theorem:

Theorem 4.24. Let ω = B(0, 1), let Assumption 4 hold and let H ∈ H(R2) be the unique
solution to the operator equation QH = 0 with Q defined in (4.56). Then there exists an
element H̃ of the class H ∈ H(R2) and τ > 0 such that

H̃(y) = O
(
|y|−τ

)
as |y| → ∞. (4.63)

The proof of Theorem 4.24 can be found in Section 4.4.4.1 on page 86.

Remark 4.25. As R1 and R2 are both in L∞(R2), we also have that H ∈ L∞(R2).

From now on, the functionHε is defined choosing Ĥ = H̃ in (4.50) where H̃ is as in Theorem
4.24, i.e.,

Hε(x) := εH̃(ε−1x), x ∈ D.

4.4.1.6 Estimates for the variations of the direct state

We show a technical lemma which we will need for the proof of Proposition 4.27. Let θ :
R2 → R be a smooth function such that

θ(x) = 0, x ∈ B(0, ρ), and θ(x) = 1, x ∈ R2 \B(0, R), (4.64)

where 0 < ρ < R together with λ ∈ (0, 1] were defined in (4.4) in such a way that λω ⊂⊂
B(0, ρ) ⊂ B(0, R) ⊂⊂ D \ supp(F ). Recall function Hε defined by

Hε(x) = εH̃(ε−1x), x ∈ D.

Then let the function κε : D → R be defined by

κε(x) = θ(x)Hε(x). (4.65)

Lemma 4.26. It holds κε ∈ H1(D) and Hε−κε ∈ H1
0 (D). Moreover, under the assumptions of

Theorem 4.24, it holds

‖∇κε‖2L2(D) = o(ε2). (4.66)

The proof of Lemma 4.26 can be found in Section 4.4.4.1 on page 86.

Proposition 4.27. Let ω = B(0, 1) and let Assumptions 1, 4 and 5 hold. Then

‖∇hε −∇Hε‖2L2(D) = o(ε2), (4.67)

∀α > 0 ∀r ∈ (0, 1) :

∫
D\B(0,αεr)

|∇hε|2 = o(ε2), (4.68)∫
D
|∇u0 − U0||∇hε|2 = o(ε2), (4.69)∫

D
|∇hε −∇Hε|(|∇hε|+ |∇Hε|) = o(ε2). (4.70)
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The proof of Proposition 4.27 can be found in Section 4.4.4.1 on page 87. Note that, in
the proof of (4.67), we exploited the structure of the simplified setting introduced in Sec-
tion 4.1.1.

Proposition 4.28. Let ω = B(0, 1) and let Assumptions 1, 4 and 5 hold. Then

‖∇ũε −∇hε‖2L2(D) = o(ε2), (4.71)∫
D
|∇ũε −∇hε|(|∇ũε|+ |∇hε|) = o(ε2), (4.72)

∀α > 0 ∀r ∈ (0, 1) :

∫
D\B(0,αεr)

|∇ũε|2 = o(ε2). (4.73)

The proof of Proposition 4.28 can be found in Section 4.4.4.1 on page 89.

4.4.2 Variation of Adjoint State

For ε > 0, we introduce the perturbed adjoint equation to the PDE-constrained optimization
problem (2.17) in the simplified setting of Section 4.1.1,

Find pε ∈ H1
0 (D) such that∫

D
DTε(x,∇u0)∇pε · ∇η = −〈G̃, η〉 ∀η ∈ H1

0 (D), (4.74)

where Tε is given in (4.5) and G̃ fulfills Assumption 2 together with the objective function J .
Note that DTε is a symmetric matrix. For ε = 0 we get the unperturbed adjoint equation,

Find p0 ∈ H1
0 (D) such that∫

D
DT (∇u0)∇p0 · ∇η = −〈G̃, η〉 ∀η ∈ H1

0 (D), (4.75)

where we used that DT0(x,∇u0) = DT (∇u0) according to the definition of Tε (4.5). For
ε > 0, we call pε the perturbed adjoint state, and p0 the unperturbed adjoint state. Note that
we use the same right hand side G̃, independently of the parameter ε ≥ 0.

4.4.2.1 Regularity Assumptions

Similarly to Assumption 5, we also need the unperturbed adjoint state p0 to be su�ciently
regular in a neighborhood of the point of the perturbation x0 ∈ Ωd. We assume the following:

Assumption 6. There exists β̃ > 0 such that

p0|Ωd ∈ C1,β̃(Ωd).

Remark 4.29. If the right hand side of the adjoint equation (4.75) is a smooth function f ∈
C0,γ(D) then the Hölder condition of Assumption 6 can be shown by [93, Theorem 8.34]. In
our case, the right hand side is a distribution G̃ ∈ H−1(D) satisfying an expansion of the form
(4.7). However, in the case of our model problem where we consider functionals J of the type
(2.15), G̃ is not supported in Ωd and thus the assumption that p0 is smooth in Ωd is reasonable.

Assumption 6 immediately yields the regularity properties

∇p0|Ωd ∈ C0,β̃(Ωd), (4.76)

∇p0|Ωd ∈ L∞(Ωd). (4.77)
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4.4.2.2 Step 1: Variation pε − p0

We proceed in an analogous way to Section 4.4.1.2. Subtracting (4.75) from (4.74), we get

0 =

∫
D

DTε(x,∇u0)∇pε · ∇η −DT (∇u0)∇p0 · ∇η

=

∫
D

DTε(x,∇u0)∇p̃ε · ∇η −DT (∇u0)∇p0 · ∇η + DTε(x,∇u0)∇p0 · ∇η.

Thus we get the boundary value problem defining the variation of the adjoint state at scale ε,
p̃ε := pε − p0,

Find p̃ε ∈ H1
0 (D)such that∫

D
DTε(x,∇u0)∇p̃ε · ∇η = −

∫
ωε

(ν0 I −DT (∇u0))∇p0 · ∇η ∀η ∈ H1
0 (D), (4.78)

where we used that DT (∇u0) and DTε(x,∇u0) coincide in D \ ωε.

4.4.2.3 Step 2: Approximation of Variation pε − p0

Analogously to Section 4.4.1.3, we approximate boundary value problem (4.78) by the same
boundary value problem where the functions ∇u0,∇p0 are replaced by their values at the
point x0, U0 := ∇u0(x0) and P0= ∇p0(x0), respectively. Again, note that this point evaluation
makes sense due to Assumptions 5 and 6. We denote the solution to the arising boundary
value problem by kε and get

Find kε ∈ H1
0 (D) such that∫

D
DTε(x, U0)∇kε · ∇η = −

∫
ωε

(ν0 I −DT (U0))P0 · ∇η ∀η ∈ H1
0 (D). (4.79)

4.4.2.4 Step 3: Change of Scale

Also here, we proceed analogously to the case of the variation of the direct state presented in
4.4.1.4. We perform a change of scale and then approximate boundary value problem (4.79)
by sending the outer boundary to infinity, which yields the linear transmission problem

Find K ∈ H(R2) such that∫
R2

DT̃ (x, U0)∇K · ∇η = −
∫
ω
(ν0 I −DT (U0))P0 · ∇η ∀η ∈ H(R2). (4.80)

Note that (4.80) is independent of ε.

Remark 4.30. We remark that, for P0 = (0, 0)>, problems (4.79) and (4.80) only admit the
trivial solution such that K, ∇K, kε, ∇kε are identical zero. In this case, many computations
simplify significantly. For the rest of this work, we exclude the trivial case and assume that
P0 6= (0, 0)>.

It is straightforward to establish the well-posedness of problem (4.80):
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Lemma 4.31. Let Assumption 1 hold. Then, there exists a unique solution K ∈ H(R2) to
problem (4.80).

Proof. We show existence and uniqueness of a solutionH ∈ H(R2) to (4.80) by the lemma of
Lax-Milgram, see e.g. [47]. The coercivity and boundedness of the left hand side of (4.80)
can be shown analogously to the proof of Lemma 2.8 exploiting (4.32) together with Remark
4.15, the physical properties (2.19) and the norm equivalence of Corollary 4.13. The right
hand side of (4.80) is obviously a bounded linear functional on H(R2).

4.4.2.5 Step 4: Asymptotic Behavior of Variations of the Adjoint State

LetK ∈ H(R2) be the unique solution inH(R2) to (4.80) and let K̂ ∈ Hw(R2) denote a given
element of the class K. For ε > 0, let Kε : D → R be defined by

Kε(x) := εK̂(ε−1x). (4.81)

As in the case of the variation of the direct state, making the change of scale backwards, it
follows from K̂ ∈ Hw(R2) that Kε ∈ H1(D), since

inf
x∈D

w
(x
ε

)
> 0.

Lemma 4.32. Let Assumptions 1, 3, 5 and 6. Then it holds

‖∇p̃ε‖2L2(D) = O(ε2), (4.82)

‖∇kε‖2L2(D) = O(ε2), (4.83)

‖∇Kε‖2L2(D) = O(ε2). (4.84)

The proof of Lemma 4.32 can be found in Section 4.4.4.2 on page 93.

Next, we show an asymptotic behavior of an element of the classK ∈ H(R2) similar to (4.63).

Proposition 4.33. Let Assumption 1 hold and let K ∈ H(R2) the unique solution to (4.80)
according to Lemma 4.31. Then there exists an element K̃ of the class K such that

K̃(y) = O(|y|−1) as |y| → ∞. (4.85)

The proof of Proposition 4.33 can be found in Section 4.4.4.2 on page 93.

Let, from now on, the function Kε (4.81) be defined by choosing K̂ = K̃ where K̃ is the
element of the class K ∈ H(R2), which satisfies the asymptotic behavior (4.85). Here, K ∈
H(R2) is the unique solution to (4.80) according to Lemma 4.31. Recall the smooth function θ
defined in (4.64). Analogously to the function κε in (4.65), let the function κaε : D → R be
defined by

κaε(x) = θ(x)Kε(x). (4.86)

Lemma 4.34. Let Assumption 1 hold. It holds κaε ∈ H1(D) andKε−κaε ∈ H1
0 (D). Moreover,

it holds

‖∇κaε‖2L2(D) = o(ε2). (4.87)
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Proof. The proof is analogous to the proof of Lemma 4.26, exploiting the asymptotic behavior
(4.85) of K. The only difference lies in the second step of the proof of Lemma 4.26 on page
87 as the asymptotic behavior of H̃ (4.63), i.e., H̃ = O(|y|−τ ) with τ > 0, is different from
that of K̃ (4.85), K̃ = O(|y|−1). Here, it su�ces to replace the exponent τ by 1 in the proof
and the result (4.87) follows.

Lemma 4.35. Let Assumption 1 hold. Then, it holds

‖∇kε −∇Kε‖2L2(D) = o(ε2), (4.88)

and

∀α > 0 ∀r ∈ (0, 1) :

∫
D\B(0,αεr)

|∇kε|2 = o(ε2). (4.89)

The proof of Lemma 4.35 can be found in Section 4.4.4.2 on page 94.

Lemma 4.36. Let Assumptions 1, 3, 5 and 6 be satisfied. Then, it holds

‖∇p̃ε −∇kε‖2L2(D) = o(ε2). (4.90)

The proof of Lemma 4.36 can be found in Section 4.4.4.2 on page 96.

4.4.3 Topological Asymptotic Expansion

Recall Assumption 2, i.e., that the cost function Jε : H1
0 (D)→ R is of the form

Jε(uε) = J0(u0) + 〈G̃, ũε〉+ δJε
2 +R(ε), (4.91)

with ũε = uε − u0, G̃ ∈ H−1(D) and where the remainder R(ε) is of the form (4.8). By
estimate (4.73), it follows that

R(ε) = o(ε2). (4.92)

We have a closer look at the term 〈G̃, ũε〉. Testing adjoint equation (4.74) for ε > 0 with
η = ũε and exploiting th symmetry of DTε, we get

〈G̃, ũε〉 =−
∫
D

DTε(x,∇u0)∇ũε · ∇pε

=−
∫
D

DTε(x,∇u0)∇ũε · ∇pε

+

∫
D

(Tε(x,∇u0 +∇ũε)− Tε(x,∇u0)) · ∇pε +

∫
ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇pε,

where we added the left and right hand side of (4.46) tested with η = pε. According to the
definition of the operator Sε (4.25), we get

〈G̃, ũε〉 =

∫
ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇pε +

∫
D
Sε∇u0(x,∇ũε) · ∇pε.
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Noting that pε = p0 + p̃ε, and defining

j1(ε) :=

∫
ωε

(ν0 − ν̂(|∇u0|))∇u0 · (∇p0 +∇p̃ε), (4.93)

j2(ε) :=

∫
D
Sε∇u0(x,∇ũε) · (∇p0 +∇p̃ε), (4.94)

together with (4.92), we get from (4.91) that

Jε(uε)− J0(u0) =j1(ε) + j2(ε) + δJε
2 + o(ε2). (4.95)

Note that the operator Sε∇u0 represents the nonlinearity of the problem. Therefore, the term
j2 vanishes in the linear case where the nonlinear function ν̂ is replaced by a constant ν1.

In Sections 4.4.3.1 and 4.4.3.2 we will show that there exist numbers J1, J2 such that

j1(ε) = ε2 J1 + o(ε2) and j2(ε) = ε2 J2 + o(ε2).

Comparing expansion (4.95) with (4.2) this will yield the final formula for the topological
derivative,

G(x0) = J1 + J2 + δJ

in Theorem 4.44.

4.4.3.1 Expansion of Linear Term j1(ε)

Following approximation steps 2 and 3 of Sections 4.4.2.3 and 4.4.2.4, respectively, we define

j̃1(ε) := (ν0 − ν̂(|U0|))
∫
ωε

U0 · (P0 +∇kε) , (4.96)

J1 := (ν0 − ν̂(|U0|))
∫
ω
U0 · (P0 +∇K) . (4.97)

Lemma 4.37. Let Assumption 1 hold. Then it holds

j̃1(ε)− ε2J1 = o(ε2). (4.98)

The proof of Lemma 4.37 is given in Section 4.4.4.3 on page 97.

Lemma 4.38. Let Assumptions 1, 3, 5 and 6 hold. Then it holds

j1(ε)− j̃1(ε) = o(ε2). (4.99)

The proof of Lemma 4.38 is given in Section 4.4.4.3 on page 98.

Considering (4.97), it follows from the linearity of equation (4.80) that the mapping

P0 7→ (ν0 − ν̂(|U0|))
∫
ω

(P0 +∇K)
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is linear from R2 to R2. It only depends on the set ω, and on the positive definite ma-
trix DT (U0). Hence, there exists a matrix

M =M(ω,DT (U0)) ∈ R2×2, (4.100)

such that

(ν0 − ν̂(|U0|))
∫
ω

(P0 +∇K) =MP0.

This matrixM is related to the well-studied concept of polarization matrices, see, e.g., [11],
as will be explained in detail in Section 4.6. Eventually, it follows that

J1 = U>0 MP0. (4.101)

In Section 4.6.3.2, an explicit formula for the matrixM =M(ω,DT (U0)) will be derived.
Summing up estimates (4.98) and (4.99), as well as (4.101), we get the following result:

Corollary 4.39. Let Assumptions 1, 3, 5 and 6 hold. Then, there exists amatrixM =M(ω,DT (U0)) ∈
R2×2 such that

j1(ε) = ε2 U>0 MP0 + o(ε2). (4.102)

We will derive an explicit expression for the matrixM in Section 4.6.3.

4.4.3.2 Expansion of Nonlinear Term j2(ε)

Recall the term j2(ε) from (4.94),

j2(ε) =

∫
D
Sε∇u0(x,∇ũε) · (∇p0 +∇p̃ε).

According to the approximation steps taken for the variations of the direct and adjoint state
in Sections 4.4.1.3, 4.4.1.4, as well as 4.4.2.3 and 4.4.2.4, we define

j̃2(ε) :=

∫
D
SεU0

(x,∇hε) · (P0 +∇kε), (4.103)

J2 :=

∫
R2

S̃U0(x,∇H) · (P0 +∇K). (4.104)

Note that, under Assumption 3, both j̃2(ε) and J2 are well-defined due to growth condi-
tion (4.41).

Lemma 4.40. Let ω = B(0, 1) and let Assumptions 1, 3, 4 and 5 hold. Then it holds

j̃2(ε)− ε2J2 = o(ε2). (4.105)

The proof of Lemma 4.40 can be found in Section 4.4.4.3 on page 98.

Lemma 4.41. Let ω = B(0, 1) and let Assumptions 1, 4, 5 and 6 be satisfied. Then, it holds∫
D
|∇p0 − P0||∇hε|2 = o(ε2). (4.106)
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The proof of Lemma 4.41 can be found in Section 4.4.4.3 on page 100.

Lemma 4.42. Let ω = B(0, 1) and let Assumptions 1, 3, 4, 5 and 6 be satisfied. Then, it holds

j2(ε)− j̃2(ε) = o(ε2).

The proof of Lemma 4.42 can be found in Section 4.4.4.3 on page 100.

Eventually, combining Lemma 4.40 and Lemma 4.42, we get the following result:

Corollary 4.43. Let ω = B(0, 1) and let Assumptions 1, 3, 4, 5 and 6 be satisfied. Then we have

j2(ε) = ε2

(∫
R2

S̃U0(x,∇H) · (P0 +∇K)

)
+ o(ε2). (4.107)

4.4.3.3 Main Result

Finally, combining (4.95) with (4.102) and (4.107), we get the main result of this chapter,
i.e., the topological derivative for the introduction of linear material (air) inside a region of
nonlinear (ferromagnetic) material according to (4.2). We recall the notation needed for
stating the result of Theorem 4.44:

• x0 ∈ Ωd denotes the point around which we perturb the material coe�cient,

• u0 ∈ H1
0 (D) is the unperturbed direct state, i.e., the solution to (4.3), and U0 =

∇u0(x0),

• p0 ∈ H1
0 (D) is the unperturbed adjoint state, i.e., the solution to (4.75), and P0 =

∇p0(x0),

• M = M(ω,DT (U0)) denotes the matrix defined in (4.233) where ω represents the
shape of the inclusion and DT is the Jacobian of T defined in (2.24),

• H ∈ H(R2) denotes the variation of the direct state at scale 1, i.e., the solution to (4.49),

• K ∈ H(R2) denotes the variation of the adjoint state at scale 1, i.e., the solution
to (4.80),

• S̃ is defined in (4.48),

• δJ is according to (4.7).

Theorem 4.44. Assume that

- ω = B(0, 1) the unit disk in R2

- the ferromagnetic material is such that Assumptions 1, 3 and 4 are satisfied,

- the functional Jε satisfies Assumption 2,

- the unperturbed direct state u0 satisfies Assumption 5, i.e., u0 ∈ C1,β for some β > 0,

- the unperturbed direct state p0 satisfies Assumption 6, i.e., p0 ∈ C1,β̃ for some β̃ > 0.
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Then the topological derivative for introducing air inside ferromagnetic material reads

Gf→air(x0) =U>0 MP0

+

∫
R2

S̃U0(x,∇H) · (P0 +∇K) + δJ .
(4.108)

Remark 4.45. The proof of Theorem 4.44 is valid only under the assumption that ω = B(0, 1).
This is mainly due to the fact that the proof of Proposition 4.23 uses Lemma 4.20 which exploits
the symmetry of ω with respect to the line {U0 · x = 0}. Since we need to make sure that this
condition is satisfied for any possible U0, we have to assume that ω is a disk in the sequel. Thus,
the condition ω = B(0, 1) could be relaxed to arbitrarily-shaped inclusions with C2 boundary if
an asymptotic behavior of the form (4.63) can be guaranteed otherwise. Note that the proof of
the asymptotic behavior of K in (4.85) is independent of the shape of ω.

The second place where the shape of the inclusion influences the topological derivative is in the
formula for the matrixM(ω,DT (U0)). Here, an extension to ellipse-shaped inclusions is possible,
cf. Remark 4.73 in Section 4.6.

4.4.4 Proofs

4.4.4.1 Proofs on the Variation of the Direct State

Proof of Lemma 4.18: This proof is following the lines of [20,46].

Proof. 1. We begin by proving estimate (4.51). Testing the variational form (4.46) with
test function η = ũε ∈ H1

0 (D) yields∫
D

(Tε(x,∇u0 +∇ũε)− Tε(x,∇u0)) · ∇ũε = −
∫
ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇ũε.

(4.109)

Property (4.33) together with Remark 4.9 yields that

c2|∇ũε|2 ≤ (Tε(x,∇u0 +∇ũε)− Tε(x,∇u0)) · ∇ũε. (4.110)

After (4.45), we have ∇u0|Ωd ∈ L∞(Ωd). Thus we define

M := ν0‖∇u0‖L∞(Ωd).

By the Cauchy-Schwarz inequality and (2.19a), the right hand side of (4.109) can be
estimated as∣∣∣∣−∫

ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇ũε
∣∣∣∣ ≤ ∫

ωε

|ν0 − ν̂(|∇u0|)||∇u0||∇ũε|

≤M
∫
ωε

|∇ũε| ≤M
(∫

ωε

1

)1/2(∫
ωε

|∇ũε|2
)1/2

= Mε|ω|1/2‖∇ũε‖L2(D) (4.111)

where we used that |ν0 − ν̂(|∇u0|)| ≤ ν0 due to (2.19a). Combining (4.109), (4.110)
and (4.111) and dividing by ‖∇ũε‖L2(D) and taking the square, we get

‖∇ũε‖2L2(D) ≤ Cε
2

with C = |ω|M2/(c2)2.
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2. The proof of estimate (4.52) is similar to the one of (4.51), starting from variational
form (4.46).

3. Lastly, since Ĥ ∈ Hw(R2), by definition it holds ∇Ĥ ∈ L2(R2). Thus, making a change
of scale yields

‖∇Hε‖2L2(D) =

∫
D
|∇Hε|2 = ε2

∫
D/ε
|∇Ĥ|2

≤ ε2

∫
R2

|∇Ĥ|2 = ε2‖∇Ĥ‖2L2(R2) = O(ε2),

which completes the proof of estimate (4.53).

Proof of Lemma 4.20:

Proof. Let H be the unique solution to QH = 0 with Q defined in (4.56) and H̃ a represen-
tative of the class H. Consider the transformation

φ(x1, x2) := (−x1, x2)

with J = ∇φ(x1, x2) =

(
−1 0
0 1

)
= J−> and |detJ | = 1,

and define the function H̃s ∈ H(R2) by

H̃s(x1, x2) := −H̃(−x1, x2) = −(H̃ ◦ φ)(x).

We show that also QH̃s = 0. Thanks to the symmetry of ω with respect to the line {x ∈ R2 :
U0 · x = 0}, we have φ−1(R2 \ ω) = R2 \ ω and φ−1(ω) = ω. Thus, we get

〈QH̃s, ηs〉 =

∫
ω

[
ν0

(
U0 + J−>∇y ˆ̃Hs(y)

)
− ν̂(|U0|)U0

]
· J−>∇yη̂s(y)dy

+

∫
R2\ω

[
ν̂
(∣∣∣U0 + J−>∇y ˆ̃Hs(y)

∣∣∣) (U0 + J−>∇y ˆ̃Hs(y)
)
− ν̂ (|U0|)U0

]
· J−>∇yη̂s(y)dy,

where ˆ̃Hs = H̃s◦φ and η̂s = ηs◦φ. By definition of H̃s and due to the fact that (φ◦φ)(x) = x,

we have that ˆ̃Hs = −H̃. Since the basis was chosen such that e1 = U0/|U0| and e2 = e⊥1 , it
holds that

U0 + J−>∇y ˆ̃Hs(y) =

(
|U0| − ∂

∂y1
(−H̃(y))

0 + ∂
∂y2

(−H̃(y))

)
,∣∣∣U0 + J−>∇y ˆ̃Hs(y)

∣∣∣ =
∣∣∣U0 +∇yH̃(y)

∣∣∣ ,(
U0 + J−>∇y ˆ̃Hs(y)

)
· J−>∇yη̂s(y) =

(
U0 +∇yH̃(y)

)
· ∇y (−η̂s(y)) ,

U0 · J−>∇yη̂s(y) = U0 · ∇y (−η̂s(y)) .
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Using these relations, we conclude that

〈QH̃s, ηs〉 =

∫
R2\ω

[
ν̂
(∣∣∣U0 +∇yH̃(y)

∣∣∣) (U0 +∇yH̃(y)
)
− ν̂ (|U0|)U0

]
· ∇y (−η̂s(y))dy

+

∫
ω

[
ν0

(
U0 +∇yH̃(y)

)
− ν̂(|U0|)U0

]
· ∇y (−η̂s(y))dy

=〈QH̃,−η̂s〉.

Since −η̂s ∈ H(R2) for ηs ∈ H(R2), (4.57) yields 〈QH̃,−η̂s〉 = 0 and therefore

〈QH̃s, ηs〉 = 0 for all ηs ∈ H(R2).

Thus, it follows from the uniqueness of a solution H ∈ H(R2) to (4.49) established in Propo-
sition 4.17 that also H̃s is a representative ofH and therefore H̃s(x1, x2) = H̃(x1, x2)+C for
all (x1, x2) ∈ R2 where C is a constant. Restricted to the line {x ∈ R2 : x1 = 0}, this yields
that −2H̃(0, x2) = C for all x2 ∈ R. Thus, choosing the representative H̃ in such a way that
H̃(0, 0) = 0 yields that C = 0 and thus H̃s = H̃, which yields

H̃(−x1, x2) = −H̃(x1, x2)

for all (x1, x2) ∈ R2.

Proof of Proposition 4.21: This proof follows the ideas of [20,46], but requires some differ-
ent calculations.

Proof. Let k ∈ (0, 1] be defined depending on the lower bound δν̂ > −1/3 from Assumption 4
as

k =

{
1
2

(
− 1
δν̂(1+ε) − 3

)
−1

3 < δν̂ ≤ −1
5 ,

1 δν̂ > −1
5 ,

(4.112)

for some ε > 0. Furthermore, let σ be defined as

σ := min{σ0, σ1, σ2} > 1,

where σ0 and σ1 are given by

σ0 := 2,

σ1 := 1 +
ν

ν0 + c̃′|U0|
√

5
∈ (1, 2), (4.113)

with ν and c̃′ given by (2.19) and (4.28), respectively, and σ2 is defined as the unique solution
in (1, 2) to the equation f̃(t) = δν̂ with f̃ defined in (4.127) in the case where δν̂ < 0, and
σ2 := 2 else. We show that property (4.59) holds for k chosen according to (4.112) and any
fixed σ satisfying

σ ∈ (1, σ). (4.114)
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Let us first compute the first and second derivatives of the function R1 given in (4.58). We
use the notation r = |x| and er = x/|x|. For x ∈ R2 \ ω, we have

R1(x) = k (U0 · x)r−σ,

∇R1(x) · ϕ = k r−σ (U0 − σ(U0 · er)er) · ϕ, (4.115)

D2R1(x)(ϕ,ψ) = k r−σ
(
−σ 1

r2

[
r(U0 · ψ)− (U0 · x)

1

r
(x · ψ)

]
(er · ϕ)

−σ(U0 · er)
1

r2

[
r(ϕ · ψ)− (ϕ · x)

1

r
(x · ψ)

])
− σ k r−σ−2r(er · ψ)(U0 · ϕ− σ(U0 · er)(er · ϕ)),

where we used that

∇(er · η) = ∇
(
x · η
|x|

)
=

1

|x|2

(
|x|η − (x · η)

x

|x|

)
for η ∈ R2. For ψ = ϕ we get

D2R1(x)(ϕ,ϕ) = σ k r−σ−2

(
− r(U0 · ϕ)(er · ϕ) + (U0 · x)(er · ϕ)2

− r(U0 · er)(ϕ · ϕ) + (U0 · x)
1

r
(ϕ · x)2 1

r

− r(er · ϕ)(U0 · ϕ) + r(er · ϕ)2σ(U0 · er)
)

= σ k r−σ−2

(
(σ + 2)(U0 · x)(er · ϕ)2 − 2(x · ϕ)(U0 · ϕ)− (U0 · x)(ϕ · ϕ)

)
. (4.116)

In particular, we obtain

∆R1(x) =
2∑
i=1

D2R1(x)(ei, ei)

= σ k r−σ−2

(
(σ + 2)(U0 · x)− 2(U0 · x)− 2(U0 · x)

)
= −σ k r−σ−2(U0 · x)(2− σ) (4.117)

where ei denotes the unit vector in Cartesian coordinates in direction xi.

Integration by parts yields

〈QR1, η〉 = 〈QintR1, η〉+ 〈QtransR1, η〉+ 〈QextR1, η〉

with

〈QintR1, η〉 :=

∫
ω
−ν0∆R1 η,

〈QtransR1, η〉 :=

∫
∂ω

[−ν̂(|U0 + (∇R1)ext|)(U0 + (∇R1)ext) + ν0(U0 + (∇R1)int)] · n η,

〈QextR1, η〉 :=

∫
R2\ω

−div (ν̂(|U0 +∇R1|)(U0 +∇R1)) η,
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where n denotes the unit normal vector pointing out of ω.

Thus, we have that 〈QR1, η〉 ≥ 0 for all η ∈ H(R2) with supp(η) ⊂ R2
+ such that η ≥ 0 almost

everywhere, if (and only if) the following three conditions are satisfied:

−ν0∆R1 ≥ 0 ∀x ∈ ω : U0 · x > 0, (4.118)

[−ν̂(|U0 + (∇R1)ext|)(U0 + (∇R1)ext)

+ν0(U0 + (∇R1)int)] · n ≥ 0 ∀x ∈ ∂ω : U0 · x > 0, (4.119)

−div (ν̂(|U0 +∇R1|)(U0 +∇R1)) ≥ 0 ∀x ∈ R2 \ ω : U0 · x > 0. (4.120)

1. The first condition (4.118) is satisfied by definition as R1 is linear inside ω and thus
∆R1 = 0 in ω.

2. Next, we investigate the transmission condition (4.119). For x ∈ ∂ω, we have

(∇R1)int = k U0

and, by means of formula (4.115),

(∇R1)ext = k (U0 − σ(U0 · x)x)

because r = |x| = 1. Using that

(U0 + (∇R1)int) · n = (1 + k)(U0 · x) > 0,

(−(∇R1)ext + (∇R1)int) · n = σ k (U0 · x) > 0,

because n(x) = x for x ∈ ∂ω, and exploiting the physical property (2.19a), we get

(−ν̂(|U0 + (∇R1)ext|)(U0 + (∇R1)ext) + ν0(U0 + (∇R1)int)) · n
≥ (−ν̂(|U0 + (∇R1)ext|)(U0 + (∇R1)ext) + ν̂(|U0 + (∇R1)ext|)(U0 + (∇R1)int)) · n
= ν̂(|U0 + (∇R1)ext|) (−(∇R1)ext + (∇R1)int) · n
≥ ν σ k (U0 · x) > 0.

for all x ∈ ∂ω with (U0 · x) > 0.

3. Now, we consider the exterior condition (4.120). For better readability, we introduce
the notation

θ := cos−1

(
x

|x|
· U0

|U0|

)
= cos−1

(
er ·

U0

|U0|

)
,

as well as ϕ̃ = ϕ̃(r, θ) := U0 + (∇R1)ext, and the auxiliary variables

q = q(r) := σ k r−σ,

d0 = d0(r) := 1 + k r−σ,

d1 = d1(r) := 1 + k r−σ(1− σ) = d0 − q, (4.121)

d2 = d2(r, θ) := 1 + k r−σ(1− σcos 2θ) = d0 − q cos 2θ, (4.122)

s = s(r, θ) := sin 2θ d2
0,

c = c(r, θ) := cos 2θ d2
1,

d = d(r, θ) := d1 d2.
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Note that all of these symbols are actually functions of r and possibly θ. For better
presentation, we will drop these dependencies for the rest of the proof. It can be seen
that

er · ϕ̃ = |U0| cos θ d1,

x · ϕ̃ = (U0 · x) d1,

U0 · ϕ̃ = |U0|2 d2,

|ϕ̃|2 = |U0|2 (s+ c) . (4.123)

Note that d0 and d1 are positive because of σ < σ0 = 2, k ∈ (0, 1] and r > 1. This
implies that |ϕ̃| > 0 since not both sin θ and cos θ can vanish at the same time. These
relations, together with (4.116) and (4.117), yield that

−div (ν̂(|U0 +∇R1|)(U0 +∇R1)) = −div (ν̂(|ϕ̃|)ϕ̃)

= −
(
ν̂(|ϕ̃|)∆R1 +

ν̂ ′(|ϕ̃|)
|ϕ̃|

D2R1(ϕ̃, ϕ̃)

)
= −σ k r−σ−2(U0 · x)

(
ν̂(|ϕ̃|)(σ − 2) + ν̂ ′(|ϕ̃|) 1

|ϕ̃|
|U0|2f(r, θ)

)
with

f(r, θ) = (σ + 1) c− 2 d− s. (4.124)

Thus, condition (4.120) is satisfied if

ν̂(|ϕ̃|)(σ − 2) + ν̂ ′(|ϕ̃|) 1

|ϕ̃|
|U0|2f(r, θ) ≤ 0 (4.125)

for all x ∈ R2 \ ω with U0 · x > 0, i.e., for all (r, θ) with r > 1, cos θ ∈ (0, 1). We
distinguish three different cases:

Case 0: The spatial coordinates (r, θ) are such that ν̂ ′(|ϕ̃|) = 0:
Condition (4.125) is satisfied since σ is smaller than σ0 = 2 due to (4.114), and since
ν̂(|ϕ̃|) > 0 by physical property (2.19a).

Case 1: The spatial coordinates (r, θ) are such that ν̂ ′(|ϕ̃|) > 0:
We insert (4.123) and (4.124) into the left hand side of (4.125) and get

ν̂(|ϕ̃|)(σ − 2) + ν̂ ′(|ϕ̃|) 1

|ϕ̃|
|U0|2f(r, θ)

= ν̂(|ϕ̃|)(σ − 2) + ν̂ ′(|ϕ̃|)|U0|
1√
s+ c

((σ + 1)c− 2d− s)

≤ ν̂(|ϕ̃|)(σ − 2) + ν̂ ′(|ϕ̃|)|U0|
((σ − 1)c− s)√

s+ c

= ν̂(|ϕ̃|)(σ − 2) + ν̂ ′(|ϕ̃|)|U0|
(

σc√
s+ c

− c+ s√
c+ s

)
≤ ν̂(|ϕ̃|)(σ − 2) + ν̂ ′(|ϕ̃|)|U0|

(
σ(c+ s)√
s+ c

−
√
c+ s

)
= ν̂(|ϕ̃|)(σ − 2) + ν̂ ′(|ϕ̃|)|U0|(σ − 1)

√
c+ s,
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where we used that

−2 d = −2d1 d2 ≤ −2 d2
1 ≤ −2 d2

1 cos
2θ = −2 c.

So, (4.125) holds if σ satisfies

ν̂(|ϕ̃|)(σ − 2) + ν̂ ′(|ϕ̃|)|U0|(σ − 1)
√
c+ s ≤ 0

⇔ σ(ν̂(|ϕ̃|) + ν̂ ′(|ϕ̃|)|U0|
√
c+ s) ≤ 2ν̂(|ϕ̃|) + ν̂ ′(|ϕ̃|)|U0|

√
c+ s

⇔ σ ≤ 2ν̂(|ϕ̃|) + ν̂ ′(|ϕ̃|)|U0|
√
c+ s

ν̂(|ϕ̃|) + ν̂ ′(|ϕ̃|)|U0|
√
c+ s

= 1 +
ν̂(|ϕ̃|)

ν̂(|ϕ̃|) + ν̂ ′(|ϕ̃|)|U0|
√
c+ s

.

Since σ ∈ (1, σ1) with σ1 defined in (4.113), the above inequality is satisfied because

ν̂(|ϕ̃|)
ν̂(|ϕ̃|) + ν̂ ′(|ϕ̃|)|U0|

√
c+ s

≥ ν

ν̂(|ϕ̃|) + ν̂ ′(|ϕ̃|)|U0|
√
c+ s

≥ ν

ν0 + c̃′|U0|
√

5
,

where we used property (2.19a) as well as the facts that 0 < ν̂ ′(|ϕ̃|) by assumption,
ν̂ ′(|ϕ̃|) ≤ c̃′ by (4.28), and 0 ≤ c ≤ 1, 0 ≤ s ≤ (1 + k)2 ≤ 4 for σ ∈ (1, 2) and k ∈ (0, 1)
noting that r > 1. Thus, choosing σ according to (4.114), condition (4.120) is satisfied
at points where ν̂ ′(|ϕ̃|) > 0.

Case 2: The spatial coordinates (r, θ) are such that ν̂ ′(|ϕ̃|) < 0:

Case 2a: f(r, θ) ≥ 0: Condition (4.125) is satisfied since σ < σ0 = 2 due to (4.114)
because both summands are non-positive.

Case 2b: f(r, θ) < 0:
In this case, we must show that the positive contribution of the second summand on the
left hand side of (4.125) is compensated by the negative first term. This is possible if
Assumption 4 holds.

We introduce g(r, θ) := (|U0|2/|ϕ̃|2) f(r, θ), such that condition (4.125) can be rewritten
as

ν̂(|ϕ̃|)(σ − 2) + ν̂ ′(|ϕ̃|)|ϕ̃| g(r, θ) ≤ 0,

and find a lower bound g for g(r, θ),

g ≤ g(r, θ) < 0, ∀r > 1, θ ∈
(
−π

2
,
π

2

)
.

Then, since ν̂ ′(|ϕ̃|) < 0, it holds that

ν̂(|ϕ̃|)(σ − 2) + ν̂ ′(|ϕ̃|)|ϕ̃| g(r, θ) ≤ ν̂(|ϕ̃|)(σ − 2) + ν̂ ′(|ϕ̃|)|ϕ̃| g

and (4.125) follows if the right hand side of the given estimate is non-positive. The
condition that the right hand side of the expression above is non-positive is equivalent
to the condition

ν̂ ′(|ϕ̃|)|ϕ̃|
ν̂(|ϕ̃|)

≥ 2− σ
g

. (4.126)
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Let us now investigate the expression g(r, θ) and find a bound g from below. Using
(4.123) and (4.124), we have

g(r, θ) =
(σ + 1) cos 2θ d2

1 − 2 d1 d2 − sin 2θ d2
0

d2
0 sin 2θ + d2

1 cos 2θ
=:

g1

g2
.

Rewriting the nominator g1 in terms of d0 using (4.121) and (4.122), we get

g1 =(σ + 1)cos 2θ(d2
0 − 2qd0 + q2)− 2(d2

0 − qd0 − qcos 2θd0 + q2cos 2θ)− sin 2θd2
0

=d2
0((σ + 2)cos 2θ − 3) + 2 d0 q(1− σcos 2θ) + q2cos 2θ(σ − 1).

Similarly, we get for the denominator g2,

g2 = d2
0 sin

2θ + d2
1 cos

2θ

= d2
0 − 2 d0 qcos 2θ + q2cos 2θ.

Note that g2 is positive and, therefore, g1 must be negative by the assumption of Case
2b. Together, we get

g1

g2
=
d2

0((σ + 2)cos 2θ − 3) + 2 d0 q(1− σcos 2θ) + q2cos 2θ(σ − 1)

d2
0 − 2 d0 qcos 2θ + q2cos 2θ

= −g2

g2
+

1

g2

(
d2

0((σ + 2)cos 2θ − 2) + 2 d0 q(1− cos 2θ(1 + σ)) + q2cos 2θσ
)

= −1 +
1

g2

(
cos 2θ

[
d2

0(σ + 2)− 2 (1 + σ) d0 q + q2σ
]
− 2d0(d0 − q)

)
.

Note that, for r > 1 and σ > 1, we have

0 ≤ r−σ ≤ 1 and 0 ≤ cos 2θ ≤ 1,

and thus, for σ ∈ (1, σ0) and k ∈ (0, 1],

1 ≤ d0 ≤ 1 + k, and 0 ≤ q ≤ σ k, and 0 < 1− k(σ − 1) ≤ d0 − q = d1 ≤ 1.

Hence, we can see that

d2
0(σ + 2)− (1 + σ)d0 2q + q2σ = (d0 − q)2 + (

√
σ d0 −

√
σ q)2 + (d0 + q)(d0 − q) > 0,

and we can estimate

g1

g2
≥ −1− 2d0(d0 − q)

g2
≥ −1− 2(1 + k)

g2
.

For the denominator g2, it can be seen that

g2 = d2
0 sin

2θ + d2
1 cos

2θ

≥ sin 2θ + (1− k(σ − 1))2 cos 2θ

= 1 + cos 2θ
(
(1− k(σ − 1))2 − 1

)
≥ 1 +

(
(1− k(σ − 1))2 − 1

)
= (1− k(σ − 1))2,
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because (1− k(σ − 1))2 − 1 < 0 due to σ < σ0 = 2 and k ∈ (0, 1], and thus

g(r, θ) =
g1

g2
≥ −1− 2(1 + k)

(1− k(σ − 1))2
= −(1− k(σ − 1))2 + 2(1 + k)

(1− k(σ − 1))2
=: g.

Note that g depends on σ and k. For t ∈ (1, 2), we define

f̃(t) := − (2− t) (1− k(t− 1))2

(1− k(t− 1))2 + 2(1 + k)
, (4.127)

and note that f̃(σ) = (2− σ)/g. If now σ satisfies that

f̃(σ) ≤ inf
s>0

ν̂ ′(s)s

ν̂(s)
= δν̂ ,

then (4.126) is satisfied, which yields (4.125) and, therefore, (4.120) in Case 2b.

If δν̂ is non-negative, this is satisfied because f̃(t) < 0 for any t ∈ (1, 2) since k ∈ (0, 1],
and (4.126) and thus also (4.120) holds because σ < σ2 = 2 in this case.

In the case where δν̂ is negative, recall that δν̂ > −1/3 by Assumption 4, so we have
−1/3 < δν̂ < 0. In (4.112), we defined k in such a way that f̃(1) = −1/(3 + 2k) =
δν̂(1 + ε) < δν̂ . Since f̃(1) < δν̂ , f̃(2) = 0 > δν̂ and since it can be seen that f̃ is
continuous and increasing in the interval (1, 2), there exists a unique σ2 ∈ (1, 2) such
that f̃(σ2) = δν̂ and it holds that f̃(t) < δν̂ for all t ∈ (1, σ2). Thus, if σ ∈ (1, σ2),
inequality (4.126) is satisfied, which yields (4.125) and thus (4.120).

Hence, choosing σ and k according to (4.114) and (4.112), respectively, yields the statement
of Proposition 4.21.

Proof of Proposition 4.22: This proof follows the ideas of [20,46], but requires some differ-
ent calculations.

Proof. The proof is similar to the proof of Proposition 4.21. Again, we define σ̂ as

σ̂ := min{σ̂0, σ̂1, σ̂2} > 1,

where σ̂0 and σ̂1 are given by

σ̂0 := 2,

σ̂1 := 1 +
ν

ν0 + c̃′|U0|
√

5
∈ (1, 2).

If the bound δν̂ from Assumption 4 is non-negative, we define σ̂2 := 2. Otherwise, we define

σ̂2 := min{σ̂(i)
2 , σ̂

(ii)
2 } where, for j ∈ {i, ii}, σ̂(j)

2 is the unique solution in (1, 2) to the equation
f̃ (j)(t) = δν̂ with f̃ (j) defined in (4.134) and (4.135), respectively.
We show that property (4.61) holds for any fixed σ satisfying

σ ∈ (1, σ̂). (4.128)
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Similarly to the proof of Proposition 4.21, we have to show the three conditions

−ν0∆R2 ≤ 0 ∀x ∈ ω : U0 · x > 0 (4.129)

[−ν̂(|U0 + (∇R2)ext|)(U0 + (∇R2)ext)

+ν0(U0 + (∇R2)int) ] · n ≤ 0 ∀x ∈ ∂ω : U0 · x > 0 (4.130)

−div (ν̂(|U0 +∇R2|)(U0 +∇R2)) ≤ 0 ∀x ∈ R2 \ ω : U0 · x > 0 (4.131)

where n denotes the unit normal vector pointing out of ω.

1. As in the proof of the Proposition 4.21, it is easily seen that the first condition (4.129)
is trivially satisfied as ∇R2 is linear inside ω.

2. Next we consider the transmission condition (4.130). Exploiting that, for x ∈ ∂ω with
ω = B(0, 1), the outward unit vector n is equal to x and |x| = r = 1, and noting the
formulas for the gradient of R2 inside and outside the inclusion ω,

(∇R2)int = k U0,

(∇R2)ext = k r−σ (U0 − σ(U0 · er)er) ,

we obtain

(−ν̂(|U0 +(∇R2)ext|)(U0 + (∇R2)ext) + ν0(U0 + (∇R2)int)) · n
= (−ν̂(|U0 +∇R2ext|)(1 + k(1− σ)) + ν0(1 + k)) (U0 · x)

≤ (−ν(1 + k(1− σ)) + ν0(1 + k)) (U0 · x)

=

(
−ν σ ν0

ν0 + ν(σ − 1)
) + ν0

σ ν

ν0 + ν(σ − 1)

)
(U0 · x) = 0.

In the estimation, we used that 1 + k(1− σ) > 0 since k ∈ (−1, 0) and σ ∈ (1, σ0).

3. For the exterior condition (4.131), we need to verify that

−div (ν̂(|U0 +∇R2|)(U0 +∇R2)) ≤ 0 ∀x ∈ R2 \ ω : U0 · x > 0.

Again, for better readability, we introduce the symbols

θ := cos−1

(
x

|x|
· U0

|U0|

)
= cos−1

(
er ·

U0

|U0|

)
,

q̂ = q̂(r) := k σr−σ

d̂0 = d̂0(r) := 1 + k r−σ,

d̂1 = d̂1(r) := 1 + k r−σ(1− σ) = d̂0 − q̂,
d̂2 = d̂2(r, θ) := 1 + k r−σ(1− σcos 2θ) = d̂0 − q̂cos 2θ,

ŝ = ŝ(r, θ) := sin 2θ d̂2
0,

ĉ = ĉ(r, θ) := cos 2θ d̂2
1,

d̂ = d̂(r, θ) := d̂1 d̂2,
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and drop the dependencies on r and θ. Note that, due to k < 0, the symbols introduced
above are not the same as the corresponding symbols used in the proof of Proposition
4.21. Analogously to the proof of Proposition 4.21, we introduce the notation ˆ̃ϕ =
ˆ̃ϕ(r, θ) := U0 + (∇R2)ext and get the relations

er · ˆ̃ϕ = |U0| cos θ d̂1,

x · ˆ̃ϕ = (U0 · x) d̂1,

U0 · ˆ̃ϕ = |U0|2 d̂2,

| ˆ̃ϕ|2 = |U0|2 (ŝ+ ĉ) .

Again, we can deduce

−div (ν̂(|U0 +∇R2|)(U0 +∇R2))

= −

(
ν̂(| ˆ̃ϕ|)∆R2 +

ν̂ ′(| ˆ̃ϕ|)
| ˆ̃ϕ|

D2R2( ˆ̃ϕ, ˆ̃ϕ)

)

= σ k r−σ−2(U0 · x)

(
ν̂(| ˆ̃ϕ|)(σ − 2) + ν̂ ′(| ˆ̃ϕ|)| ˆ̃ϕ| 1

| ˆ̃ϕ|2
|U0|2f̂(r, θ)

)
,

with the function f̂ defined as

f̂(r, θ) =(σ + 1)ĉ− 2 d̂1 d̂2 − ŝ.

Thus, since k < 0, it again su�ces to show that

ν̂(| ˆ̃ϕ|)(σ − 2) + ν̂ ′(| ˆ̃ϕ|) 1

| ˆ̃ϕ|
|U0|2f̂(r, θ) ≤ 0 (4.132)

for all x ∈ R2 \ ω with U0 · x > 0, i.e., for all (r, θ) with r > 1, cos θ ∈ (0, 1). Again, we
distinguish three different cases:

Case 0: ν̂ ′(| ˆ̃ϕ|) = 0: Estimate (4.132) obviously holds for σ < σ̂0 = 2 since ν̂(| ˆ̃ϕ|) > 0
by physical property (2.19a).

Case 1: ν̂ ′(| ˆ̃ϕ|) > 0:
Also for k ∈ (−1, 0) and σ > 1, it holds that −2d̂ ≤ −2ĉ since d1 > 0 and

d̂2 = 1 + k r−σ − σ k r−σcos 2θ ≥ (1 + k r−σ)cos 2θ − σ k r−σcos 2θ

= cos 2θd̂1,

because r > 1. Thus, we can perform the analogous estimations as in the proof of
Proposition 4.21 on page 77. Using that, for σ ∈ (1, 2) and k ∈ (−1, 0), we have

0 ≤ ĉ ≤ (1− k)2 ≤ 4, 0 ≤ ŝ ≤ 1, and 0 ≤
√
ŝ+ ĉ ≤

√
5,

we can define

σ̂1 := 1 +
ν

ν0 + c̃′|U0|
√

5
∈ (1, 2)
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and again conclude that (4.132) and thus (4.131) hold since σ was chosen according
to (4.128).

Case 2: ν̂ ′(| ˆ̃ϕ|) < 0:

Case 2a: f̂(r, θ) ≥ 0: Estimate (4.132) holds for any σ ∈ (1, 2) because both summands
are non-positive.

Case 2b: f̂(r, θ) < 0:
Analogously to the proof of Proposition 4.21, we can introduce

g(2)(r, θ) :=
|U0|2

| ˆ̃ϕ|2
f̂(r, θ) =

1

ŝ+ ĉ
f̂(r, θ),

and rewrite condition (4.132) can as

ν̂(| ˆ̃ϕ|)(σ − 2) + ν̂ ′(| ˆ̃ϕ|)| ˆ̃ϕ|g(2)(r, θ) ≤ 0.

Again, we have to find a lower bound on the expression

g(2)(r, θ) =
(σ + 1) cos 2θ d̂2

1 − 2 d̂1 d̂2 − sin 2θ d̂2
0

d̂2
0 sin 2θ + d̂2

1 cos 2θ
=:

g
(2)
1

g
(2)
2

which satisfies condition (4.126). The manipulations of the terms g(2)
1 and g

(2)
2 are

analogous to the proof of Proposition 4.21 andwe arrive at the corresponding expression

g
(2)
1

g
(2)
2

= −1 +
1

g
(2)
2

[
cos 2θ

(
d̂2

0(σ + 2)− 2 (1 + σ) d̂0 q̂ + q̂2 σ
)
− 2d̂0(d̂0 − q̂)

]
= −1 +

1

g
(2)
2

[
cos 2θ

(
(d̂0 − q̂)2 + (

√
σ d̂0 −

√
σ q̂)2 + (d̂0 + q̂)(d̂0 − q̂)

)
−2 d̂0 (d̂0 − q̂)

]
.

Again, we will estimate this expression from below such that we can extract a condition
on σ > 1 that is su�cient for (4.132). For the estimation, we will use that, for r > 1,
σ ∈ (1, σ̂0) and k ∈ (−1, 0), we have

σ k ≤ q̂ ≤ 0,

1 + k ≤ d̂0 ≤ 1,

1 ≤ d̂0 − q̂ = d̂1 ≤ 1 + k (1− σ),

1 + k (1 + σ) ≤ d̂0 + q̂ ≤ 1.

Note that, for the denominator g(2)
2 , we have

g
(2)
2 = d̂2

0 sin
2θ + d̂2

1 cos
2θ ≥ (1 + k)2sin 2θ + cos 2θ

= cos 2θ
(
1− (1 + k)2

)
+ (1 + k)2 ≥ (1 + k)2. (4.133)

For the estimation of g(2)
1 /g

(2)
2 , we need to distinguish two more cases:
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Case 2b (i): The spatial coordinates (r, θ) are such that d̂0 + q̂ ≥ 0:

In this case, recalling that g(2)
2 > 0 since −1 < k < 0, we can estimate the above

expression from below by dropping the positive cosine term and, taking into account
(4.133), we get

g
(2)
1

g
(2)
2

≥ −1− 2 d̂0 (d̂0 − q̂)
g

(2)
2

≥ −1− 2(1 + k (1− σ))

g
(2)
2

≥ −1− 2(1 + k (1− σ))

(1 + k)2
=
−(1 + k)2 − 2(1 + k (1− σ))

(1 + k)2
=: g(i).

Case 2b (ii): The spatial coordinates (r, θ) are such that d̂0 + q̂ < 0:
In this case, we get the estimate

g
(2)
1

g
(2)
2

≥ −1 +
cos 2θ(d̂0 + q̂)(d̂0 − q̂)− 2 d̂0 (d̂0 − q̂)

g
(2)
2

≥ −1 +
(d̂0 + q̂)(d̂0 − q̂)− 2 d̂0 (d̂0 − q̂)

g
(2)
2

= −1 +
−(d̂0 − q̂)2

g
(2)
2

≥= −1− (1 + k (1− σ))2

g
(2)
2

≥ −(1 + k)2 − (1 + k (1− σ))2

(1 + k)2
=: g(ii).

Recall that σ and k are fixed numbers only depending on the given data ν, ν0 and δν̂ ,
and on |U0|. In order to show that the condition σ < σ̂2 yields (4.131) in Case 2, we
introduce the functions

k̂(t) :=
ν − ν0

ν0 + ν(t− 1)
,

f̃ (i)(t) := − (2− t)(1 + k̂(t))2

(1 + k̂(t))2 + 2(1 + k̂(t)(1− t))
, (4.134)

f̃ (ii)(t) := − (2− t)(1 + k̂(t))2

(1 + k̂(t))2 + (1 + k̂(t)(1− t))2
, (4.135)

mapping from [1, 2] to R. Note that k̂(σ) = k and, for j ∈ {i, ii}, it holds f̃ (j)(σ) =
(2− σ)/g(j). It can be seen that

inf
t∈(1,2)

ˆ̃
f (i)(t) = − (1 + k̂(1))2

(1 + k̂(1))2 + 2
=

ˆ̃
f (i)(1) < 0 and

inf
t∈(1,2)

ˆ̃
f (ii)(t) = − (1 + k̂(1))2

(1 + k̂(1))2 + 1
=

ˆ̃
f (ii)(1) < 0.

Note that, for j ∈ {i, ii}, we have that ˆ̃
f (j)(1) < 0 and ˆ̃

f (j)(2) = 0, and it can be seen

that ˆ̃
f (j) is continuous and increasing in the interval (1, 2). Thus, in the case where

δν̂ < 0, by the same arguments as in the proof of Proposition 4.21, under Assumption

4, we can define σ̂(j)
2 such that ˆ̃

f (j)(σ̂) < δν̂ for all σ̂ ∈ (1, σ̂
(j)
2 ), which yields (4.132)

and thus (4.131). If δν̂ is non-negative, we set σ(i)
2 = σ

(ii)
2 = 2 like before. Setting

σ̂2 = min{σ̂(i)
2 , σ̂

(ii)
2 } completes the proof of Case 2b.
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Again, the overall statement of Proposition 4.22 follows because σ ∈ (1,min{σ̂0, σ̂1, σ̂2}).

Proof of Proposition 4.23: This proof follows the lines of [20,46] and is adapted to our case
here.

Proof. By assumption it holds ω = B(0, 1). Recall that, due to Lemma 4.20, there exists an
element H̃ of the class H such that

H̃(x) = 0 ∀x ∈ R2 : U0 · x = 0.

We begin by showing the upper bound for H̃ in (4.62). Let R1 the supersolution defined in
Proposition 4.21. For all η ∈ H(R2) with supp(η) ⊂ R2

+ and η ≥ 0 almost everywhere, it
holds that

〈QR1, η〉 ≥ 0.

As by definition of H, it holds QH = 0, it follows that

〈QR1 −QH, η〉 ≥ 0,

that is ∫
R2

[
T̃ (x, U0 +∇R1)− T̃ (x, U0 +∇H)

]
· ∇η ≥ 0. (4.136)

Let χR2
+
denote the characteristic function of the half-space R2

+, i.e.,

χR2
+

(x) =

{
1 if x ∈ R2

+,

0 else,

for all x in R2. As R1 = H̃ = 0 in the hyperplane (RU0)⊥, the test function defined by

η(x) := χR2
+

(x)max(0, H̃(x)−R1(x)), x ∈ R2

satisfies the conditions η ∈ H(R2), supp(η) ⊂ R2
+ and η ≥ 0 almost everywhere. Hence, it

can be plugged into inequality (4.136), which yields∫
{H̃>R1}∩R2

+

[
T̃ (x, U0 +∇R1)− T̃ (x, U0 +∇H)

]
· (∇H −∇R1) ≥ 0,

that is ∫
{H̃>R1}∩R2

+

[
T̃ (x, U0 +∇R1)− T̃ (x, U0 +∇H)

]
· (∇R1 −∇H) ≤ 0. (4.137)

Moreover, after ellipticity condition (4.33), there exists c2 > 0 such that

0 ≤ c2

∫
{H̃>R1}∩R2

+

|∇H −∇R1|2

≤
∫
{H̃>R1}∩R2

+

[
T̃ (x, U0 +∇R1)− T̃ (x, U0 +∇H)

]
· (∇R1 −∇H) .
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Combining this estimate with (4.137), we conclude

0 =

∫
{H̃>R1}∩R2

+

|∇H −∇R1|2 =

∫
R2

|∇η|2.

Due to the Poincaré inequality stated in Lemma 4.12, it follows that η = 0 in H(R2). Hence,
R1 ≥ H̃ almost everywhere in R2

+.
Analogously, one obtains from Proposition 4.22 that H̃ ≥ R2 almost everywhere on R2

+.

Proof of Theorem 4.24:

Proof. From Proposition 4.23 we have that

R2(x) ≤ H̃(x) ≤ R1(x)

for almost every x ∈ R2
+. Since H̃ as well as R1 and R2 are odd functions with respect to the

first coordinate x1, it follows immediately that

R1(x) ≤ H̃(x) ≤ R2(x)

for almost every x ∈ R2 \R2
+. Let σR1 denote the value of the parameter σ in Proposition 4.21

and σR2 the value of σ in Proposition 4.22. Then it holds

R1(y) = O
(
|y|−τ

)
as |y| → ∞ and

R2(y) = O
(
|y|−τ

)
as |y| → ∞,

with τ := min{σR1 , σR2} − 1 > 0, and we conclude that

H̃(y) = O
(
|y|−τ

)
as |y| → ∞.

Proof of Lemma 4.26: This proof is following the lines of [20,46] and is given here for sake
of completeness.

Proof. Denote

Cθ := max
(
‖θ(x)‖L∞(R2), ‖∇θ(x)‖L∞(R2)

)
<∞.

According to the Leibniz formula, it holds

∇κε(x) = ∇θ(x)Hε(x) + θ(x)∇Hε(x) for a.e. x ∈ D.

Therefore, it follows that

|∇κε(x)|2 ≤ 2C2
θ

(
|Hε(x)|2 + |∇Hε(x)|2

)
.

Since Hε ∈ H1(D), it follows κε ∈ H1(D).
Moreover, by definition of θ, it holds thatHε−κε = 0 on ∂D, and thus, according to the trace
theorem in H1

0 (D), it follows Hε − κε ∈ H1
0 (D).

Let us now prove estimate (4.66).
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1. In B(0, ρ), it holds θ ≡ 0. Thus ∫
B(0,ρ)

|∇κε|2 = 0.

2. Integrating in B(0, R) \ B(0, ρ), according to the asymptotic behavior of H̃ given by
(4.63) and since ∇H ∈ L2(R2) one obtains

1

2C2
θ

∫
B(0,R)\B(0,ρ)

|∇κε|2

≤
∫
B(0,R)\B(0,ρ)

|Hε|2 +

∫
B(0,R)\B(0,ρ)

|∇Hε|2

≤ ε4

∫
B(0,R/ε)\B(0,ρ/ε)

|H̃|2 + ε2

∫
B(0,R/ε)\B(0,ρ/ε)

|∇H|2

≤ ε4

∫
B(0,R/ε)\B(0,ρ/ε)

|x|−2τ + ε2

∫
R2\B(0,ρ/ε)

|∇H|2

≤ ε4
( ε
R

)2τ
∫
B(0,R/ε)\B(0,ρ/ε)

1 + ε2

∫
R2\B(0,ρ/ε)

|∇H|2

= ε4O(ε2τ )O(ε−2) + ε2

∫
R2\B(0,ρ/ε)

|∇H|2

= o(ε2),

where τ > 0 is as in Theorem 4.24. In the last step we used the fact that the last integral
approaches zero for ε→ 0.

3. Lastly it holds κε = Hε in D \B(0, R). Again, ∇H ∈ L2(R2) and thus∫
D\B(0,R)

|∇κε|2 ≤ ε2

∫
R2\B(0,R/ε)

|∇H|2 = o(ε2).

Gathering these three results, one obtains the claimed estimate (4.66).

Proof of Proposition 4.27: This proof is following the lines of [20,46] and is adapted to our
case here.

Proof. 1. We begin with estimate (4.67). For all η ∈ H1
0 (D), we define ηε ∈ H(R2) by

ηε := ε−1η(εy) for all y ∈ D/ε and ηε(y) := 0 for all y ∈ R2\(D/ε). Applying variational
formulation (4.49) to ηε and making the change of scale backwards, one obtains∫

D
[Tε(x, U0 +∇Hε)− Tε(x, U0)] · ∇η = −

∫
ωε

(ν0 − ν̂(|U0|))U0 · ∇η.

Calculating the difference with variational form (4.47) yields∫
D

[Tε(x, U0 +∇hε)− Tε(x, U0 +∇Hε)] · ∇η = 0 (4.138)
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Recall function κε studied in Lemma 4.26. Since Hε − κε ∈ H1
0 (D), it holds that η =

hε − (Hε − κε) ∈ H1
0 (D). Plugging in this η in (4.138), one obtains∫

D
[Tε(x, U0 +∇hε)− Tε(x, U0 +∇Hε)] · ∇(hε −Hε)

= −
∫
D

[Tε(x, U0 +∇hε)− Tε(x, U0 +∇Hε)] · ∇κε.
(4.139)

Looking at the term on the left hand side of (4.139) it follows from property (4.33) and
Remark 4.9 that

c2‖∇hε −∇Hε‖2L2(D)

≤
∫
D

[Tε(x, U0 +∇hε)− Tε(x, U0 +∇Hε)] · ∇(hε −Hε).
(4.140)

Looking at the term on the right hand side of (4.139) and applying property (4.34) in
combination with Remark 4.9, one obtains∣∣∣∣−∫

D
[Tε(x, U0 +∇hε)− Tε(x, U0 +∇Hε)] · ∇κε

∣∣∣∣
≤ c3

∫
D
|∇hε −∇Hε||∇κε|

≤ c3‖∇hε −∇Hε‖L2(D)‖∇κε‖L2(D) (4.141)

Gathering (4.139), (4.140) and (4.141) as well as estimates (4.55) and (4.66), it fol-
lows that

c2‖∇hε −∇Hε‖2L2(D) ≤ c3‖∇hε −∇Hε‖L2(D)‖∇κε‖L2(D)

= O(ε) o(ε) = o(ε2).

2. Next, we show inequality (4.68). Let α > 0 and r ∈ (0, 1). Since ∇H ∈ L2(R2) and
r − 1 < 0, it holds∫

D\B(0,αεr)
|∇Hε|2 ≤ ε2

∫
R2\B(0,αεr−1)

|∇H|2 = o(ε2).

This estimate together with (4.67) yields∫
D\B(0,αεr)

|∇hε|2 = o(ε2)

by application of the triangle inequality.

3. We now prove estimate (4.69). After (4.44),∇u0 is β-Hölder continuous at point x0 for
some β > 0. Hence, since U0 = ∇u0(x0) with x0 = (0, 0)>, there exist δ > 0 and L > 0
such that

|∇u0(x)− U0| ≤ L|x|β, ∀x ∈ B(0, δ).
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To apply estimate (4.68), we choose α = 1 and r = 1/2. For all ε ∈ (0, δ2), according
to estimates (4.52) and (4.68) it follows∫

D
|∇u0 − U0||∇hε|2

≤
∫
B(0,αεr)

L|x|β|∇hε|2 + 2‖∇u0‖L∞(D)

∫
D\B(0,αεr)

|∇hε|2

≤ LαβεrβO(ε2) + o(ε2) = o(ε2),

which completes the proof of (4.69).

4. Regarding estimate (4.70), Cauchy-Schwarz’s inequality and estimates (4.67), (4.52)
and (4.53) entail that∫

D
|∇hε −∇Hε|(|∇hε|+ |∇Hε|)

≤ ‖∇hε −∇Hε‖L2(D)

[
‖∇hε‖L2(D) + ‖∇Hε‖L2(D)

]
= o(ε)O(ε) = o(ε2)

which completes the proof of (4.70).

Proof of Proposition 4.28: Also this proof is following the lines of [20,46] and is adapted to
our case here.

Proof. 1. We begin with the proof of (4.71), i.e.,

‖∇ũε −∇hε‖2L2(D) = o(ε2).

For any η ∈ H1
0 (D), forming the difference between variational problems (4.46) and

(4.47) gives∫
D

[Tε(x,∇u0 +∇ũε)− Tε(x, U0 +∇hε) + Tε(x, U0)− Tε(x,∇u0)] · ∇η

+

∫
ωε

[T (U0)− T (∇u0)] · ∇η +

∫
ωε

ν0 (∇u0 − U0) · ∇η = 0,

which can be rewritten as∫
D

[Tε(x,∇u0 +∇ũε)− Tε(x,∇u0 +∇hε)] · ∇η

=−
∫
ωε

[T (U0)− T (∇u0)] · ∇η −
∫
ωε

ν0 (∇u0 − U0) · ∇η

+

∫
D

[Tε(x,∇u0)− Tε(x, U0)] · ∇η

+

∫
D

[Tε(x, U0 +∇hε)− Tε(x,∇u0 +∇hε)] · ∇η.
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For all α > 0 and for all r ∈ (0, 1) we can split the last two integrals on the right hand
side into an integral overB(0, αεr) and one overD\B(0, αεr). Rearranging of the terms
yields the equality∫

D
[Tε(x,∇u0 +∇ũε)− Tε(x,∇u0 +∇hε)] · ∇η

=−
∫
ωε

[T (U0)− T (∇u0)] · ∇η −
∫
ωε

ν0 (∇u0 − U0) · ∇η

+

∫
B(0,αεr)

[Tε(x,∇u0)− Tε(x, U0)] · ∇η

+

∫
B(0,αεr)

[Tε(x, U0 +∇hε)− Tε(x,∇u0 +∇hε)] · ∇η

+

∫
D\B(0,αεr)

[Tε(x, U0 +∇hε)− Tε(x, U0)] · ∇η

+

∫
D\B(0,αεr)

[Tε(x,∇u0)− Tε(x,∇u0 +∇hε)] · ∇η.

Testing this equation with η = ũε − hε and exploiting property (4.33) together with
Remark 4.9, it follows that

c2‖∇ũε −∇hε‖2L2(D) ≤
5∑
i=1

Ei(ε),

with

E1(ε) = −
∫
ωε

[T (U0)− T (∇u0)] · ∇(ũε − hε)−
∫
ωε

ν0 (∇u0 − U0) · ∇(ũε − hε)

E2(ε) =

∫
B(0,αεr)

[Tε(x,∇u0)− Tε(x, U0)] · ∇(ũε − hε)

E3(ε) =

∫
B(0,αεr)

[Tε(x, U0 +∇hε)− Tε(x,∇u0 +∇hε)] · ∇(ũε − hε)

E4(ε) =

∫
D\B(0,αεr)

[Tε(x, U0 +∇hε)− Tε(x, U0)] · ∇(ũε − hε)

E5(ε) =

∫
D\B(0,αεr)

[Tε(x,∇u0)− Tε(x,∇u0 +∇hε)] · ∇(ũε − hε).

Thus, it su�ces to show that there exist α > 0 and r ∈ (0, 1) such that

Ei(ε) = o(ε2), ∀i ∈ {1, 2, 3, 4, 5}.

After (4.44) there exists β > 0 such that ∇u0 is β-Hölder continuous at point x0 =
(0, 0)>. After (4.4), it holds ω ⊂⊂ B(0, ρ/λ) with ρ > 0, λ ∈ (0, 1]. For applying
estimate (4.68), we choose

r :=
1

2

(
1

β + 1
+ 1

)
∈ (0, 1). (4.142)
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and α := ρ/λ. After property (4.34), the operator T is Lipschitz continuous. Hence,
there exists δ > 0 and L > 0 such that

max(|∇u0(x)− U0|, |T (∇u0(x))− T (U0)|) ≤ L|x|β ∀x ∈ D, |x| ≤ δ. (4.143)

In addition, for all ε ∈
(

0,min
(

1,
(
δ
α

)1/r))
, it holds

ωε ⊂ B(0, αε) ⊂ B(0, αεr) ⊂ B(0, δ).

Then, one may estimate Ei(ε) for i = 1, . . . , 5 as follows:

(a) It follows from Cauchy-Schwarz’s inequality, estimates (4.143) and (4.54) that

|E1(ε)| ≤
∫
ωε

|T (U0)− T (∇u0)| |∇ũε −∇hε|+
∫
ωε

ν0|∇u0 − U0| |∇ũε −∇hε|

≤ L(1 + ν0)

∫
ωε

|x|β |∇ũε −∇hε|

≤ L(1 + ν0)

∫
ωε

αβεβ |∇ũε −∇hε|

≤ L(1 + ν0)αβεβ
∫
ωε

|∇ũε −∇hε|

≤ L(1 + ν0)αβεβ
(∫

ωε

1

)1/2

‖∇ũε −∇hε‖L2(D)

≤ L(1 + ν0)αβ|ω|1/2εβ+1O(ε) = o(ε2).

(b) Similarly to above, after (4.143), Cauchy-Schwarz’s inequality, estimate (4.54),
and the choice of r (4.142), it holds

|E2(ε)| ≤
∫
B(0,αεr)

|Tε(x,∇u0)− Tε(x, U0)| |∇ũε −∇hε|

≤ L
∫
B(0,αεr)

|x|β |∇ũε −∇hε|

≤ Lαβεrβ
∫
B(0,αεr)

|∇ũε −∇hε|

≤ Lαβεrβ
(∫

B(0,αεr)
1

)1/2

‖∇ũε −∇hε‖L2(D)

≤ Lαβ+1√πεr(β+1)O(ε) = O
(
ε
r(2β+2)+2

2

)
= o(ε2).

(c) After property (4.34) together with Remark 4.9, it holds

|E3(ε)| ≤
∫
B(0,αεr)

|Tε(x, U0 +∇hε)− Tε(x,∇u0 +∇hε)| |∇ũε −∇hε|

≤ c3

∫
B(0,αεr)

|U0 −∇u0| |∇ũε −∇hε|

≤ c3L

∫
B(0,αεr)

|x|β |∇ũε −∇hε|.
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This expression can be estimated in the sameway as in the case of E2 using (4.143),
Cauchy-Schwarz’s inequality, (4.54), and the choice of r (4.142). Hence, we get
E3(ε) = o(ε2).

(d) After property (4.34) and Cauchy-Schwarz’s inequality, we have that

|E4(ε)| ≤
∫
D\B(0,αεr)

|Tε(x, U0 +∇hε)− Tε(x, U0)| |∇ũε −∇hε|

≤ c3

∫
D\B(0,αεr)

|∇hε| |∇ũε −∇hε|

≤ c3

(∫
D\B(0,αεr)

|∇hε|2
)1/2

‖∇ũε −∇hε‖L2(D).

Estimates (4.68) and (4.54) now yield that

|E4(ε)| ≤ c3 o(ε)O(ε) = o(ε2).

(e) Finally, we have

|E5(ε)| ≤
∫
D\B(0,αεr)

|Tε(x,∇u0)− Tε(x,∇u0 +∇hε)| |∇ũε −∇hε|,

and the same steps as for E4(ε) can be taken since estimate (4.34) holds for all
vectors ϕ ∈ R2. Thus, we have that E5(ε) = o(ε2).

Hence, we have shown that ‖∇ũε −∇hε‖L2(D)2 = o(ε2), which concludes the proof of
(4.71).

2. Regarding estimate (4.72), Cauchy-Schwarz’s inequality and estimates (4.71), (4.51)
and (4.52) entail that∫

D
|∇ũε −∇hε|(|∇ũε|+ |∇hε|)

≤ ‖∇ũε −∇hε‖L2(D)(‖∇ũε‖L2(D) + ‖∇hε‖L2(D))

= o(ε)O(ε) = o(ε2),

which completes the proof of estimate (4.72).

3. Estimate (4.73) follows directly from (4.68) and (4.71) by application of the triangle
inequality:∫

D\B(0,αεr)
|∇ũε|2 ≤ ‖∇ũε −∇hε‖2L2(D\B(0,αεr)) + ‖∇hε‖2L2(D\B(0,αεr))

= o(ε2) + o(ε2) = o(ε2).
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4.4.4.2 Proofs on the Variation of the Adjoint State

Proof of Lemma 4.32: This proof is following the lines of [20,46] and is adapted to our case
here.

Proof. Due to properties (4.45) and (4.77), we have that ∇u0|Ωd ∈ L∞(Ωd) and ∇p0|Ωd ∈
L∞(Ωd). Lemma 4.8(1) states that DT ∈ C0,1(R2,R2×2), thus we also have that DT (∇u0) ∈
L∞(Ωd). Testing (4.78) with test function η = p̃ε, property (4.32) yields

c1

∫
D
|∇p̃ε|2 ≤

∫
D

DTε(x,∇u0)∇p̃ε · ∇p̃ε

=

∫
ωε

(DT (∇u0)− ν0I)∇p0 · ∇p̃ε

≤ ‖DT (∇u0)− ν0I‖L∞(Ωd)‖∇p0‖L∞(Ωd)|ω|1/2ε‖∇p̃ε‖L2(D).

Let C := |ω|(‖DT (∇u0)− ν0I‖L∞(Ωd)‖∇p0‖L∞(Ωd)/c1)2. Then

‖∇p̃ε‖2L2(D) ≤ Cε
2,

which finishes the proof of (4.82).
The upper bound (4.83) to ‖∇kε‖2L2(D) is obtained in the same way.
After a change of scale and since, by definition, ∇K ∈ L2(R2), it holds

‖∇Kε‖2L2(D) = ε2

∫
D/ε
|∇K|2 ≤ ε2

∫
R2

|∇K|2 = O(ε2),

which proves estimate (4.84).

Proof of Proposition 4.33: We adapt the proof of [20, 46] which is a standard proof and
based on, e.g, [10].

Proof. Note that (4.80) can be rewritten as∫
R2

DT (U0)∇K · ∇η = −
∫
ω
(ν0 I −DT (U0))(P0 +∇K) · ∇η. (4.144)

Performing the change of variables y = DT (U0)1/2x and exploiting the positive definiteness
and symmetry of the matrix DT (U0), (4.144) becomes∫

R2

∇xK̂(x) · ∇xη̂(x)dx

= −
∫
ω̂
(ν0 DT (U0)−1 − I)(P̂0 +∇xK̂) · ∇xη̂(x)dx ∀η̂ ∈ H(R2),

(4.145)

where K̂(x) = K(DT (U0)1/2x), ω̂ = DT (U0)−1/2ω and P̂0 = DT (U0)1/2P0. Note that (4.145)
amounts to a Laplace equation in R2 with a source supported by ω̂. For sake of readability,
we will drop the hats in the rest of this proof.
Let E be the elementary solution of the Laplace operator in R2 given for all y ∈ R2, y 6= 0, by

E(y) :=
1

2π
log|y|.
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In particular, we have for all y ∈ R2, y 6= 0, that

|∇E(y)| = 1

2π
|y|−1. (4.146)

Let T be the distribution in R2 defined for all η ∈ C∞0 (R2) by

〈T , η〉 :=

∫
ω
(ν0 DT (U0)−1 − I)(P0 +∇K) · ∇η.

It follows from (4.145) that

∆K = T .

Hence let an element K̃ of the class K be given by

K̃ = T ∗ E. (4.147)

Let ρ > 0, λ ∈ (0, 1] such that ω ⊂ B(0, ρ/λ), see (4.4). To study the behavior of K̃ at infinity,
let y ∈ R2, |y| ≥ 2 (ρ/λ). In particular |z|/|y| ≤ 1/2 for all z ∈ ω.
The convolution (4.147) reads

K̃(y) =

∫
ω
(ν0 DT (U0)−1 − I)(P0 +∇K(z)) · ∇E(y − z)dz.

Since P0 +∇K ∈ L2(ω), the Cauchy-Schwarz inequality yields

∣∣∣K̃(y)
∣∣∣ ≤ C (∫

ω
|∇E(y − z)|2dz

)1/2

,

with C := ‖ν0 DT (U0)−1 − I‖ ‖P0 +∇K‖L2(ω).
In addition, after (4.146) and using that |z| ≤ |y|/2, it holds∫

ω
|∇E(y − z)|2dz =

1

(2π)2

∫
ω
|y − z|−2dz

≤ 1

(2π)2

∫
ω

(|y| − |z|)−2 dz

≤ 1

(2π)2
|ω|
(

1

2

)−2

|y|−2.

Hence, ∣∣∣K̃(y)
∣∣∣ ≤ C ′|y|−1

with C ′ = C 1
π |ω|

1/2. This completes the proof of the claimed asymptotic behavior (4.85).

Proof of Lemma 4.35: This proof is following the lines of [20,46] and is adapted to our case
here.
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Proof. 1. We begin proving estimate (4.88). For all η ∈ H1
0 (D), we define η1 ∈ H(R2) by

η1(y) :=
1

ε
η(εy), y ∈ D/ε and η1(y) := 0, y ∈ R2 \ (D/ε).

We test the variational equation (4.80) with η1 ∈ H(R2) and make the change of scale
backwards. This yields the equality∫

D
DTε(x, U0)∇Kε · ∇η = −

∫
ωε

(ν0 I −DT (U0))P0 · ∇η,

which must hold true for all η ∈ H1
0 (D). Then, calculating the difference with the

variational equation (4.79) yields that∫
D

DTε(x, U0)(∇kε −∇Kε) · ∇η = 0, ∀η ∈ H1
0 (D). (4.148)

Recall the function κaε defined in (4.86). It holds κaε ∈ H1(D) and Kε−κaε ∈ H1
0 (D).

Choosing η = kε − (Kε − κaε) ∈ H1
0 (D) and plugging into (4.148), it holds∫

D
DTε(x, U0)(∇kε −∇Kε) · (∇kε −∇Kε) = −

∫
D

DTε(x, U0)(∇kε −∇Kε) · ∇κaε.

Then, applying condition (4.32) together with Remark 4.9, one obtains

c1

∫
D
|∇kε −∇Kε|2 ≤

∫
D

DTε(x, U0)(∇kε −∇Kε) · (∇kε −∇Kε)

≤
∣∣∣∣∫
D

DTε(x, U0)(∇kε −∇Kε) · ∇κaε
∣∣∣∣

≤ ν0

(∫
D
|∇kε −Kε|2

)1/2 (∫
D
|∇κaε|2

)1/2

,

where we used that max{λ1(|U0|), λ2(|U0|)} ≤ ν0, see (2.29) together with (2.19). This
means that

‖∇kε −∇Kε‖2L2(D) ≤
(
ν0

c1

)2

‖∇κaε‖2L2(D),

which yields the statement (4.88) due to (4.87).

2. Let us now prove estimate (4.89). Let α > 0 and r ∈ (0, 1). By the triangle inequality,
we have

|∇kε|2 ≤ |∇kε −∇Kε|2 + |∇Kε|2.

After a change of scale, we obtain∫
D\B(0,αεr)

|∇kε|2 ≤
∫
D\B(0,αεr)

|∇kε −∇Kε|2 + ε2

∫
R2\B(0,αεr−1)

|∇K|2. (4.149)
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As in the proof of (4.68), we use that ∇K ∈ L2(R2) and r − 1 < 0 entail that∫
R2\B(0,αεr−1)

|∇K|2 = o(1).

Hence, due to (4.88), it follows from (4.149) that∫
D\B(0,αεr)

|∇kε|2 = o(ε2).

Proof of Lemma 4.36: This proof is following the lines of [20,46] and is adapted to our case
here.

Proof. Due to assumptions (4.44) and (4.76), we have that∇u0 and∇p0 are Hölder continu-
ous at point x0 = (0, 0)> with exponents β and β̃, respectively. Lemma 4.8(1) implies that DT
is Lipschitz continuous at point U0. Thus, we have that DT (∇u0) ∈ L∞(D). We denote the
Hölder constants for∇u0,∇p0 and DT by L1, L2 and L3, respectively. Let τ̃ := min(β, β̃) > 0.
Hence, there exist δ ∈ (0, 1) and L > 0 such that for all x ∈ B(0, δ) it holds

‖DT (∇u0(x))−DT (U0)‖+ |DT (∇u0(x))∇p0(x)−DT (U0)P0| ≤ L|x|τ̃ (4.150)

which can be seen as follows (recall that x0 = 0):

‖DT (∇u0(x))−DT (U0)‖+ |DT (∇u0(x))∇p0(x)−DT (U0)P0|
≤ L3|∇u0(x)− U0|+ |(DT (∇u0(x))−DT (U0))∇p0(x)|+ |DT (U0)(∇p0(x)− P0)|

≤ L3L1|x− x0|β + L3L1|x− x0|β‖∇p0‖L∞(D) + ‖DT (U0)‖L∞(D)L2|x− x0|β̃.

Let ρ > 0 and λ ∈ (0, 1] as in (4.4) such that ω ⊂ B(0, ρ/λ). So as to apply estimate (4.89),
we choose α := ρ/λ and r := 1/2. Therefore, for all ε ∈ (0,min(1, (δ/α)2)), it holds

ωε ⊂ B(0, αε) ⊂ B(0, αεr) ⊂ B(0, δ). (4.151)

We can now start our estimations. According to condition (4.32) and Remark 4.9, it holds

‖∇p̃ε −∇kε‖2L2(D) =

∫
D
|∇p̃ε −∇kε|2

≤ 1

c1

∫
D

DTε(x,∇u0)(∇p̃ε −∇kε) · (∇p̃ε −∇kε). (4.152)

Calculating the difference between the variational forms (4.78) and (4.79) and choosing the
test function η = p̃ε − kε ∈ H1

0 (D), one obtains∫
D

DTε(x,∇u0)(∇p̃ε −∇kε) · (∇p̃ε −∇kε)

=

∫
D

(DTε(x, U0)−DTε(x,∇u0))∇kε · (∇p̃ε −∇kε)

+

∫
ωε

ν0(P0 −∇p0) · (∇p̃ε −∇kε)

+

∫
ωε

(DT (∇u0)∇p0 −DT (U0)P0) · (∇p̃ε −∇kε).

(4.153)
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1. We begin by estimating the first term on the right hand side of (4.153).∣∣∣∣∫
D

(DTε(x, U0)−DTε(x,∇u0))∇kε · (∇p̃ε −∇kε)
∣∣∣∣

≤

∣∣∣∣∣
∫
B(0,αεr)\ωε

(DT (U0)−DT (∇u0))∇kε · (∇p̃ε −∇kε)

∣∣∣∣∣
+

∣∣∣∣∣
∫
D\B(0,αεr)

(DT (U0)−DT (∇u0))∇kε · (∇p̃ε −∇kε)

∣∣∣∣∣
≤L

∫
B(0,αεr)\ωε

|x|τ̃ |∇kε||∇p̃ε −∇kε|

+ C̃

(∫
D\B(0,αεr)

|∇kε|2
)1/2

‖∇p̃ε −∇kε‖L2(D\B(0,αεr))

≤Lατ̃εrτ̃‖∇kε‖L2(D)‖∇p̃ε −∇kε‖L2(D + o(ε)‖∇p̃ε −∇kε‖L2(D).

where C̃ := 2 ‖DT (∇u0)‖L∞(D) and we used that DTε(x, U0) = ν0I = DTε(x,∇u0)
inside ωε and (4.89). Using that ‖∇kε‖L2(D) = O(ε) due to (4.83), we get∣∣∣∣∫

D
(DTε(x, U0)−DTε(x,∇u0))∇kε · (∇p̃ε −∇kε)

∣∣∣∣ = o(ε)‖∇p̃ε −∇kε‖L2(D).

(4.154)

2. Similarly, we get for the remaining two terms of (4.153) that∣∣∣∣∫
ωε

ν0(P0 −∇p0) · (∇p̃ε −∇kε)
∣∣∣∣+

∣∣∣∣∫
ωε

(DT (∇u0)∇p0 −DT (U0)P0) · (∇p̃ε −∇kε)
∣∣∣∣

≤ ν0L2

∫
ωε

|x|β̃|∇p̃ε −∇kε|+ L

∫
ωε

|x|τ̃ |∇p̃ε −∇kε|

≤ ν0L2

∫
B(0,αε)

|x|β̃|∇p̃ε −∇kε|+ L

∫
B(0,αε)

|x|τ̃ |∇p̃ε −∇kε|

≤
(
ν0L2α

β̃εβ̃ + Lατ̃ετ̃
)(∫

B(0,αε)
1

)1/2

‖∇p̃ε −∇kε‖L2(B(0,αε))

≤
(
ν0L2α

β̃εβ̃ + Lατ̃ετ̃
)
πα ε ‖∇p̃ε −∇kε‖L2(D) = o(ε)‖∇p̃ε −∇kε‖L2(D). (4.155)

Collecting (4.152), (4.153), (4.154) and (4.155), and dividing by ‖∇p̃ε−∇kε‖L2(D), we get
the claimed estimate (4.90).

4.4.4.3 Proofs on the Expansion of the Cost Functional

Proof of Lemma 4.37: This proof is following the lines of [20,46] and is adapted to our case
here.
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Proof. It follows from definitions (4.96) and (4.97) that

j̃1(ε)− ε2J1 = (ν0 − ν̂(|U0|))
∫
ωε

U0 · (P0 +∇kε)− ε2 (ν0 − ν̂(|U0|))
∫
ω
U0 · (P0 +∇K)

= (ν0 − ν̂(|U0|))
∫
ωε

U0 · (P0 +∇kε)− ε2 (ν0 − ν̂(|U0|))
∫
ωε

U0 · (P0 +∇Kε) ε
−2

= (ν0 − ν̂(|U0|))U0 ·
∫
ωε

(∇kε −∇Kε).

Hence, after property (2.19a), estimate (4.88) and Cauchy-Schwarz’s inequality, it holds

|j̃1(ε)− ε2J1| ≤ ν0|U0||ω|1/2ε‖∇kε −∇Kε‖L2(D)

≤ O(ε)o(ε) = o(ε2),

which completes the proof of Lemma 4.37.

Proof of Lemma 4.38: This proof is following the lines of [20,46] and is adapted to our case
here.

Proof. It follows from definitions (4.93) and (4.96) that

j1(ε)− j̃1(ε) =

∫
ωε

(ν0 − ν̂(|∇u0|))∇u0 · (∇p0 +∇p̃ε)−
∫
ωε

(ν0 − ν̂(|U0|))U0 · (P0 +∇kε)

=

∫
ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇p0 − (ν0 − ν̂(|U0|))U0 · P0

+

∫
ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇p̃ε − (ν0 − ν̂(|U0|))U0 · ∇kε.

Since the mapping x ∈ D 7→ (ν0 − ν̂(|∇u0(x)|))∇u0(x) · ∇p0(x) is continuous at point x0 =
(0, 0)> due to Assumptions 5 and 6 and 3(1), it holds∫

ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇p0 − (ν0 − ν̂(|U0|))U0 · P0 = |ωε|o(1) = o(ε2).

Moreover, since x ∈ D 7→ (ν0 − ν̂(|∇u0(x)|))∇u0(x) is continuous at point x0 = (0, 0)>

due to Assumptions 5 and 3(1), after Cauchy-Schwarz’s inequality and estimates (4.90) and
(4.83), it holds∣∣∣∣∫

ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇p̃ε − (ν0 − ν̂(|U0|))U0 · ∇kε
∣∣∣∣

≤
∫
ωε

|(ν0 − ν̂(|∇u0|))| |∇u0| |∇p̃ε −∇kε|+
∫
ωε

[(ν0 − ν̂(|∇u0|))∇u0 − (ν0 − ν̂(|U0|))U0] · ∇kε

≤ |ω|1/2ε
(
‖(ν0 − ν̂(|∇u0|))∇u0‖L∞(Ωd)‖∇p̃ε −∇kε‖L2(D) + o(1)‖∇kε‖L2(D)

)
= O(ε) (o(ε) + o(1)O(ε)) = o(ε2).

This completes the proof of Lemma 4.38.

Proof of Lemma 4.40: This proof is following the lines of [20,46] and is adapted to our case
here.
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Proof. With the help of (4.47), tested with η = kε, and (4.79), tested with η = hε, the term
j̃2(ε) defined in (4.103) can be rewritten as follows:

j̃2(ε) =

∫
D
SεU0

(x,∇hε) · (P0 +∇kε)

=

∫
D
SεU0

(x,∇hε) · P0 + (Tε(x, U0 +∇hε)− Tε(x, U0)−DTε(x, U0)∇hε) · ∇kε

=

∫
D
SεU0

(x,∇hε) · P0 −
∫
ωε

(ν0 − ν̂(|U0|))U0 · ∇kε +

∫
ωε

(ν0 I −DT (U0))P0 · ∇hε.

(4.156)

Similarly, by (4.49), tested with η = K, and (4.80), tested with η = H, we get for J2 defined
in (4.104) that

J2 =

∫
R2\ω

S̃U0(x,∇H) · P0 −
∫
ω
(ν0 − ν̂(|U0|))U0 · ∇K +

∫
ω
(ν0 I −DT (U0))∇Hε · P0.

Then, making the change of scale backwards, we get

ε2J2 =ε2

∫
R2\(D/ε)

SU0(∇H) · P0 +

∫
D\ωε

SU0(∇Hε) · P0

−
∫
ωε

(ν0 − ν̂(|U0|))U0 · ∇Kε +

∫
ωε

(ν0I −DT (U0))∇Hε · P0.

(4.157)

The first integral on the right hand side is the remainder of a converging integral. Thus,∫
R2\(D/ε)

SU0(∇H) · P0 = o(1) as ε→ 0.

Therefore, gathering (4.156) and (4.157) yields,

j̃2(ε)− ε2J2 =

∫
D\ωε

(SU0(∇hε)− SU0(∇Hε)) · P0 + o(ε2)

−
∫
ωε

(ν0 − ν̂(|U0|))U0 · (∇kε −∇Kε) (4.158)

+

∫
ωε

(ν0 I −DT (U0))(∇hε −∇Hε) · P0 (4.159)

Regarding the second term (4.158) on the right hand side, Cauchy-Schwarz’s inequality and
estimate (4.88) imply∫

ωε

(ν0 − ν̂(|U0|))U0 · (∇kε −∇Kε) ≤ |(ν0 − ν̂(|U0|))U0||ω|1/2ε‖∇kε −∇Kε‖L2(ωε)

≤ |(ν0 − ν̂(|U0|))U0||ω|1/2ε o(ε) = o(ε2).

Similarly, for the third term (4.159) on the right hand side, Cauchy-Schwarz’s inequality and
estimate (4.67) imply∫

ωε

((ν0 I −DT (U0))P0) · (∇hε −∇Hε) ≤ |((ν0 I −DT (U0))P0)||ω|1/2ε‖∇hε −∇Hε‖L2(ωε)

≤ |((ν0 I −DT (U0))P0)||ω|1/2ε o(ε) = o(ε2).
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It follows

j̃2(ε)− ε2J2 =

∫
D\ωε

(SU0(∇hε)− SU0(∇Hε)) · P0 + o(ε2). (4.160)

Condition (4.35) immediately yields∫
D\ωε

|SU0(∇hε)− SU0(∇Hε)| ≤ c4

∫
D\ωε

|∇hε −∇Hε|(|∇Hε|+ |∇hε|).

Hence, it follows from (4.70) that∫
D\ωε

|SU0(∇hε)− SU0(∇Hε)| = o(ε2).

Therefore, (4.160) entails

j̃2(ε)− ε2J2 = o(ε2),

which completes the proof of this lemma.

Proof of Lemma 4.41: This proof is analogous to [20,46] and is given here for completeness.

Proof. Since ∇p0 is β̃-Hölder continuous at point x0 = (0, 0)> for some β̃ > 0, there exist
δ > 0 and L > 0 such that

|∇p0 − P0| ≤ L|x|β̃, ∀x ∈ B(0, δ).

To apply estimate (4.68), we choose α := δ and r := 1/2. Hence, for all ε ∈ (0, 1), according
to estimates (4.52) and (4.68) it follows∫

D
|∇p0 − P0||∇hε|2

≤
∫
B(0,αεr)

L|x|β̃|∇hε|2 + 2‖∇p0‖L∞(D)

∫
D\B(0,αεr)

|∇hε|2

≤ Lαβ̃εrβ̃O(ε2) + o(ε2) = o(ε2),

which completes the proof of estimate (4.106).

Proof of Lemma 4.42: This proof is following the lines of [20,46] and is adapted to our case
here.

Proof. As in the proof of Lemma 4.40, we can rewrite the terms j2(ε) (4.94) and j̃2(ε) (4.103)
as

j2(ε) =

∫
D
Sε∇u0(x,∇ũε) · ∇p0

−
∫
ωε

(ν0 − ν̂(|∇u0|))∇u0 · ∇p̃ε +

∫
ωε

(ν0 I −DT (∇u0))∇ũε · ∇p0,

j̃2(ε) =

∫
D
SεU0

(x,∇hε) · P0 −
∫
ωε

(ν0 − ν̂(|U0|))U0 · ∇kε +

∫
ωε

(ν0 I −DT (U0))∇hε · P0.
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Calculating the difference, we get

j2(ε)− j̃2(ε) =

∫
D\ωε

S∇u0(x,∇ũε) · ∇p0 − SU0(x,∇hε) · P0

−
∫
ωε

[ν0(∇u0 · ∇p̃ε − U0 · ∇kε)− (ν̂(|∇u0|)∇u0 · ∇p̃ε − ν̂(|U0|)U0 · ∇kε)]

+

∫
ωε

[ν0(∇ũε · ∇p0 −∇hε · P0)− (DT (∇u0)∇ũε · ∇p0 −DT (U0)∇hε · P0)] .

(4.161)

Let δ > 0. Due to the continuity of ∇u0 and ∇p0 at point x0 and to the continuity of DT and
ν̂(| · |), for ε > 0 small enough it holds

max(|DT (∇u0)∇p0 −DT (U0)P0|, |∇p0 − P0|,
|ν̂(|∇u0|)∇u0 − ν̂(|U0|)U0|)|, |∇u0 − U0|) ≤ δ in ωε.

Let us investigate the second integral on the right hand side of (4.161). After Cauchy-
Schwarz’s inequality, and estimates (4.90) and (4.83), we get

∣∣∣∣∫
ωε

[ν0(∇u0 · ∇p̃ε − U0 · ∇kε)− (ν̂(|∇u0|)∇u0 · ∇p̃ε − ν̂(|U0|)U0 · ∇kε)]
∣∣∣∣

≤
∫
ωε

ν0|∇u0||∇p̃ε −∇kε|+ ν0|∇u0 − U0||∇kε|

+

∫
ωε

ν̂(|∇u0|)|∇u0||∇p̃ε −∇kε|+ |ν̂(|∇u0|)∇u0 − ν̂(|U0|)U0||∇kε|

≤
∫
ωε

‖(ν0 + ν̂(|∇u0|))|∇u0|‖L∞(Ωd)|∇p̃ε −∇kε|

+

∫
ωε

(ν0|∇u0 − U0| − |ν̂(|∇u0|)∇u0 − ν̂(|U0|)U0|)|∇kε|

≤|ω|1/2ε
[
‖(ν0 + ν̂(|∇u0|))∇u0‖L∞(Ωd)‖∇p̃ε −∇kε‖L2(ωε) + (ν0 + 1)δ‖∇kε‖L2(ωε)

]
≤|ω|1/2ε

[
‖(ν0 + ν̂(|∇u0|))∇u0‖L∞(Ωd)‖∇p̃ε −∇kε‖L2(D) + (ν0 + 1)δ‖∇kε‖L2(D)

]
≤ O(ε)o(ε) +O(ε) δ O(ε) = o(ε2).
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For the third integral on the right hand side of (4.161), we get∣∣∣∣∫
ωε

[ν0(∇ũε · ∇p0 −∇hε · P0)− (DT (∇u0)∇ũε · ∇p0 −DT (U0)∇hε · P0)]

∣∣∣∣
≤
∫
ωε

ν0 (|∇p0||∇ũε −∇hε|+ |∇hε||∇p0 − P0|)

+

∫
ωε

|DT (∇u0)∇p0||∇ũε −∇hε|+ |DT (∇u0)∇p0 −DT (U0)P0||∇hε|

≤
∫
ωε

‖ν0|∇p0|+ |DT (∇u0)∇p0|‖L∞(Ωd)|∇ũε −∇hε|

+

∫
ωε

|∇hε| (ν0|∇p0 − P0|+ |DT (∇u0)∇p0 −DT (U0)P0|)

≤ω1/2ε
[
‖ν0|∇p0|+ |DT (∇u0)∇p0|‖L∞(Ωd)‖∇ũε −∇hε‖L2(ωε) + (ν0 + 1)δ‖∇hε‖L2(ωε)

]
≤ω1/2ε

[
‖ν0|∇p0|+ |DT (∇u0)∇p0|‖L∞(Ωd)‖∇ũε −∇hε‖L2(D)) + (ν0 + 1)δ‖∇hε‖L2(D)

]
≤O(ε)o(ε) +O(ε)δO(ε) = o(ε2),

where we used Cauchy-Schwarz’s inequality and estimated the terms ‖∇ũε−∇hε‖L2(D) and
‖∇hε‖L2(D) by (4.71) and (4.52), respectively. Thus, (4.161) yields

j2(ε)− j̃2(ε) =

∫
D\ωε

S∇u0(∇ũε) · ∇p0 − SU0(∇hε) · P0 + o(ε2). (4.162)

The integral on the right hand side can be split into three terms,∫
D\ωε

S∇u0(∇ũε) · ∇p0 − SU0(∇hε) · P0

=

∫
D\ωε

(S∇u0(∇ũε)− S∇u0(∇hε)) · ∇p0

+

∫
D\ωε

(S∇u0(∇hε)− SU0(∇hε)) · ∇p0 +

∫
D\ωε

SU0(∇hε) · (∇p0 − P0).

(4.163)

1. Regarding the first term on the right hand side of (4.163), condition (4.35) and estimate
(4.72) entail that∫

D\ωε
|S∇u0(∇ũε)− S∇u0(∇hε)| ≤ c4

∫
D\ωε

|∇ũε −∇hε|(|∇ũε|+ |∇hε|)

≤ c4

∫
D
|∇ũε −∇hε|(|∇ũε|+ |∇hε|) = o(ε2).

As ∇p0 ∈ L∞(D), it follows∫
D\ωε

(S∇u0(∇ũε)− S∇u0(∇hε)) · ∇p0 = o(ε2).
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2. Regarding the second term on the right-hand side of (4.163), condition (4.36) and
estimate (4.69) entail that∫

D\ωε
|S∇u0(∇hε)− SU0(∇hε)| ≤ c5

∫
D\ωε

|∇u0 − U0||∇hε|2

≤ c5

∫
D
|∇u0 − U0||∇hε|2 = o(ε2).

Again, as ∇p0 ∈ L∞(D), it follows∫
D\ωε

(S∇u0(∇hε)− SU0(∇hε)) · ∇p0 = o(ε2).

3. For the third term on the right-hand side of (4.163), according to (4.41) derived from
(4.35), it holds∫

D\ωε
|SU0(∇hε)||∇p0 − P0| ≤

∫
D\ωε

c4|∇p0 − P0||∇hε|2.

Hence it follows from estimate (4.106) that∫
D\ωε

|SU0(∇hε)||∇p0 − P0| = o(ε2).

Finally, we conclude from the estimates above of the three terms on the right-hand side of
(4.163) that ∫

D\ωε
S∇u0(∇ũε) · ∇p0 − SU0(∇hε) · P0 = o(ε2),

and, therefore, equation (4.162) yields

j2(ε)− j̃2(ε) = o(ε2)

which completes the proof of Lemma 4.42.

4.5 Topological Asymptotic Expansion: Case II

In this section, we will derive the topological derivative for the reverse scenario to the case
considered in Section 4.4, i.e., we want to know how the objective function is affected by
the creation of a small region of ferromagnetic material inside a region of air, see Figure 4.3.
Most parts of the derivation will be analogous to Section 4.4. What is different in this section
is that the material behavior outside the inclusion ωε is linear. This yields that in particular
the result corresponding to Theorem 4.24 about the asymptotic behavior of the variation of
the direct state at scale 1 simplifies significantly.
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4.5.1 Simplified Model Problem

In analogy to Section 4.1.1, we introduce a simplified model problem with homogeneous
background material. In this simplified setting, the unperturbed state equation reads

Find u(2)
0 ∈ H1

0 (D) such that
∫
D
ν0∇u(2)

0 · ∇η = 〈F, η〉 ∀η ∈ H1
0 (D). (4.164)

Here, again F ∈ H−1(D) represents the sources given by the permanent magnetization and
electric currents, and ν0 denotes the magnetic reluctivity of air. In order to avoid confusion
with the corresponding quantities in Case I, we mark all quantities arising in Case II with a
superscript (2).

4.5.2 Perturbed Nonlinear Equation

Recall the notation introduced in Section 4.1.2. In particular, note that x0 ∈ Ωd ⊂⊂ D \
supp(F ) is the point around which we perturb the material coe�cient and, for ε > 0, ωε =
x0 + εω is the inclusion around x0 of radius ε and shape ω. We define the operator

T (2)
ε (x,W ) := χD\ωε(x)ν0W + χωε(x)T (W ), (4.165)

for x ∈ D andW ∈ R2 where T is defined in (2.24). The Jacobian of T (2)
ε is given by

DT (2)
ε (x,W ) = χD\ωε(x)ν0 I + χωε(x)DT (W ).

Furthermore, we introduce

S
ε,(2)
W (x, V ) := χωε(x)SW (V ), (4.166)

for V,W ∈ R2, with the operator S defined in (4.24).

Thus, in the simplified setting introduced in Section 4.5.1, the perturbed state equation reads

Find u(2)
ε ∈ H1

0 (D) such that
∫
D
T (2)
ε (x,∇u(2)

ε ) · ∇η = 〈F, η〉 ∀η ∈ H1
0 (D). (4.167)

Remark 4.46. It is easy to see that the statements of Lemma 4.7 and Lemma 4.8 also hold for
the x-dependent operators T (2)

ε , DT
(2)
ε , Sε,(2) for each point in their domain of definition with

the same constants.

4.5.3 Expansion of Cost Functional

We make the same assumption (4.7) on the cost functional as in Section 4.1.3, where uε and
u0 are replaced by u(2)

ε and u(2)
0 , respectively.

4.5.4 Variation of Direct State

Again, we are interested in the difference between the perturbed and the unperturbed direct
state, u(2)

ε − u(2)
0 =: ũ

(2)
ε . We will refer to ũ(2)

ε as the variation of the direct state at scale ε in
Case II.
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ΩairΩ Ωair

εω

Ω

0x

Figure 4.3: Left: Unperturbed configuration for Case II. Right: Perturbed configuration for
Case II.

4.5.4.1 Regularity Assumptions

We make the same regularity assumptions as in Section 4.4.1.1:

Assumption 7. There exists β > 0 such that

u
(2)
0 |Ωd ∈ C

1,β(Ωd).

Again, we immediately get the following properties:

∇u(2)
0 |Ωd ∈ C

0,β(Ωd) (4.168)

∇u(2)
0 |Ωd ∈ L

∞(Ωd)

4.5.4.2 Step 1: Variation u(2)
ε − u(2)

0

Comparing the state equation (4.167) for the perturbed configuration (ε > 0) with the state
equation (4.164) of the unperturbed configuration in Case II (see Figure 4.3), we get

0 =

∫
D
T (2)
ε (x,∇u(2)

ε ) · ∇η −
∫
D
T

(2)
0 (∇u(2)

0 ) · ∇η

=

∫
D

(T (2)
ε (x,∇u(2)

ε )− T (2)
ε (x,∇u(2)

0 )) · ∇η +

∫
ωε

(ν̂(|∇u(2)
0 |)− ν0)∇u(2)

0 · ∇η.

This yields the boundary value problem for the variation of the direct state at scale ε in
Case II, ũ(2)

ε :

Find ũ(2)
ε ∈ H1

0 (D) such that∫
D

(T (2)
ε (x,∇u(2)

0 +∇ũ(2)
ε )− T (2)

ε (x,∇u(2)
0 )) · ∇η

=

∫
ωε

(ν0 − ν̂(|∇u(2)
0 |))∇u

(2)
0 · ∇η ∀η ∈ H1

0 (D).

(4.169)

Note the different sign on the right hand side compared to the corresponding boundary value
problem (4.46) in Case I.
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4.5.4.3 Step 2: Approximation of Variation u(2)
ε − u(2)

0

We approximate boundary value problem (4.169) by the same boundary value problemwhere
we replace the function ∇u(2)

0 by the constant U (2)
0 := ∇u(2)

0 (x0). We denote the solution to
the arising boundary value problem by h(2)

ε :

Find h(2)
ε ∈ H1

0 (D) such that∫
D

(T (2)
ε (x, U

(2)
0 +∇h(2)

ε )− T (2)
ε (x, U

(2)
0 )) · ∇η

=

∫
ωε

(ν0 − ν̂(|U (2)
0 |))U

(2)
0 · ∇η ∀η ∈ H1

0 (D).

(4.170)

4.5.4.4 Step 3: Change of Scale

We proceed analogously to Section 4.4.1.4. We start out from boundary value problem
(4.170) and, for fixed ε > 0, perform the change of scale x 7→ x/ε. This means that, for
small ε > 0, we rescale both D and the inclusion ωε, resulting in a “much larger” domain
D/ε and an inclusion of unit size. Then, by replacing the large bounded domain D/ε by
the entire plane R2, we arrive at a transmission problem on R2 which is an ε-independent
approximation to problems (4.170) and (4.169) at scale 1. For that purpose, we introduce
the ε-independent operators corresponding to (4.165) and (4.166), respectively:

T̃ (2)(x,W ) := χR2\ω(x)ν0W + χωT (W ),

S̃
(2)
W (x, V ) := χω(x)SW (V ), (4.171)

which are defined for all x ∈ R2 and V,W ∈ R2. Note that the Jacobian of T̃ (2) is given by

D̃T
(2)

(x,W ) := χR2\ω(x)ν0I + χωDT (W ).

The arising nonlinear transmission problem defining the variation of the direct state at scale 1
in Case II, H(2), reads

Find H(2) ∈ H(R2) such that∫
R2

(T̃ (2)(x, U
(2)
0 +∇H(2))− T̃ (2)(x, U

(2)
0 )) · ∇η

=

∫
ω
(ν0 − ν̂(|U (2)

0 |))U
(2)
0 · ∇η ∀η ∈ H(R2).

(4.172)

Remark 4.47. It is easy to see that the statements of Lemma 4.7 and Lemma 4.8 also hold for
the x-dependent operators T̃ (2),DT̃ (2), and S̃(2) for each point in their domain of definition with
the same constants.

As in Section 4.4.1.4,we can show the existence of a unique solution to problem (4.172).

Proposition 4.48. Let Assumption 1 hold. Then there exists a unique solution H(2) ∈ H(R2) to
(4.172).

Proof. The proof is analogous to the proof of Proposition 4.17 using the theorem of Zaran-
tonello (Theorem 2.5). Only the right hand side Lmust be replaced by L(2) := −L ∈ H(R2)∗.
The proof only uses properties (4.33) and (4.34) for T̃ , which also hold for T̃ (2) by virtue of
Remark 4.47.
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4.5.4.5 Step 4: Asymptotic Behavior of Variations of Direct State

Similarly to Section 4.4.1.5 in Case I, we need to establish a su�ciently fast decay of the
unique solution H(2) as |x| tends to infinity. For that purpose, the procedure in Case II is
significantly less tedious which is due to the fact that the material behavior inR2\ω in (4.172)
is linear.

LetH(2) ∈ H(R2) be the unique solution to problem (4.172). Again, given an element Ĥ(2) ∈
Hw(R2) of the class H(2) ∈ H(R2) and ε > 0, we define H(2)

ε : D → R by

H(2)
ε (x) := εĤ(2)(ε−1x) (4.173)

for x ∈ D. Again, noting that, for the weight function w defined in (4.42),

w := inf
x∈D

w
(x
ε

)
> 0,

it is easy to see that Ĥ(2) ∈ Hw(R2) implies H(2)
ε ∈ H1(D). We get estimates analogous to

Lemma 4.18:

Lemma 4.49. Let Assumption 1 as well as Assumption 7 hold. Then

‖∇ũ(2)
ε ‖2L2(D) = O(ε2), (4.174)

‖∇h(2)
ε ‖2L2(D) = O(ε2), (4.175)

‖∇H(2)
ε ‖2L2(D) = O(ε2). (4.176)

Proof. The proof is analogous to the proof of Lemma 4.18, which relies on property (4.33)
for the operator Tε and the regularity assumption on u0. Property (4.33) also holds for T (2)

ε

by virtue of Remark 4.46 and we made the same regularity assumption on u(2)
0 , so the same

proof steps can be conducted.

Remark 4.50. By application of the triangle inequality, it follows immediately from estimates
(4.174), (4.175) and (4.176) that

‖∇ũ(2)
ε −∇h(2)

ε ‖2L2(D) = O(ε2), (4.177)

‖∇h(2)
ε −∇H(2)

ε ‖2L2(D) = O(ε2). (4.178)

The asymptotic behavior of the solutionH(2) to (4.172) can be established similarly to Propo-
sition 4.33, without the use of subsolution and supersolution as it was necessary for showing
Theorem 4.24:

Proposition 4.51. Let H(2) ∈ H(R2) be the unique solution to (4.172). Then, there exists an
element H̃(2) of the class H(2) ∈ H(R2) such that

H̃(2)(y) = O
(
|y|−1

)
as |y| → ∞. (4.179)

Proof. Since in Case II, we have linear material outside the inclusion, this proof is similar to
the proof of the asymptotic behavior of the variation of the adjoint state in both Cases I and II
(Propositions 4.33 and 4.57, respectively).



108 CHAPTER 4. TOPOLOGICAL DERIVATIVE FOR MAGNETOSTATIC PROBLEM

The variation of the direct state at scale 1 in Case II, H(2) ∈ H(R2), is given as the solution
to (4.172), which can be rewritten as

Find H(2) ∈ H(R2) such that∫
R2

∇H(2) · ∇η =

∫
ω

(
1− ν̂(|U (2)

0 +∇H(2)|)
ν0

)(
U

(2)
0 +∇H(2)

)
· ∇η ∀η ∈ H(R2).

(4.180)

This amounts to a Laplace equation onR2 supported on ω. As in the proof of Proposition 4.33,
let E the fundamental solution to the Laplace equation in R2 which is given for all y ∈ R2,
y 6= 0, as

E(y) =
1

2π
log |y| with

|∇E(y)| = 1

2π
|y|−1.

Let F denote the distribution defined by

〈F , η〉 =

∫
ω

(
ν̂(|U (2)

0 +∇H(2)|)
ν0

− 1

)(
U

(2)
0 +∇H(2)

)
· ∇η ∀η ∈ C∞0 (R2).

Then, by (4.180) we have ∆H(2) = F . Therefore, let an element H̃(2) of the class H(2) be
given by H̃(2) = F ∗ E, i.e.,

H̃(2)(y) =

∫
ω

(
ν̂(|U (2)

0 +∇H(2)(z)|)
ν0

− 1

)(
U

(2)
0 +∇H(2)(z)

)
· ∇E(y − z)dz.

Since U (2)
0 +∇H(2) ∈ L2(ω), the Cauchy-Schwarz inequality yields∣∣∣H̃(2)(y)

∣∣∣ ≤ C (∫
ω
|∇E(y − z)|2dz

)1/2

,

with C :=
(

1− ν
ν0

)
‖U (2)

0 +∇H(2)‖L2(ω).
The remainder of the proof is identical to the proof of Proposition 4.33.

From now on, function H(2)
ε is defined choosing Ĥ(2) = H̃(2) in (4.173) where H̃(2) is as in

Proposition 4.51, i.e.,

H(2)
ε (x) := εH̃(2)(ε−1x), x ∈ D.

4.5.4.6 Estimates for the Variations of the Direct State

Recall the smooth function θ : R2 → R defined in Section 4.4.1.6 as

θ(x) = 0, x ∈ B(0, ρ), and θ(x) = 1, x ∈ R2 \B(0, R),

with 0 < ρ < R defined in (4.4). Define the function κ(2)
ε : D → R given by

κ(2)
ε (x) = θ(x)H(2)

ε (x).
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Lemma 4.52. It holds that κ(2)
ε ∈ H1(D) and H(2)

ε − κ(2)
ε ∈ H1

0 (D). Moreover,

‖∇κ(2)
ε ‖2L2(D) = o(ε2). (4.181)

Proof. The proof is analogous to the proof of Lemma 4.26, exploiting the asymptotic behavior
(4.179) of H(2). The only difference lies in the second step of the proof of (4.181) as the
asymptotic behavior of H (4.63) is different from that of H(2) (4.179): H = O(|y|−τ ) with
τ > 0 and H(2) = O(|y|−1). Here, it su�ces to replace the exponent τ by 1 in the proof and
the result (4.181) follows.

Proposition 4.53. Let Assumptions 1 and 7 hold. Then

‖∇h(2)
ε −∇H(2)

ε ‖2L2(D) = o(ε2), (4.182)

∀α > 0∀r ∈ (0, 1) :

∫
D\B(0,αεr)

|∇h(2)
ε |2 = o(ε2), (4.183)∫

D
|∇u(2)

0 − U
(2)
0 ||∇h

(2)
ε |2 = o(ε2), (4.184)∫

D
|∇h(2)

ε −∇H(2)
ε |(|∇h(2)

ε |+ |∇H(2)
ε |) = o(ε2). (4.185)

Proof. The proof is analogous to the proof of Proposition 4.27 which, again, is based on prop-
erties (4.33) and (4.34), the regularity of u(2)

0 and the asymptotic behavior (4.181) of ∇κ(2)
ε .

Properties (4.33) and (4.34) also hold for the operator T (2)
ε by virtue of Remark 4.46. Note

that, in Case II, the asymptotic behavior (4.181) of κ(2)
ε holds without Assumption 4 and with-

out the assumption that ω = B(0, 1) because the asymptotic behavior (4.179) of H(2) could
be established without these assumptions.

Proposition 4.54. Let Assumptions 1 and 7 hold. Then

‖∇ũ(2)
ε −∇h(2)

ε ‖2L2(D) = o(ε2), (4.186)∫
D
|∇ũ(2)

ε −∇h(2)
ε |(|∇ũ(2)

ε |+ |∇h(2)
ε |) = o(ε2), (4.187)

∀α > 0 ∀r ∈ (0, 1) :

∫
D\B(0,αεr)

|∇ũ(2)
ε |2 = o(ε2). (4.188)

Proof. Again, the proof is analogous to the proof of the corresponding proposition in Sec-
tion 4.4.1.6, Proposition 4.28. For the proof of (4.186), first note that properties (4.33) and
(4.34) also hold for the operator T (2)

ε by virtue of Remark 4.46. In the same way as in Section
4.4.1.6, it can be seen that

c2‖∇ũ(2)
ε −∇h(2)

ε ‖2L2(D) ≤
∫
D

[
T (2)
ε (x,∇u(2)

0 +∇ũ(2)
ε )− T (2)

ε (x,∇u(2)
0 +∇h(2)

ε )
]
· ∇η

=

5∑
i=1

E(2)
i (ε),

where the E(2)
i are defined analogously as in the proof of Proposition 4.28 with E(2)

1 having
a different sign. Note that, for α = ρ/λ with ρ, λ defined in (4.4) and the same choices of ε
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and r as in the proof of Proposition 4.28, T (2)
ε is linear outside B(0, αεr), which yields that

E(2)
4 + E(2)

5 = 0. Due to Assumption 7 and the Lipschitz continuity of the operator T (4.34),
we can make use of estimate (4.143) (with ∇u0, U0 replaced by ∇u(2)

0 , U (2)
0 , respectively).

The estimation of E(2)
1 , E(2)

2 , E(2)
3 is then analogous to the estimation of E1, E2, E3 in the proof

of Proposition 4.28, using estimate (4.177).

Estimates (4.187) and (4.188) can be shown in exactly the same way as in the proof of
Proposition 4.28.

4.5.5 Variation of Adjoint State

The perturbed adjoint equation in the Case II reads

Find p(2)
ε ∈ H1

0 (D) such that∫
D
DT (2)

ε (x,∇u(2)
0 )∇p(2)

ε · ∇η = −〈G̃, η〉 ∀η ∈ H1
0 (D).

Here, G̃ again denotes the bounded linear functional such that the functional Jε satisfies an
expansion of the form (4.7). Note that, here, we exploited the symmetry of DTε. For ε = 0,
we get the unperturbed adjoint equation,

Find p(2)
0 ∈ H1

0 (D) such that∫
D
ν0∇p(2)

0 · ∇η = −〈G̃, η〉 ∀η ∈ H1
0 (D), (4.189)

where we used that DT
(2)
0 (x,∇u(2)

0 ) = ν0I according to the definition of T (2)
ε in (4.165).

4.5.5.1 Regularity Assumptions

We again assume su�cient regularity of the solution p(2)
0 to the unperturbed adjoint equation.

Assumption 8. There exists β̃ > 0 such that

p
(2)
0 |Ωd ∈ C

1,β̃(Ωd).

Assumption 8 immediately yields the properties

∇p(2)
0 |Ωd ∈ C

0,β̃(Ωd), (4.190)

∇p(2)
0 |Ωd ∈ L

∞(Ωd).

4.5.5.2 Step 1: Variation p(2)
ε − p(2)

0

Subtracting (4.75) from (4.74) yields

0 =

∫
D
DT (2)

ε (x,∇u(2)
0 )∇p(2)

ε · ∇η −
∫
D
ν0∇p(2)

0 · ∇η

=

∫
D
DT (2)

ε (x,∇u(2)
0 )∇p̃(2)

ε · ∇η −
∫
ωε

(ν0I − DT (2)
ε (x,∇u(2)

0 ))∇p(2)
0 · ∇η,
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where p̃(2)
ε = p

(2)
ε − p(2)

0 denotes the variation of the adjoint state at scale ε in Case II. Here
we used that DT

(2)
ε (x,∇u(2)

0 ) is equal to ν0I outside ωε. Thus, noting that DT (2)
ε (x,∇u(2)

0 ) =

DT (∇u(2)
0 ) inside ωε, the boundary value problem for the variation of the adjoint state at

scale ε in Case II reads

Find p̃(2)
ε ∈ H1

0 (D)such that∫
D
DT (2)

ε (x,∇u(2)
0 )∇p̃(2)

ε · ∇η =

∫
ωε

(ν0I −DT (∇u(2)
0 ))∇p(2)

0 · ∇η ∀η ∈ H1
0 (D).

Also here, note the different sign of the right hand side in comparison with (4.78).

4.5.5.3 Step 2: Approximation of Variation p(2)
ε − p(2)

0

As for the variation of the direct state, we approximate boundary value problem (4.191) by
replacing the gradient of the adjoint and direct state by their values at the point x0. Recall
U

(2)
0 := ∇u(2)

0 (x0) and let P (2)
0 := ∇p(2)

0 (x0). Then the problem reads

Find k(2)
ε ∈ H1

0 (D) such that∫
D

DT (2)
ε (x, U

(2)
0 )∇k(2)

ε · ∇η =

∫
ωε

(ν0 I −DT (U
(2)
0 ))P

(2)
0 · ∇η ∀η ∈ H1

0 (D). (4.191)

4.5.5.4 Step 3: Change of Scale

Here, we approximate problem (4.191) by performing a change of scale and sending the outer
boundary of the rescaled domain D/ε to infinity in the same manner as for the variation of
the direct state in Section 4.4.1.4. The arising linear transmission problem on the whole R2

reads

Find K(2) ∈ H(R2) such that∫
R2

DT̃ (2)(x, U
(2)
0 )∇K(2) · ∇η =

∫
ω
(ν0I −DT (U

(2)
0 ))P

(2)
0 · ∇η ∀η ∈ H(R2). (4.192)

Again, we can show well-posedness of the above problem:

Lemma 4.55. There exists a unique solution K(2) ∈ H(R2) of problem (4.192).

Proof. The proof is completely analogous to the proof of Lemma 4.31 using the lemma of
Lax-Milgram, exploiting property (4.32) in combination with Remark 4.47.

4.5.5.5 Step 4: Asymptotic Behavior of Variations of the Adjoint State

Let K(2) ∈ H(R2) be the unique solution to (4.192) and let K̂(2) ∈ Hw(R2) denote a given
element of the class K(2). For ε > 0, we introduce K(2)

ε : D → R defined by

K(2)
ε (x) := εK̂(2)(ε−1x).

As in Section 4.4.2.5, making the change of scale backward, as

inf
x∈D

w
(x
ε

)
> 0,
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it follows from K̂(2) ∈ Hw(R2) that K(2)
ε ∈ H1(D). The following estimates are analogous to

Lemma 4.32:

Lemma 4.56. Let Assumptions 1, 3, 7 and 8 hold. Then, it holds

‖∇p̃(2)
ε ‖2L2(D) = O(ε2), (4.193)

‖∇k(2)
ε ‖2L2(D) = O(ε2), (4.194)

‖∇K(2)
ε ‖2L2(D) = O(ε2). (4.195)

Proof. Since we have the same regularity properties as in Section 4.4.2 and since property
(4.32) also holds for the operatorDT (2)

ε by virtue of Remark 4.46, the proof can be conducted
in the exactly same way as the proof of Lemma 4.32.

Similarly to Proposition 4.33, we get the asymptotic behavior of an element of class K(2).

Proposition 4.57. There exists an element K̃(2) of the class K(2) ∈ H(R2) such that

K̃(2)(y) = O(|y|−1) as |y| → ∞. (4.196)

Proof. By adding
∫
ω(ν0I−DT (U

(2)
0 ))∇K(2) ·∇η to both sides and dividing by ν0, transmission

problem (4.192) can be reformulated as∫
R2

∇K(2) · ∇η =
1

ν0

∫
ω
(ν0I −DT (U

(2)
0 ))(P

(2)
0 +∇K(2)) · ∇η,

which can be rewritten as a Laplace equation in R2 with a source supported by ω. Then, the
exactly same steps as in the proof of Proposition 4.33 can be conducted.

Recall the smooth function θ : R2 → R introduced in Section 4.4.1.6 satisfying

θ(x) = 0, x ∈ B(0, ρ), and θ(x) = 1, x ∈ R2 \B(0, R),

and let the function κ(2)
aε : D → R be defined by

κ(2)
aε (x) := θ(x)K(2)

ε (x).

Lemma 4.58. It holds κ(2)
aε ∈ H1(D) and K(2)

ε − κ(2)
aε ∈ H1

0 (D). Moreover,

‖∇κ(2)
aε ‖2L2(D) = o(ε2). (4.197)

Proof. The proof is identical to the proof of Lemma 4.52, exploiting the asymptotic behav-
ior (4.196) of K(2).

Lemma 4.59. Let Assumption 1 hold. Then, it holds

‖∇k(2)
ε −∇K(2)

ε ‖2L2(D) = o(ε2). (4.198)

Proof. For the proof of (4.198), we note that formally, the only difference between (4.80)
and (4.192) is in the sign of the right hand side. The estimate that corresponds to (4.148)
can easily be deduced. Since the function κ

(2)
aε introduced above has the same asymptotic

behavior (4.197) as the function κaε (4.87), and since property (4.32) also holds for the
operator DT (2)

ε by virtue of Remark 4.46, the rest of the proof of (4.198) follows.
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Lemma 4.60. Let Assumptions 1, 3, 7 and 8 be satisfied. Then, it holds

‖∇p̃(2)
ε −∇k(2)

ε ‖2L2(D) = o(ε2). (4.199)

Proof. The proof is analogous to the proof of Lemma 4.36 using regularity assumptions (4.168)
and (4.190). We get the corresponding estimate to (4.152) whose right hand side can be split
into three terms as in (4.153). The second and the third term can be estimated in the same
way as in the proof of Lemma 4.36. For the term that corresponds to the first term on the right
hand side of (4.153), note that the difference DT

(2)
ε (x, U0)−DTε(x,∇u0) vanishes outside ωε.

Therefore, it can be seen that, in Case II, we do not need an estimate of the type (4.89). The
contribution from inside ωε is treated as in Lemma 4.36 by exploiting that ωε ⊂ B(0, αεr) due
to (4.151), and using (4.194) and the estimate corresponding to (4.150).

4.5.6 Topological Asymptotic Expansion

By Assumption 2 on the functional Jε : H1
0 (D)→ R, we have

Jε(u(2)
ε ) = J0(u

(2)
0 ) + 〈G̃, u(2)

ε − u
(2)
0 〉+ δJε

2 +R(ε),

where G̃ ∈ H−1(D), and the remainder R(ε) is of the form (4.8). Again, it follows from
estimate (4.188) that

R(ε) = o(ε2).

Performing the analogous steps as in Section 4.4.3, we get

Jε(u(2)
ε )− J0(u

(2)
0 ) = j

(2)
1 (ε) + j

(2)
2 (ε) + δJε

2 + o(ε2), (4.200)

where the terms j(2)
1 , j(2)

2 are defined as

j
(2)
1 (ε) := −

∫
ωε

(ν0 − ν̂(|∇u(2)
0 |))∇u

(2)
0 · (∇p

(2)
0 +∇p̃(2)

ε ), (4.201)

j
(2)
2 (ε) := S

ε,(2)

∇u(2)0

(x,∇ũ(2)
ε )∇(∇p(2)

0 +∇p̃(2)
ε ). (4.202)

Here, again, the operator Sε,(2)

∇u(2)0

is as defined in (4.166) and represents the nonlinearity of the

problem. Note that it vanishes in the linear case where the nonlinear function ν̂ is replaced
by a constant ν1.

4.5.6.1 Expansion of Linear Term j
(2)
1 (ε)

Following approximation steps 2 and 3 of Sections 4.5.5.3 and 4.5.5.4, respectively, we define

j̃
(2)
1 (ε) := −

∫
ωε

(
ν0 − ν̂(|U (2)

0 |)
)
U

(2)
0 ·

(
P

(2)
0 +∇k(2)

ε

)
, (4.203)

J
(2)
1 := −

(
ν0 − ν̂(|U (2)

0 |)
)∫

ω
U

(2)
0 ·

(
P

(2)
0 +∇K(2)

)
. (4.204)

We get the same relations as in Section 4.4.3.1:
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Lemma 4.61. Let Assumption 1 hold. Then, for all ε ≥ 0 small enough, it holds

j̃
(2)
1 (ε)− ε2J

(2)
1 = o(ε2). (4.205)

Proof. The proof can be conducted in the same way as the proof of Lemma 4.37 using estimate
(4.198).

Lemma 4.62. Let Assumptions 1, 3, 7 and 8 hold. Then, for all ε ≥ 0 small enough, it holds

j
(2)
1 (ε)− j̃(2)

1 (ε) = o(ε2). (4.206)

Proof. The proof can be conducted in the same way as the proof of Lemma 4.38 using the
continuity of ∇u(2)

0 and ∇p(2)
0 at x0 = 0 and estimates (4.199) and (4.194).

As in Section 4.4.3.1, it follows from the linearity of equation (4.192) that the mapping

P
(2)
0 7→

(
ν0 − ν̂(|U (2)

0 |)
)
·
(∫

ω
P

(2)
0 +∇K(2)

)
is a linear mapping from R2 to R2, which only depends on the set ω, and on the positive
definite matrix DT (U

(2)
0 ). Therefore, there exists a matrix

M(2) =M(2)(ω,DT (U
(2)
0 )), (4.207)

such that

−
(
ν0 − ν̂(|U (2)

0 |)
)
·
(∫

ω
P

(2)
0 +∇K(2)

)
=M(2) P

(2)
0 .

The relation between thematrixM(2) and the concept of polarizationmatrices, see, e.g., [11],
will be explained in detail in Section 4.6. Eventually, it follows

J
(2)
1 = (U

(2)
0 )>M(2) P

(2)
0 . (4.208)

An explicit formula for the matrixM(2) =M(2)(ω,DT (U
(2)
0 )) is given in (4.234).

Summing up estimates (4.205) and (4.206), as well as (4.208), we get the following result:

Proposition 4.63. Let Assumptions 1, 3, 7 and 8 hold. Then, there exists a matrixM(2) =

M(2)(ω,DT (U
(2)
0 )) ∈ R2×2 such that

j
(2)
1 (ε) = ε2 (U

(2)
0 )>M(2) P

(2)
0 + o(ε2). (4.209)

We will derive an explicit expression for the matrixM(2) in Section 4.6.4.
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4.5.6.2 Expansion of Nonlinear Term j
(2)
2 (ε)

Recall the term j
(2)
2 (ε) from (4.202),

j
(2)
2 (ε) =

∫
D
S
ε,(2)

∇u(2)0

(x,∇ũ(2)
ε ) · ∇(∇p(2)

0 +∇p̃(2)
ε ).

According to the approximation steps taken for the variations of the direct and adjoint state,
we define

j̃
(2)
2 (ε) :=

∫
D
S
ε,(2)

U
(2)
0

(x,∇h(2)
ε ) · (P (2)

0 +∇k(2)
ε ), (4.210)

J
(2)
2 :=

∫
R2

S̃
(2)

U
(2)
0

(x,∇H(2)) · (P (2)
0 +∇K(2)). (4.211)

Note that, under Assumption 3, both j̃(2)
2 (ε) and J (2)

2 are well-defined due to growth condi-
tion (4.41).

Also here, we get the analogous estimates to Section 4.4.3.2:

Lemma 4.64. Let Assumptions 1, 3 and 7 hold. Then, for ε ≥ 0, it holds

j̃
(2)
2 (ε)− ε2J

(2)
2 = o(ε2). (4.212)

Proof. The proof of (4.212) works in the same way as the proof of (4.105) using (4.182) and
(4.198) rather than (4.67) and (4.88). The only difference is, that in Case II the operators
S
ε,(2)

U
(2)
0

and S̃(2)

U
(2)
0

vanish outside the inclusion ωε and are non-zero inside ωε. The estimation of

the corresponding term is achieved by (4.35) and (4.185):∫
ωε

S
U

(2)
0

(∇h(2)
ε )− S

U
(2)
0

(∇H(2)
ε )

≤ c4

∫
ωε

|∇h(2)
ε −∇H(2)

ε |(|∇H(2)
ε |+ |∇h(2)

ε |)

≤ c4

∫
D
|∇h(2)

ε −∇H(2)
ε |(|∇H(2)

ε |+ |∇h(2)
ε |) = o(ε2).

Lemma 4.65. Let Assumptions 1 and 7 hold. Then, it holds∫
D
|∇p(2)

0 − P
(2)
0 ||∇h

(2)
ε |2 = o(ε2) (4.213)

Proof. The proof is analogous to the proof of (4.106), using estimates (4.175) and (4.183).

Lemma 4.66. Let Assumptions 1, 3, 7 and 8 be satisfied. Then, for ε ≥ 0, it holds

j
(2)
2 (ε)− j̃(2)

2 (ε) = o(ε2). (4.214)
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Proof. The proof is analogous to the proof of Lemma 4.42 using the counterparts (4.186),
(4.175), (4.199), (4.194) of estimates (4.71), (4.52), (4.90), (4.83), respectively. The only
difference lies in the fact that the operators Sε,(2)

U
(2)
0

and S̃
(2)

U
(2)
0

representing the nonlinearity

vanish outside the inclusion ωε and are different from zero inside ωε. The estimation of the
term ∫

ωε

S∇u(2)0

(∇ũ(2)
ε ) · ∇p(2)

0 − SU(2)
0

(∇h(2)
ε ) · P (2)

0

can be done in the same way as in the proof of Lemma 4.42 using properties (4.35), (4.41)
and (4.36) together with the counterparts (4.187), (4.184) and (4.213) of estimates (4.72),
(4.69) and (4.106).

Eventually, summing estimates (4.212) and (4.214) yields the following result:

Proposition 4.67. Let Assumptions 1, 3, 7 and 8 be satisfied. Then

j
(2)
2 (ε) = ε2

(∫
R2

S̃
(2)

U
(2)
0

(x,∇H(2)) · (P (2)
0 +∇K(2))

)
+ o(ε2). (4.215)

4.5.6.3 Main Result in Case II

Finally, combining (4.200) with (4.209) and (4.215), we get the main result of this section,
i.e., the topological derivative for the introduction of nonlinear (ferromagnetic) material in-
side a region of linear material (air) according to the definition (4.2). We recall the notation
used in the statement of Theorem (4.68):

• x0 ∈ Ωd denotes the point around which we perturb the material coe�cient,

• u
(2)
0 ∈ H1

0 (D) is the unperturbed direct state, i.e., the solution to (4.164), and U (2)
0 =

∇u(2)
0 (x0),

• p
(2)
0 ∈ H1

0 (D) is the unperturbed adjoint state, i.e., the solution to (4.189), and P (2)
0 =

∇p(2)
0 (x0),

• M(2) = M(2)(ω,DT (U
(2)
0 )) denotes the matrix defined in (4.234) where ω represents

the shape of the inclusion and DT is the Jacobian of T defined in (2.24),

• H(2) ∈ H(R2) denotes the variation of the direct state at scale 1, i.e., the solution
to (4.172),

• K(2) ∈ H(R2) denotes the variation of the adjoint state at scale 1, i.e., the solution
to (4.192),

• S̃(2) is defined in (4.171),

• δJ is according to (4.7).

Theorem 4.68. Assume that

- ω = B(0, 1) the unit disk in R2
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- the ferromagnetic material is such that Assumptions 1 and 3 are satisfied,

- the functional Jε satisfies Assumption 2,

- the unperturbed direct state u(2)
0 satisfies Assumption 7, i.e., u(2)

0 ∈ C1,β for some β > 0,

- the unperturbed direct state p(2)
0 satisfies Assumption 8, i.e., p(2)

0 ∈ C1,β̃ for some β̃ > 0.

Then the topological derivative for introducing air inside ferromagnetic material reads

Gair→f (x0) =(U
(2)
0 )>M(2) P

(2)
0

+

∫
R2

S̃
(2)

U
(2)
0

(x,∇H(2)) · (P (2)
0 +∇K(2)) + δJ .

(4.216)

4.6 Polarization Matrices

In this section we present a way to compute explicitly the matricesM andM(2) introduced
in (4.100) and (4.207), respectively. This approach is based on the notion of Pólya-Szegö
polarization tensors which were introduced in the context of potential theory in connection
with problems from hydrodynamics and electrostatics [185]. These matrices contain first
order information about the perturbation of a field due to a small inclusion of a material
with a conductivity that is different from the background conductivity. Later, the concept was
extended to include also higher order information by introducing the so-called generalized
polarization tensors (GPTs). Furthermore, also (generalized) anisotropic polarization tensors
(APTs) were introduced in order to deal with the case where the conductivities of both the
inclusion and the background medium are anisotropic. The GPTs of higher order can be used
to more accurately reconstruct the shape and the conductivity of an inclusion in a background
medium which is of great importance in many applications of electrical impedance imaging
such as the detection of tumors in medical applications or of impurities in the material in
applications from material science. For a thorough introduction to the notion of (generalized)
polarization tensors, we refer the reader to [11] and the references therein.

The rest of this section is organized as follows: In Section 4.6.1 we give the definition and
results for the anisotropic polarization tensors as presented in Chapter 4.12 of [11]. In order
to apply the provided formulas we need to make a change of variables which is performed
in Section 4.6.2. In Section 4.6.3, the term J1 introduced in (4.97) for Case I is rewritten by
means of a polarization matrix. Finally, in Section 4.6.4 the same is done for the term J

(2)
1

introduced in (4.204) for Case II.

4.6.1 Preliminaries

In this section, we assume that ω is the unit ball, ω = B(0, 1), and we denote the conductivities
in ω and in R2 \ω by Ã and A, respectively. Both Ã and A are constant 2×2 positive definite,
symmetric matrices and we assume that the matrix Ã−A is either positive definite or negative
definite.
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From the definition of APTs given in [11] it follows that for any pair of multi-indices p, q ∈ N2,
the corresponding entry of the anisotropic polarization tensor is given by

Ppq =

∫
∂ω

(n · (Ã−A)∇xq) θp(A, Ã;ω)|−dσ,

where n denotes the outer unit normal vector to ∂ω and, given a function v that is discontin-
uous across the interface ∂ω, v|− denotes the limit coming from inside ω. For a multi-index
p ∈ N2 we use the notation xp := xp11 x

p2
2 , and θp(A, Ã;ω) is the solution to the transmission

problem 

∇ · (A∇θp) = 0 in R2 \ ω,
∇ · (Ã∇θp) = 0 in ω,

θp|− − θp|+ = xp on ∂ω,

n · Ã∇θp|− − n ·A∇θp|+ = n ·A∇xp on ∂ω,

θp −
1

2π
√
det(A)

ln‖A−1/2x‖
∫
∂ω
θp(y)dσ(y)→ 0 as |x| → ∞.

(4.217)

We are only interested in the first order polarization tensors and therefore consider only
multi-indices p, q with |p| = |q| = 1, i.e., p = ei and q = ej for i, j ∈ {1, 2}, where (e1, e2)
is the standard basis of R2. For p = ei and q = ej with i, j ∈ {1, 2}, we use the notation θi
instead of θp and denote the corresponding entry by Pij . Integration by parts yields that

Pij =

∫
ω
(Ã−A)ej · ∇θi(A, Ã;ω), (4.218)

and we define the first order APT

P(A, Ã;ω) := (Pij)i,j=1,2. (4.219)

For the case where A = I and ω is an ellipse which is aligned with the coordinate system, an
explicit formula for the polarization matrix is available:

Proposition 4.69 ([11], Proposition 4.31). If ω is an ellipse whose semi-axes are aligned with
the x1- and x2-axes and of length a and b, respectively, then the first-order APT, P(I, Ã;ω), takes
the form

P(I, Ã;ω) = |ω|
(
I + (Ã− I)(

1

2
I − C)

)−1

(Ã− I),

with the matrix

C =
a− b

2(a+ b)

(
1 0
0 −1

)
. (4.220)

In particular, if ω is a disk, then

P(I, Ã;ω) = 2|ω|(Ã+ I)−1(Ã− I). (4.221)

Furthermore, we will use the following relation:

Lemma 4.70 ([11], Lemma 4.30). For any unitary transformation R, the following holds:

P(A, Ã;ω) = RP(R>AR,R>ÃR;R−1ω)R>.



4.6. POLARIZATION MATRICES 119

4.6.2 Change of Variables

In order to apply Proposition 4.69 to the case of an anisotropic background conductivity A,
we need to perform a change of variables such that the background conductivity A becomes
the identity. We can show following relation:

Lemma 4.71. Let ω be bounded with smooth boundary,A, Ã ∈ R2×2 positive definite, symmetric
and such that Ã − A is either positive definite or negative definite. Let the polarization matrix
P(A, Ã;ω) be defined by (4.219), (4.218) and (4.217). Then it holds

P(A, Ã;ω) = det(A1/2) (A1/2)> P(I, A−1/2ÃA−1/2;A−1/2ω)A1/2. (4.222)

Proof. We perform a change of variables using weak formulations. To consider transmission
problem (4.217) in weak form, we rewrite θi(A, Ã;ω) as

θi(A, Ã;ω) = K(A, Ã;ω; ei) + χω(ei · x),

where K(A, Ã;ω; ei) is the solution to the transmission problem

Find K ∈ H(R2) such that∫
R2\ω

A∇K · ∇η +

∫
ω
Ã∇K · ∇η = −

∫
ω
(Ã−A) ei · ∇η ∀η ∈ H(R2). (4.223)

Note that K(A, Ã;ω; ei) is linear in the last argument ei. Then, for P0 = (p1, p2)>, let

θ(A, Ã;ω;P0) :=
2∑
i=1

pi θi(A, Ã;ω) = K(A, Ã;ω;P0) + χω(P0 · x), (4.224)

and note that θ(A, Ã;ω;P0) is linear with respect to P0. For U0, P0 ∈ R2, we then have

U>0 P(A, Ã;ω)P0 =

∫
ω
(Ã−A)U0 · ∇xθ(A, Ã;ω;P0)(x).

We make the following coordinate transformation: Let

x = ϕ(y) = A1/2y, with ∇ϕ = A1/2, det(∇ϕ) = det(A1/2), (4.225)

then for any function f it holds

∇xf(ϕ(y)) = (∇ϕ)−>∇y(f ◦ ϕ)(y) = (A−1/2)>∇y(f ◦ ϕ)(y).

After a change of variables, transmission problem (4.223) becomes

Find K ∈ H(R2) such that∫
R2\ω̃

∇K · ∇η +

∫
ω̃
A−1/2ÃA−1/2∇K · ∇η

= −
∫
ω̃
(A−1/2ÃA−1/2 − I) (A1/2ei) · ∇η ∀η ∈ H(R2),

(4.226)
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where ω̃ = A−1/2ω. Let Ũ0 = A1/2U0 and P̃0 = A1/2P0. ForK(A, Ã;ω;P0) being the solution
to (4.223) with ei replaced by P0, we see that

(K(A, Ã;ω;P0) ◦ ϕ)(y) = K(I, A−1/2ÃA−1/2; ω̃; P̃0)(y),

and thus

(θ(A, Ã;ω;P0) ◦ ϕ)(y) = K(A, Ã;ω;P0)(ϕ(y)) + χω(ϕ(y))(P0 · ϕ(y))

= K(I, A−1/2ÃA−1/2; ω̃; P̃0)(y) + χω̃(y)(P̃0 · y)

= θ(I, A−1/2ÃA−1/2; ω̃; P̃0)(y). (4.227)

Performing a change of coordinates, we obtain by (4.227),

U>0 P(A, Ã;ω)P0 =

∫
ω

[
(Ã−A)U0

]
· ∇xθ(A, Ã;ω;P0)(x)dx

=

∫
ω̃

[
(Ã−A)A−1/2Ũ0

]
· (A−1/2)>∇yθ(A, Ã;ω;P0)(ϕ(y))det(A1/2)dy

= det(A1/2)

∫
ω̃

[
(A−1/2ÃA−1/2 − I) Ũ0

]
· ∇yθ(A, Ã;ω;P0)(ϕ(y))dy

= det(A1/2)

∫
ω̃

[
(A−1/2ÃA−1/2 − I) Ũ0

]
· ∇yθ(I, A−1/2ÃA−1/2; ω̃; P̃0)(y)dy

= det(A1/2)
2∑

i,j=1

ũj p̃i

∫
ω̃

[
(A−1/2ÃA−1/2 − I) ej

]
· ∇yθ(I, A−1/2ÃA−1/2; ω̃; ei)(y)dy

= det(A1/2)

2∑
i,j=1

ũj p̃i Pij(I, A−1/2ÃA−1/2; ω̃)

= det(A1/2)Ũ>0 P(I, A−1/2ÃA−1/2; ω̃) P̃0

= det(A1/2)U>0 (A1/2)> P(I, A−1/2ÃA−1/2; ω̃)A1/2P0,

where Ũ0 = (ũ1, ũ2) and P̃0 = (p̃1, p̃2). Thus, we have

P(A, Ã;ω) = det(A1/2) (A1/2)> P(I, A−1/2ÃA−1/2;A−1/2ω)A1/2.

4.6.3 Case I

Let us now compute the explicit formula of the matrix P(A, Ã;ω) for Case I studied in Sec-
tion 4.4. In this case, the conductivities outside and inside the inclusion ω read

DT (U0) = R

(
λ2 0
0 λ1

)
R> and ν0I =

(
ν0 0
0 ν0

)
,

respectively, where λ1 = ν̂(|U0|), λ2 = ν̂(|U0|)+ν̂ ′(|U0|)|U0| andR denotes the rotationmatrix
around the angle between U0 and the x-axis such that

U0 = R

(
|U0|

0

)
,

see also (2.28)–(2.29).
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4.6.3.1 Polarization Matrix

The explicit expression for the anisotropic first order polarization tensor P(A, Ã;ω) can now
be calculated using Lemma 4.71 and Proposition 4.69.

Proposition 4.72. Let ω = B(0, 1) the unit disk in R2, and let Assumption 1 hold. Then, we get

P(DT (U0), ν0I;ω) = |ω|R

 (λ2+
√
λ1λ2)(ν0−λ2)

ν0+
√
λ1λ2

0

0
(λ1+

√
λ1λ2)(ν0−λ1)

ν0+
√
λ1λ2

 R>.

Proof. We apply Lemma 4.71 and Proposition 4.69 with the conductivity matrices outside
and inside the inclusion ω given by DT (U0) and ν0 I,

A = DT (U0) = RAdR
> and Ã = ν0I = Ãd,

respectively, where we introduced the diagonal matrices

Ad :=

(
λ2 0
0 λ1

)
and Ãd :=

(
ν0 0
0 ν0

)
. (4.228)

1. In a first step, we compute the matrix P(Ad, Ãd;ω) with the matrices Ad, Ãd defined
in (4.228). Due to (2.19) which follows from Assumption 1, it holds λ1 > 0, λ2 > 0,
ν0−λ1 > 0 and ν0−λ2 > 0, and, therefore, Ad and Ãd−Ad are positive definite. Thus,
Lemma 4.71 yields that

P(Ad, Ãd;ω) = det(A1/2
d ) (A

1/2
d )> P(I, A

−1/2
d ÃdA

−1/2
d ;A

−1/2
d ω)A

1/2
d . (4.229)

The transformed domain A−1/2
d ω is an ellipse whose axes are aligned with the x1- and

x2-axes. Thus, Proposition 4.69 yields

P(I, A
−1/2
d ÃdA

−1/2
d ;A

−1/2
d ω)

=|A−1/2
d ω|

(
I + (A

−1/2
d ÃdA

−1/2
d − I)(

1

2
I − C)

)−1

(A
−1/2
d ÃdA

−1/2
d − I).

The axes of the ellipse A−1/2
d ω have lengths 1/

√
λ2 and 1/

√
λ1. Thus, we obtain for the

matrix C in (4.220),

C =

1√
λ2
− 1√

λ1

2( 1√
λ2

+ 1√
λ1

)

(
1 0
0 −1

)
=

√
λ1 −

√
λ2

2(
√
λ1 +

√
λ2)

(
1 0
0 −1

)
.

Noting that

A
−1/2
d ÃdA

−1/2
d − I =

(
ν0−λ2
λ2

0

0 ν0−λ1
λ1

)
,

as well as(
I + (A

−1/2
d ÃdA

−1/2
d − I)(

1

2
I − C)

)−1

=

(
λ2+
√
λ1λ2

ν0+
√
λ1λ2

0

0 λ1+
√
λ1λ2

ν0+
√
λ1λ2

)
,
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we get that

P(I, A
−1/2
d ÃdA

−1/2
d ;A

−1/2
d ω) = |A−1/2

d ω|

(
λ2+
√
λ1λ2

ν0+
√
λ1λ2

ν0−λ2
λ2

0

0 λ1+
√
λ1λ2

ν0+
√
λ1λ2

ν0−λ1
λ1

)
.

(4.230)

Thus, it follows from (4.229) that

P(Ad, Ãd;ω) = |ω|

 (λ2+
√
λ1λ2)(ν0−λ2)

ν0+
√
λ1λ2

0

0
(λ1+

√
λ1λ2)(ν0−λ1)

ν0+
√
λ1λ2

 . (4.231)

2. Next, we consider the general case where U0 = R(|U0|, 0)> with a rotation matrix R.
Then we have

A = RAdR
> and Ã = R ÃdR

>,

with the matrices Ad, Ãd defined in (4.228). Note that

A−1/2 = RA
−1/2
d R>,

and

A−1/2ÃA−1/2 = RA
−1/2
d ÃdA

−1/2
d R> = R

( ν0
λ2

0

0 ν0
λ1

)
R>.

Thus, we have

P(I, A−1/2ÃA−1/2;A−1/2ω) = P(I,R

( ν0
λ2

0

0 ν0
λ1

)
R>;RA

−1/2
d R>ω),

and Lemma 4.70 yields

P(I,R

( ν0
λ2

0

0 ν0
λ1

)
R>;RA

−1/2
d R>ω) = RP(I,

( ν0
λ2

0

0 ν0
λ1

)
;A
−1/2
d R>ω)R>,

where P(I,

( ν0
λ2

0

0 ν0
λ1

)
;A
−1/2
d R>ω) is as in (4.230). Since ω is a ball, the rotation

matrix R> leaves it unchanged, i.e., R>ω = ω. Thus, we have by (4.222)

P(A, Ã;ω) = det(A1/2)|A−1/2ω|A1/2RP(I,

( ν0
λ2

0

0 ν0
λ1

)
;A
−1/2
d R>ω)R>A1/2

= det(A1/2)|A−1/2ω|RA1/2
d P(I,

( ν0
λ2

0

0 ν0
λ1

)
;A
−1/2
d ω)A

1/2
d R>

= RP(Ad, Ãd;ω)R>, (4.232)

with P(Ad, Ãd;ω) as given in (4.231), which completes the proof.
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Remark 4.73. Similar results can be obtained if ω is an ellipse. If the semi-axes of ω are aligned
with the coordinate system (U0/|U0|, U⊥0 /|U⊥0 |), then A

−1/2
d R>ω is an ellipse whose axes are

aligned with the axes of the coordinate system (e1, e2) and we can apply Proposition 4.69 to

obtain an explicit expression for P(I,

( ν0
λ2

0

0 ν0
λ1

)
;A
−1/2
d R>ω) in the last step of the calculation

above. Otherwise it is possible to rotate the coordinate system by another application of Lemma
4.70 and then apply Proposition 4.69.

4.6.3.2 MatrixM in the Topological Derivative

Now recall the term J1 = J1(U0, P0) arising from the topological asymptotic expansion of a
functional J , see Section 4.4.3.1. Let A = DT (U0) and Ã = ν0I. The definition of J1 (4.97)
together with (4.224) and (4.218) yield

J1(U0, P0) = (ν0 − λ1)U0 ·
∫
ω
P0 +∇K

= (ν0 − λ1)(Ã−A)−1U0 ·
∫
ω
(Ã−A)(∇θ(A, Ã;ω;P0))

= (ν0 − λ1)U>0 (Ã−A)−> P(A, Ã;ω)P0,

where P(A, Ã;ω) is given in (4.232). Thus, we finally get (4.101) , i.e.,

J1(U0, P0) = U>0 MP0,

with the matrix

M = (ν0 − λ1)(Ã−A)−>P(A, Ã;ω)

= (ν0 − λ1)|ω|R

(
λ2+
√
λ1λ2

ν0+
√
λ1λ2

0

0 λ1+
√
λ1λ2

ν0+
√
λ1λ2

)
R>. (4.233)

Note that, in the linear case where λ2 = λ1 > 0, it holds (ν0 − λ1)(Ã − A)−1 = I, and we
obtain

M = P(A, Ã;ω) = 2 |ω|λ1
ν0 − λ1

ν0 + λ1
I,

which coincides with the well-known formula derived in, e.g., [14]. Thus, here, unlike in the
nonlinear case, the matrix appearing in the topological derivative is actually the polarization
matrix according to [11].

Remark 4.74. Finally, we remark that the explicit form of the matrix M satisfying relation
(4.101) can also be obtained directly without exploiting Proposition 4.69 in the following way:
Starting out from the transmission problem defining K after the coordinate transformation
(4.225), i.e., (4.226), we can compute the solution K explicitly by a special ansatz similarly
to [11, Proposition 4.6]. Noting that, by the coordinate transformation (4.225), the circu-
lar inclusion ω becomes an ellipse ω̃, we make the ansatz in elliptic coordinates. For that
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purpose, let R̃ ∈ R and (r, ϕ) ∈ R+
0 × [0, 2π] be such that x1(r, ϕ) = R̃ cosϕcosh r and

x2(r, ϕ) = R̃ sinϕsinh r. For i = 1, 2 we make the ansatz

Ke1(r, ϕ) =

{
a1R̃ cosϕ cosh r in ω̃,
b1e−rcosϕ in R2 \ ω̃,

Ke2(r, ϕ) =

{
a2R̃ sinϕ sinh r in ω̃,
b2e−rsinϕ in R2 \ ω̃,

for problem (4.226) involving the unit vector ei, and choose the constants ai, bi such that Kei

is continuous and satisfies the correct interface jump condition on ∂ω̃ which are incorporated in
the variational formulation (4.226) for i = 1, 2. For a given P0 ∈ R2, the solution K to (4.80)
is then obtained as a linear combination ofKe1 andKe2 . Plugging in this explicit solution K into
(4.101), the matrixM can be identified.

4.6.4 Case II

We perform the same steps for Case II where the conductivities outside and inside the inclu-
sion ω read

ν0I =

(
ν0 0
0 ν0

)
and DT (U

(2)
0 ) = R

(
λ2 0
0 λ1

)
R>,

respectively, where, again, λ1 = ν̂(|U (2)
0 |), λ2 = ν̂(|U (2)

0 |)+ ν̂ ′(|U (2)
0 |)|U

(2)
0 |, and R denotes the

rotation matrix around the angle between U (2)
0 and the x-axis such that

U
(2)
0 = R

(
|U (2)

0 |
0

)
,

see (2.28)–(2.29).

4.6.4.1 Polarization Matrix

Proposition 4.75. Let ω = B(0, 1) the unit disk in R2, and let Assumption 1 hold. Then, we
have

P(ν0I,DT (U
(2)
0 );ω) = 2|ω|ν0R

(
λ2−ν0
λ2+ν0

0

0 λ1−ν0
λ1+ν0

)
R>.

Proof. Let A = ν0I and Ã = DT (U
(2)
0 ). Due to (2.19) which follows from Assumption 1, we

get that Ã is positive definite and Ã−A is negative definite. Applying Lemma 4.71 yields

P(A, Ã;ω) = det(A1/2) (A1/2)> P(I, A−1/2ÃA−1/2;A−1/2ω)A1/2.

Note that, since A is a scaled identity matrix, A−1/2ω = (1/
√
ν0)ω remains a disk and we get

from (4.221)

P(I, A−1/2ÃA−1/2;A−1/2ω) = 2|A−1/2ω|(A−1/2ÃA−1/2 + I)−1(A−1/2ÃA−1/2 − I)

= 2|A−1/2ω|R
( ν0

λ2+ν0
0

0 ν0
λ1+ν0

)( λ2−ν0
ν0

0

0 λ1−ν0
ν0

)
R>

= 2|A−1/2ω|R

(
λ2−ν0
λ2+ν0

0

0 λ1−ν0
λ1+ν0

)
R>.
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Therefore, we get

P(A, Ã;ω) = det(A1/2)2|A−1/2ω|R(A1/2)>

(
λ2−ν0
λ2+ν0

0

0 λ1−ν0
λ1+ν0

)
A1/2R>

= 2|ω|ν0R

(
λ2−ν0
λ2+ν0

0

0 λ1−ν0
λ1+ν0

)
R>.

4.6.4.2 MatrixM(2) in the Topological Derivative

Let A = ν0I and Ã = DT (U
(2)
0 ). Just like in Case I in Section 4.6.3.2, we have to pre-multiply

the derived polarization matrix P(A, Ã;ω) by the scalar contrast of the direct problem, λ1 −
ν0, and the transpose of the inverse of the matrix-valued contrast of the adjoint problem,
(Ã−A)−>. This way, we get the explicit form of the matrixM(2) in (4.208), i.e., we get

J
(2)
1 = (U

(2)
0 )>M(2) P

(2)
0 ,

with the matrix

M(2) = (λ1 − ν0)(Ã−A)−>P(A, Ã;ω) = 2|ω|ν0R

(
λ1−ν0
λ2+ν0

0

0 λ1−ν0
λ1+ν0

)
R>. (4.234)

Again, in the linear case, where λ2 = λ1 > 0, this gives the well-known formula

M(2) = 2π ν0
λ1 − ν0

λ1 + ν0
I,

see e.g. [14].

Remark 4.76. Similarly to Remark 4.74, also here we can compute the solution to transmission
problem (4.172) explicitly by making a special ansatz. Unlike in Case I, here the conductivity
matrix outside the inclusion is a scaled identity matrix, A = ν0I, and the circular inclusion ω
does not become an ellipse. Therefore, the solution can be obtained by the following ansatz in
polar coordinates:

K(2)
e1 (r, ϕ) =

{
a1 r cosϕ in ω,
b1 e−rcosϕ in R2 \ ω,

K(2)
e2 (r, ϕ) =

{
a2 r sinϕ in ω,
b2 e−rsinϕ in R2 \ ω.

Again, the constants ai, bi must be chosen such that the interface conditions are satisfied, and
the matrixM(2) can be identified from (4.208) after plugging in the explicit form of K.

4.7 Computational Aspects

In order to make use of formulas (4.108) and (4.216) in applications of shape and topology
optimization, an e�cient method to evaluate these formulas for every point x0 in the design
region of the computational domain is of utter importance. For the rest of this section, we
restrict our presentation to Case I, noting that analogous results hold true for Case II.
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In particular, the evaluation of the second term J2 in (4.108) seems to be computationally
very costly, as it involves the solutions H and K to the transmission problems (4.49) and
(4.80), respectively. Both of these problems are defined on the unbounded domain R2 and
depend on U0 = ∇u0(x0), i.e., the gradient of the unperturbed direct state u0 evaluated at
the point of interest x0. In addition, problem (4.80) also depends on P0 = ∇p0(x0), i.e., the
gradient of the unperturbed adjoint state p0 at point x0. Recall the second term J2 defined in
(4.104),

J2 = J2(x0) = J2(U0, P0) =

∫
R2

S̃U0(x,∇H(U0)) · (P0 +∇K(U0, P0)), (4.235)

where S̃ is defined in (4.48), H = H(U0) is the solution to problem (4.49),

Find H ∈ H(R2) such that∫
R2

(
T̃ (x, U0 +∇H)− T̃ (x, U0)

)
· ∇η = −

∫
ω

(ν0 − ν̂(|U0|))U0 · ∇η ∀η ∈ H(R2),

and K = K(U0, P0) the solution to (4.80),

Find K ∈ H(R2)such that∫
R2

DT̃ (x, U0)∇K · ∇η = −
∫
ω
(ν0 I −DT (U0))P0 · ∇η ∀η ∈ H(R2).

At the first glance, this means that, for each point x0 ∈ Ωd where one wants to evaluate the
term J2, one has to solve problems (4.49) and (4.80) in order to get the value for J2. Topology
optimization algorithms which are based on topological sensitivities usually require the values
of these sensitivities at all points of the design domain Ωd simultaneously, see Algorithm 1
on page 36 and, later, Algorithm 2 on page 133, which would, of course, result in extremely
ine�cient optimization algorithms.

Luckily, the enormous computational effort of having to solve the nonlinear problem (4.49)
forH and the linear problem (4.80) for a point x0 in order to evaluate J2 at x0 can be reduced
with the help of the following observations.

Lemma 4.77. Let U0, P0 ∈ R2, R ∈ R2×2 an orthogonal matrix. Let H(U0) ∈ H(R2) be the
solution to (4.49) and K(U0, P0) the solution to (4.80), and note that both these problems de-
pend on U0, P0. Let further J2 = J2(U0, P0) be defined by (4.235). Then the following properties
hold:

1. J2 is linear in the second argument, i.e., for all a, b ∈ R and U0, P1, P2 ∈ R2,

J2(U0, a P1 + bP2) = a J2(U0, P1) + b J2(U0, P2). (4.236)

2. Let y = Rx. For the solution H = H(U0) to (4.49), we have

R>∇yH(U0)(y) = ∇H(R> U0)(x). (4.237)

3. Let y = Rx. For the solution K = K(U0, P0) to (4.80), we have

R>∇yK(U0, P0)(y) = ∇K(R>U0, R
> P0)(x). (4.238)
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4. It holds

J2(R>U0, R
>P0) = J2(U0, P0). (4.239)

Proof. 1. It can easily be seen from (4.80) that K depends linearly on P0.

2. For x ∈ R2, let H(U0)(Rx) the solution to problem (4.49) after a coordinate transfor-
mation. Define H̃(U0)(x) := H(U0)(y(x)), x ∈ R2, with y(x) = Rx. Then we have

∇yH(U0)(y) = R−>∇xH̃(U0)(x) = R∇xH̃(U0)(x),

since R is orthogonal. Similarly, for a test function η and x ∈ R2, we define η̃(x) :=
η(y(x)) and get

∇yη(y) = R∇xη̃(x).

The left hand side of transmission problem (4.49) then becomes∫
R2

(
T̃ (y, U0 +∇yH(y))− T̃ (y, U0)

)
· ∇yη(y)dy

=

∫
R2\ω

(ν̂(|U0 +∇yH(y)|)(U0 +∇yH(y))− ν̂(|U0|)U0) · ∇yη(y)dy

+

∫
ω
ν0∇yH(y) · ∇yη(y)dy

=

∫
R2\ω

(
ν̂(|U0 +R∇xH̃(x)|)(U0 +R∇xH̃(x))− ν̂(|U0|)U0

)
· (R∇xη̃(x))dx

+

∫
ω
ν0(R∇xH̃(x)) · (R∇xη̃(x))dx

=

∫
R2\ω

(
ν̂(|R>U0 +∇xH̃(x)|)(R>U0 +∇xH̃(x))− ν̂(|U0|)R>U0

)
· ∇xη̃(x)dx

+

∫
ω
ν0∇xH̃(x) · ∇xη̃(x)dx (4.240)

where we used that Rω = ω, R>R = I with I the identity matrix in R2, that |detR| = 1
and that

|U0 +R∇xH̃(x)| = |R(R>U0 +∇xH̃(x))| = |R>U0 +∇xH̃(x)| ∀x ∈ R2,

since R is orthogonal. Similarly, we get for the right hand side of (4.49),

−
∫
ω

(ν0 − ν̂(|U0|))U0·∇yη(y)dy = −
∫
ω

(ν0 − ν̂(|U0|))U0 · (R∇xη̃(x))dx

= −
∫
ω

(
ν0 − ν̂(|R>U0|)

)
R>U0 · ∇xη̃(x)dx. (4.241)

On the other hand, considering the transmission problem obtained by replacing U0 in
(4.49) by R>U0 and denote its solution by H(R>U0), we note that the left and right
hand side are equal to (4.240) and (4.241), respectively. Thus, it follows from the
uniqueness of a solution in H(R2) to (4.49) (where U0 is replaced by R>U0) stated in
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Proposition 4.17, that the solution of the original problem after a coordinate transfor-
mation y = Rx equals the solution to the problem in the original coordinates with the
vector U0 rotated by application of R> in H(R2), i.e.,

H(U0)(Rx) = H(R>U0)(x) + c (4.242)

for some constant c ∈ R, for all x ∈ R2. From (4.242), it follows that

∇x
(
H(R>U0)(x)

)
= ∇x (H(U0)(Rx)) = R>∇yH(U0)(y),

which finishes the proof of statement 2.

3. Statement 3 is shown in an analogous way by comparing the left and right hand side
of transmission problem (4.80) first after the coordinate transformation y = Rx and
second after replacing U0 and P0 by R>U0 and R>P0, respectively. Note that

DT̃ (x,R>U0) = R>DT̃ (x, U0)R and

DT (R>U0) = R>DT (U0)R.

4. Note that, for V,W ∈ R2, T defined in (2.24) and S defined in (4.24), we have

T (R>W ) = R>T (W ),

DT (R>W ) = R>DT (W )R,

SR>V (R>W ) = R>SV (W ).

Then, it follows by (4.237) and (4.238) and the fact that |detR| = 1 that

J2(R>U0, R
>P0)

=

∫
R2\ω

SR>U0
(∇xH(R>U0)(x)) ·

(
R>P0 +∇xK(R>U0, R

>P0)(x)
)
dx

=

∫
R2\ω

SR>U0
(R>∇yH(U0)(y)) ·

(
R>P0 +R>∇yK(U0, P0)(y)

)
dy

=

∫
R2\ω

R>SU0(∇yH(U0)(y)) ·R>(P0 +∇yK(U0, P0)(y))dy

=

∫
R2\ω

SU0(∇yH(U0)(y)) · (P0 +∇yK(U0, P0)(y))dy

=J2(U0, P0),

which completes the proof of part 4 of Lemma 4.77.

By means of properties 1 and 4 of Lemma 4.77, it is possible to e�ciently evaluate J2 by first
precomputing values in an o�ine stage and then looking them up and interpolating between
them during the optimization procedure. Let t := |U0|, s := |P0|, ei the unit vector in xi-
direction for i = 1, 2, and θ and ϕ the angles between U0 and e1 and between P0 and e1,
respectively, i.e.,

U0 = tRθe1 and P0 = sRϕe1,
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where Rα denotes the counter-clockwise rotation matrix around an angle α, i.e.,

Rα =

(
cosα −sinα
sinα cosα

)
.

Then, by (4.239) and (4.236), we have

J2(U0, P0) = J2(tRθe1, sRϕe1)

= J2(t e1, sRϕ−θe1)

= J2(t e1, s cos(ϕ− θ)e1 + s sin(ϕ− θ)e2)

= s cos(ϕ− θ)J2(t e1, e1) + s sin(ϕ− θ)J2(t e1, e2). (4.243)

Thus, by precomputing the values of J2(t e1, ei) for i = 1, 2 for a range of typical values of
t = |U0| = |∇u(x0)| = |B(x0)| where B denotes the magnetic flux density, the values of the
term J2 can be e�ciently approximated for any U0 and P0 by interpolation, without the need
to solve a nonlinear problem for every evaluation.

4.7.1 Numerical Experiments

For givenU0, P0 ∈ R2, we compute approximate solutionsHh andKh to the elements H̃(U0) ∈
H(U0) and K̃(U0, P0) ∈ K(U0, P0) which satisfy the asymptotic behaviors (4.63) and (4.85),
respectively, by the finite element method. We approximate problems (4.49) and (4.80),
which are defined on the plane R2, by restricting the domains of integration to a circular
domain of radius 1000 which is centered at the origin. The inclusion ω is the unit disk, ω =
B(0, 1). We use homogeneous Dirichlet boundary conditions for both problems. This approx-
imation is justified by the asymptotic behavior of the solutionsH andK derived in (4.63) and
(4.85), respectively. We use piecewise linear finite elements on a triangular mesh. Figure 4.4
shows the obtained solutions for Hh ≈ H(U0), and Figure 4.5 shows Kh,10 ≈ K(U0, (1, 0)>)
and Kh,01 ≈ K(U0, (0, 1)>) with U0 = (0.1, 0)>. Note that, for P0 = (p1, p2)>, an approxima-
tion to K(U0P0) is given by the linear combination p1Kh,10 + p2Kh,01. We remark that there
is no visual difference for U0 = (|U0|, 0)> with higher values for |U0|.
Next, we compute and compare the terms J1 and J2 appearing in the topological derivative
(4.108). The quantities J1 and J2 depend on U0 = tRθe1 and P0 = sRϕe1 and thus have,
in two space dimensions, four degrees of freedom. Both J1 and J2 are linear in the second
argument P0, thus we can neglect s = |P0|, as a scaling of P0 will result in the same scaling
of J1 and J2. Furthermore, in terms of the angles θ, ϕ, both J1 and J2 only depend on the
difference ϕ − θ. For J2 this follows from (4.243) and for J1, this can be seen from (4.101)
and (4.233). Thus, we can visualize J1 and J2 in dependence of two degrees of freedom,
|U0| and ϕ− θ. Figures 4.6–4.9 show J1 and J2 in Case I and Case II in dependence on these
two degrees of freedom. Note that the difference in the order of magnitude of J1 compared
to J2 suggests that, in the case of electrical machines, the second term J2 accounting for the
nonlinearity of the function ν̂ is of little importance compared the first term J1.

4.8 Application to Model Problem

In this section, we employ the topological derivative derived in (4.108) and (4.216) for the
model design optimization problem introduced in (2.17). We apply the level set algorithm
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Figure 4.4: Hh for U0 = (0.1, 0)> in Case I.

Figure 4.5: Left: Zoom of Kh,10 for U0 = (0.1, 0)> in Case I. Right: Zoom of Kh,01 for U0 =
(0.1, 0)> in Case I.

Figure 4.6: J1(U0, P0) in Case I.
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Figure 4.7: J2(U0, P0) in Case I. Note the difference in the order of magnitude compared to
J1(U0, P0) in Figure 4.6.

Figure 4.8: J (2)
1 (U0, P0) in Case II.
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Figure 4.9: J (2)
2 (U0, P0) in Case II. Note the difference in the order of magnitude compared

to J (2)
1 (U0, P0) in Figure 4.8.

introduced in [19], which is based on the topological derivative. This is in contrast to the
level set method for shape optimization introduced in [165,166] where the evolution of the
interface is usually guided by shape sensitivity information and generally lacks a nucleation
mechanism [60]. We give a short overview of the algorithm and refer to the references [16,19]
for a more detailed description as well as a convergence proof.

Recall the notation of Section 2.3. In particular, recall that the variable set Ωf was defined as
that subset ofD which is currently occupied with ferromagnetic material. The current design
is represented by means of a level set function ψ : D → R which is positive in the ferromag-
netic subdomain and negative in the air subdomain. The zero level set of ψ represents the
interface between the two subdomains. Thus, we have

ψ(x) > 0⇔ x ∈ Ωf , ψ(x) < 0⇔ x ∈ D \ Ωf , ψ(x) = 0⇔ x ∈ ∂Ωf . (4.244)

The evolution of this level set function is guided by the generalized topological derivative,
which, for a given design represented by ψ, is defined in the following way:

G̃ψ(x) :=

{
Gf→air(x), x ∈ Ωf ,

−Gair→f (x), x ∈ D \ Ωf .
(4.245)

Note that the topological derivative is only defined in the interior of Ωf and in the interior of
D \ Ωf , but not on the interface. The algorithm is based on the following observation:

Lemma 4.78. Let ψ be a level set function representing the set Ωf via (4.244) and let G̃ψ be
the generalized topological derivative defined in (4.245). If, for all x ∈ Ωf ∪ (D \ Ωf ), it holds

ψ(x) = c G̃ψ(x) (4.246)

for a constant c > 0, then we are in the presence of a local minimum.

Proof. Let x̂ ∈ Ωf . Then, we have by (4.244), (4.246) and (4.245) that

0 < ψ(x̂) = G̃ψ(x̂) = Gf→air(x̂).
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Thus, by definition (4.2), introducing air at point x̂ will yield an increase of the objective
function. An analogous argument holds for x̂ ∈ D \ Ωf .

This observation motivates the following algorithm:

Algorithm 2. Initialization: Choose ψ0 with ‖ψ0‖ = 1, compute J (ψ0) and G̃ψ0 and set
k = 0.

(i) Set θk = arccos
(
ψk,

G̃ψk
‖G̃ψk‖

)
and

ψk+1 =
1

sinθk

(
sin((1− κk)θk)ψk + sin(κkθk)

G̃ψk
‖G̃ψk‖

)
,

where κk = max{1, 1/2, 1/4 . . . } such that J (ψk+1) < J (ψk)

(ii) Compute G̃ψk+1
according to (4.245)

(iii) If G̃ψk+1
= ψk+1 then stop, else set k ← k + 1 and go to (ii)

Here, we identified the domain Ω with the level set function ψ representing Ω and wrote J (ψ)
instead of J (Ω). Note that each evaluation of the objective function J requires the solution
of the state equation (2.17b) and each evaluation of the generalized topological derivative
G̃ψ additionally requires the adjoint state p, i.e., the solution to (2.31). Also note that the
condition G̃ψk+1

= ψk+1 in step (iii) could be replaced by the condition that G̃ψk+1
has the

same sign as ψk+1 almost everywhere in Ωd. Here, the norms and the scalar product are to
be understood in the space L2(D). Algorithm 2 tries to minimize the angle between the level
set function ψ and the generalized topological derivative G̃ψ in an L2 sense. Note that, if a
level set function ψ is multiplied by a positive constant, it still represents the same domain
Ωf . Therefore, in order to get rid of this useless degree of freedom and to make the algorithm
numerically more stable, the optimization is performed on the unit sphere of L2, i.e., for all
iterates ψk we have ‖ψk‖ = 1. Similarly to Algorithm 1, we use a line search in the parameter
κ in order to ensure a decrease of the objective function in each iteration.

Remark 4.79. The generalized topological derivative G̃ψ defined in (4.245) is not defined on
the material interface ∂Ωf . However, we remark that the procedure of Algorithm 2 in a finite
element setting is still well-defined. On the discrete level, we approximated the current design by
deciding for each element whether it should belong to Ωf or Ωair. Proceeding like this yields a
jagged interface, an issue which will be dealt with in Chapter 7. We use piecewise linear, globally
continuous finite elements and evaluate the generalized topological derivative element-wise. In
order to be able to add the level set function, which is given as nodal data, and the generalized
topological derivative in step (ii) of the algorithm, we transferred this element data to the nodes
of the mesh by a simple averaging. This can be seen as a smoothing of the topological derivative,
which would otherwise be discontinuous across the interface. More details on the algorithm as
well as its implementation can be found in [16,19].

In our implementation, given a level set function ψ, we decided for each element of the mesh
whether it should be part of (the approximations to) Ωf or Ωair by the position of its centroid,
which gives a jagged interface. In Chapter 7, we will introduce a mesh modification strategy
which yields a smoother resolution of the interface.
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Figure 4.10: Evolution of the design in the course of the Algorithm 2. Top left: Initial de-
sign. Top right: Design after first iteration. Center left: Design after two iterations. Center
right: Final design after 36 iterations. Bottom: Final design after 36 iterations of Algorithm
2 together with magnetic field.
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Figure 4.11: Left: Radial component of the magnetic flux density along the air gap for initial
and final design compared with desired curveBd. Right: Decrease of objective function (2.15)
in the course of optimization procedure.

Figures 4.10–4.11 show the results obtained by applying Algorithm 2 to the design optimiza-
tion problem (2.17). Here, we are only interested in altering the design in the eight parts of
the design subdomain Ωd, see Figure 2.2, and, therefore, neglect both the level set function
and the generalized topological derivative outside Ωd. Figure 4.10 shows the initial design,
the design after one and two iterations as well as the final design obtained after a total of 36
iterations of Algorithm 2. Compared to the results obtained by the On/Off method in Section
3.3, it can be seen that a much smaller objective value was achieved. Figure 4.11 shows the
radial component of the magnetic flux density for the initial and final design compared with
the desired smooth sine curve Bd, as well as the decrease of the objective function J defined
in (2.15). Again, we remark that, due to the restriction on the design domain, the desired
curve Bd cannot be reached. Also here we see that the final design is not perfectly periodic,
i.e., we can observe different designs in some parts of the design subdomain Ωd. Again, this
might be an effect coming from the mesh which is not perfectly symmetric. If one is only
interested in symmetric final designs, we recommend not to consider the eight parts of the
design subdomain individually, but rather to perform the optimization only in one part and
use a rotated version of that level set function in the other parts.
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Chapter 5

Comparison

In this chapter, we draw a comparison between the concepts of the material sensitivities
used in the On/Off method introduced in Chapter 3 and the topological derivative derived in
Chapter 4 in both the case of a linear and of a nonlinear state equation. This chapter is partly
based on [87].

Recall that in Chapter 3, we first computed the On/Off sensitivities proposed in [163] on the
discrete level in Section 3.1 and then generalized the idea to perturbations of the material
coe�cient ν in arbitrary subdomains of Ωd by means of Fréchet derivatives in Section 3.2.
Here, we will denote this arbitrary subdomain by ω̂ in order to avoid confusion with the set
ω introduced in Section 4.1.2, which represents the shape of the inclusion for the topological
derivative. We consider a fixed point x0 in Ωd and a smooth set ω̂ ⊂ Ωd which contains x0.
We assume that the objective function J does not depend explicitly on the reluctivity values
inside the design domain Ωd such that ∂J

∂νk
and δJ in (3.2) and (4.7), respectively, vanish.

5.1 Linear Case

5.1.1 Continuous Setting

Let ulin0 ∈ H1
0 (D) and plin0 ∈ H1

0 (D) denote the solutions to the unperturbed state equation
(2.17b) and the unperturbed adjoint equation (2.31), respectively, under the assumption of
only linear material behavior, i.e., ν̂ = ν1 = const. Assume that ulin0 and plin0 are su�ciently
regular. By choosing ω̂ = ωε = x0 + εω with ε > 0 as in the topological derivative, we get by
the mean value theorem that there exists a ξ ∈ ωε such that

1

|ω̂|
dJ
d νω̂

=
1

|ωε|
dJ
d νωε

=
1

|ωε|

∫
ωε

∇ulin0 · ∇plin0 dx =
1

|ωε|
|ωε|∇ulin0 (ξ) · ∇plin0 (ξ),

and, therefore, for ε→ 0,

1

|ωε|
dJ
d νωε

→ ∇ulin0 (x0) · ∇plin0 (x0). (5.1)

On the other hand, recall the formula for the topological derivative in the case of a circular
inclusion ω = B(0, 1) if x0 is in the ferromagnetic subdomain,

Gf→air(x0) = Cf→air∇ulin0 (x0) · ∇plin0 (x0), (5.2)

137
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with the constant Cf→air = 2ν1
ν0/ν1−1
ν0/ν1+1π, see (4.22). Also recall the topological derivative

for the case where x0 is in the air subdomain,

Gair→f (x0) = Cair→f ∇ulin0 (x0) · ∇plin0 (x0),

with Cair→f = 2ν0
ν1/ν0−1
ν1/ν0+1π, see (4.23), which is obtained in the exact same way as (4.22),

but exchanging ν0 and ν1.

We make the following observation: In the limiting case, the scaled version of the On/Off
sensitivities (5.1) and the topological derivative (5.2) only differ by a constant factor. If one
is only interested in removing material at the positions where these sensitivities are most
negative, this constant factor does not play a role and therefore, the two sensitivities can be
regarded as equivalent. However, if one wants to use a bi-directional optimization algorithm
which can decide if it is better to remove material at one location in Ωf or to add material
add another location in Ωair, it is important that the right scaling between the sensitivities in
the ferromagnetic and in the air subdomain is used. From (4.22) and (4.23), it can be seen
that

Cair→f = −ν0

ν1
Cf→air.

In the case of electrical machines, the ratio ν0/ν1 is usually of the order of 103. In the absence
of this factor, as it is the case for the On/Off sensitivities, a numerical optimization algorithm
would always favor removing material even if an introduction of material at another position
would yield a larger decrease of the cost function, see Figure 5.1 for the discussion of the
same issue in the nonlinear case.

5.1.2 Discrete Setting

We compare the two different kinds of sensitivities for the setting which would be used in a
numerical optimization algorithm where the state and adjoint equations are solved by a finite
element method using globally continuous, piecewise linear finite elements on a triangular
grid. Let ulinh and plinh , denote the finite element approximations to the solutions of (2.17b)
and (2.31) under the assumption of only linear material behavior, ν̂ = ν1 = const.
For x0 ∈ Ωd fixed, by choosing ω̂ as the triangle Tk of the mesh which contains the point x0,
we get for the On/Off sensitivities as they were used in [163] and several other papers in the
engineering community,

dJ
d νω̂

=
dJ
d νTk

=

∫
Tk

∇ulinh · ∇plinh dx = |Tk| ∇ulinh (x0) · ∇plinh (x0),

and for the topological derivative in the case of a circular inclusion ω = B(0, 1),

Gf→air(x0) = Cf→air∇ulinh (x0) · ∇plinh (x0), x ∈ Ωf

Gair→f (x0) = Cair→f ∇ulinh (x0) · ∇plinh (x0), x ∈ D \ Ωf

with Cf→air, Cair→f as above.

Here, we make the following additional observation: In order to avoid effects coming from
the mesh, it is advisable to scale the On/Off sensitivities by the area of the respective element,
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(a) J (u) = 1.8182 ∗ 10−3

(b) 1
|Tk|

dJ
d νk

(c) J (u) = 1.7976 ∗ 10−3

(d)
χΩf

(x)Gf→air(x)
−χΩair

(x)Gair→f (x)
(e) J (u) = 1.7327 ∗ 10−3

Figure 5.1: Illustration of difference between sensitivities in On/Off-Method (top row) and
topological derivative (bottom row). (a) Ellipse-shaped initial design. (b) Scaled On/Off sen-
sitivities. (c) Improved design according to On/Off sensitivities. (d) Topological derivative.
(e) Improved design according to topological derivative giving a significantly larger decrease
of the objective value.

i.e., we recommend to use the sensitivities

1

|Tk|
dJ
d νTk

,

see also [49] for a comparison of the non-scaled and the scaled On/Off sensitivities.

5.2 Nonlinear Case

Again, let x0 ∈ Ωd be fixed and ω̂ = ωε = x0 + εω with ω = B(0, 1). Let unl0 ∈ H1
0 (D) and

pnl0 ∈ H1
0 (D) the solutions to the unperturbed state and adjoint equation, respectively, where

ν̂ is a nonlinear function coming from a B–H-curve, see Section 2.4. Assume that unl0 and pnl0

are su�ciently regular. We noted in Chapter 3 that the On/Off sensitivities in the case of a
nonlinear state equation are of the same form as in the linear case. Also here, we get in the
limit that

1

|ω̂|
dJ
d νω̂

=
1

|ωε|
dJ
d νωε

=
1

|ωε|

∫
ωε

∇unl0 · ∇pnl0 dx→ ∇unl0 (x0) · ∇pnl0 (x0). (5.3)

On the other hand, the topological derivative for introducing air inside ferromagnetic material
as derived in Chapter 4 reads

Gf→air(x0) = ∇unl0 (x0)>Mf→air∇pnl0 (x0) +

∫
R2

S̃∇unl0 (x0)(x,∇H) · (∇pnl0 (x0) +∇K)dx,
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lim
ε→0

1
|ωε|

∂J
∂νωε

(On/Off) Gf→air(x0) (Topological Derivative)

linear ∇ulin0 (x0) · ∇plin0 (x0) Cf→air ∇ulin0 (x0) · ∇plin0 (x0)

nonlinear ∇unl0 (x0) · ∇pnl0 (x0)
∇unl0 (x0)>Mf→air∇pnl0 (x0)∫

R2 S̃∇unl0 (x0)(x,∇H) · (∇pnl0 (x0) +∇K)dx

Table 5.1: Comparison of scaled On/Off sensitivities (5.1), (5.3) and topological derivative
(4.22), (4.108) in case of a linear and a nonlinear state equation.

see (4.108), whereMf→air denotes the matrixM for Case I given in (4.233). For the topo-
logical derivative for introducing ferromagnetic material inside air, i.e., in Case II, we obtained

Gair→f (x0) =∇unl0 (x0)>Mair→f ∇pnl0 (x0)

+

∫
R2

S̃
(2)

∇unl0 (x0)
(x,∇H(2)) · (∇pnl0 (x0) +∇K(2))dx,

see (4.216), withMair→f the matrixM(2) defined in (4.234).
In the nonlinear case, we observe that the topological derivative differs from the scaled version
of the On/Off sensitivities (5.1) in two ways:

1. in the matricesMf→air andMair→f , which play the same role as the constants Cf→air

and Cair→f in the linear case, but now are anisotropic 2× 2 matrices which depend on
the gradient of the solution at the point x0, and

2. in the presence of a new second termwhich accounts for the nonlinearity of the problem.

We saw in Section 4.7 that, in our case, the second term in (5.2) is negligible in compar-
ison with the first term. Therefore, we neglect this term for the rest of this discussion. In
Figure 5.1, we illustrate the importance of the polarization matricesMf→air andMair→f .
For a hypothetical ellipse-shaped design, the scaled On/Off sensitivities suggest to remove
material on the left and right ends of the ellipse, whereas the topological derivative sug-
gests to add material at the top. Figure 5.1 gives numerical evidence that the latter yields
a much larger decrease of the objective functional. This phenomenon might lead to final
designs obtained by the On/Off method that are not optimal because the wrong sensitiv-
ities have been used. Note that we used the generalized topological derivative G̃(x) =
χΩf (x)Gf→air(x) − χΩair(x)Gair→f (x) as introduced in Section 4.8 such that positive (or
negative) values of G̃mean that adding (or removing) material would yield a decrease of the
objective function.

In Table 5.1, we summarize the computed sensitivities.

5.3 General Remarks

The conceptual difference between the two kinds of sensitivities is the following:
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• The scaled On/Off sensitivities (5.1) represent the sensitivities with respect to a small
perturbation of the material property. This information is important, for instance, when
one is interested in the sensitivity of a design with respect to manufacturing errors.

• On the other hand, the topological derivative is the sensitivity with respect to a change
of material from ν̂ directly to ν0 in a small neighborhood of a point x0.

From this comparison, it is clear that the topological derivative is the right sensitivity to be
considered for topology optimization. As it was observed in [50], it might happen that the
material sensitivity indicates a decrease of the objective functional if the material is mod-
ified only slightly, but that the functional actually increases when the material parameter
is switched to the other material. This happens when the implicitly assumed monotonicity
assumption mentioned in the beginning of Chapter 3 is violated.

A similar phenomenon was observed in [102, 103] where a density-based method is used
for topology optimization of a coaxial-to-waveguide transition. In this particular application,
the authors observed effects of self-penalization of intermediate density values. This means
that intermediate density values yield a very bad performance of the structure and, therefore,
when considering sensitivities with respect to the density variable, every “black-and-white”
design seems to be locally optimal. The authors overcame this issue by the construction of a
special density filter. However, this application is another example of a situation where the
topological derivative should be preferred over material sensitivities.

We mention, however, that the (scaled) On/Off sensitivities are the right quantities in order
to determine the sensitivity of the performance of a device with respect to small perturba-
tions of the material coe�cients, which often occur through manufacturing errors, as it was
considered in [49].



142 CHAPTER 5. COMPARISON



Part II

Shape Optimization
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Chapter 6

Shape Optimization

In this chapter, we treat model problem (2.17) introduced in Section 2.3 by means of shape
optimization. The shape derivative represents the sensitivity of a cost function which depends
on the shape of a (sub-)domain Ω with respect to a smooth variation of the boundary. In con-
trast to optimization algorithms steered by the topological derivative, here, the optimal shape
has a smooth boundary provided that the numerical algorithm is devised carefully. Comput-
ing the shape derivative for problems depending on linear partial differential equations is a
well-understood topic, see for instance the monographs [75, 107, 196]. For nonlinear prob-
lems, the literature is scarcer and the computation of the shape derivative is often formal.
In this chapter, we derive the shape derivative of the model problem (2.17), which is subject
to a quasilinear PDE, in a rigorous way, based on a novel Lagrangian method for nonlinear
problems, see [198]. Based on the shape derivative, we can obtain smooth deformation fields
which we use as a descent direction in a gradient method. In the numerical algorithm, the
interface is updated iteratively using this vector field until it reaches an equilibrium state.

The rest of this chapter is organized as follows: In Section 6.1, we introduce the concept
of the shape derivative and discuss different ways how it can be computed as well as the
two different possible representations. We prepare the setting of our nonlinear problem in
Section 6.2. Existence of a solution to the shape optimization problem in a certain class of
shapes is shown in Section 6.3. In Section 6.4, we give an abstract differentiability result
which is used later to compute the shape derivative of the cost functional. Section 6.5 deals
with the shape derivative of the cost functional of the model problem introduced in Section
(2.3). Finally, in Section 6.6, a numerical algorithm is presented and numerical optimization
results are presented.

This chapter is based on [90].

6.1 Introduction

In this section, we introduce some basic facts about the velocity method in shape optimization
used to transform a reference shape, see [75, 196]. In the velocity method, also known as
speed method, a domain Ω ⊂ D ⊂ R2 is deformed by the action of a velocity field V defined
on D. Suppose that D is a Lipschitz domain and denote its boundary Σ := ∂D. The domain
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Figure 6.1: Domain Ω is transformed to the domain Ωt for a given t > 0 by means of the
velocity field V .

evolution is described by the solution of the dynamical system

d

dt
x(t) = V (x(t)), t ∈ [0, ε), x(0) = X ∈ R2, (6.1)

for some real number ε > 0. Suppose that V is continuously differentiable and has compact
support inD, i.e., V ∈ D1(D,R2). Then the ordinary differential equation (6.1) has a unique
solution on [0, ε). This enables us to define the diffeomorphism

Tt : R2 → R2;X 7→ Tt(X) := x(t), (6.2)

which transforms the domain Ω into Ωt := Tt(Ω), see Figure 6.1. Let P(R2) denote the power
set of R2, i.e., the set of all subsets of R2.

Definition 6.1. Suppose we are given a real valued shape function J defined on a subset Ξ of
P(R2). We say that J is Eulerian semi-differentiable at Ω ∈ Ξ in the direction V if the following
limit exists in R

dJ (Ω;V ) := lim
t↘0

J (Tt(Ω))− J (Ω)

t
.

If the map V −→ dJ (Ω;V ) is linear and continuous with respect to the topology of D(D,R2) :=
C∞c (D,R2), then J is said to be shape differentiable at Ω and dJ (Ω;V ) is called the shape
derivative of J .

Remark 6.2. In PDE-constrained shape optimization, the term shape derivative is also often
used to refer to the sensitivity of the state with respect to a perturbation of the domain. Given a
velocity field V and a family of transformations Tt as in (6.1)–(6.2), for t > 0 small enough, let
ut be the solution to the constraining boundary value problem posed on the transformed domain
Ωt = Tt(Ω). Then, the total derivative of the perturbed state ut at t = 0,

u̇(x) :=
d

dt
ut(Tt(x))|t=0, x ∈ D, (6.3)

is called the material derivative of u, and the partial derivative

u′(x) :=
d

dt
ut(x)|t=0, x ∈ D,
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is called the shape derivative of u. By application of the chain rule, it is easily seen that these two
concepts are related via

u̇ = u′ +∇u · V.

However, we remark that, in this thesis, the term shape derivative will always refer to the sensi-
tivity of the objective function according to Definition 6.1.

6.1.1 Computation of Shape Derivative

We give a brief overview over the different approaches to the derivation of a shape derivative
according to Definition 6.1 that are available in the literature. This overview is based on the
paper [198].

One commonly used approach to shape differentiation in the presence of a PDE constraint
involves the material derivative u̇ of the state variable, see (6.3), in intermediate steps of the
derivation of the shape derivative of J . Often, the proof of the differentiability of the mapping
t 7→ ut ◦ Tt is not straightforward and requires tools like the implicit function theorem. The
material derivative u̇ is not present in the final formula for the shape derivative, but is only
used in intermediate steps. This serves as a motivation for exploring other methods for shape
differentiation.

In fact, there are several methods available to prove the shape differentiability of functions
depending on the solution of a PDE without the need to compute the derivative of the state.

Several Lagrangian-type methods have been proposed in shape optimization. The approach
of Céa [62] is frequently used to derive the formulas for the shape derivative, but it is formal
and may lead to the wrong formulas if not used carefully, see [167]. The minimax approach
of Correa and Seeger [69], which was first applied to shape optimization in [74], was the first
Lagrangian method with a rigorous mathematical treatment. We mention that it is valid only
for semi-convex cost functions and is based on the assumption of the existence of a saddle
point, which is often di�cult to verify. Lagrangian approaches also have the advantage of
providing directly the adjoint equation.

Variational methods have also been proposed recently [118, 123, 124]. In these papers, a
rearrangement technique is used to bypass the computation of the shape derivative of the
state equation, which allows to reduce the regularity assumptions. The method proposed in
this chapter of the thesis and the methods proposed in [118,123,124] are very general as they
require little regularity assumptions on the domains and the solutions of the PDE involved.
The approaches to compute the shape derivatives are quite different and it is not yet clear
what is the exact relation between these methods.

The approach we use for deriving the shape derivative of the PDE-constrained shape optimiza-
tion problem (2.17) in this chapter is based on the result in [198]. This result generalizes [74]
and simplifies the assumptions as we can treat more general cost functionals. In contrast to
the result in [167], this approach allows to deal with nonlinear PDEs. For a comprehensive
comparison of the different approaches mentioned above, see [198].
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6.1.2 Representation of Shape Derivative

As we already mentioned in the introduction of this thesis in Section 1.2.2, there are basically
two ways how one can represent the shape derivative: either in the Hadamard form (1.2),
i.e., as a distribution on the boundary which only depends on the normal component of the
perturbation, or in the more general volume form (1.3), also called the distributed shape
derivative. If the shape Ω is regular enough, the Hadamard form can be rewritten as an
integral over the boundary,

dJ (Ω;V ) =

∫
∂Ω
gΓ V · nds, (6.4)

with an integrable function gΓ. The volume form can be written as

dJ (Ω;V ) =

∫
Ω
g(V,DV )dx, (6.5)

for some function g. One obvious advantage of the boundary-based form (6.4) is that a
descent direction V = −gΓ n is readily available whereas the extraction of a descent direction
requires the solution of an additional PDE in the case of the volume-based form (6.5), see
Section 1.2.2.2. For this reason, the distributed shape derivative has been widely neglected
for a long time. In this section, we compare various aspects of these two representations and
promote the use of the distributed shape derivative. For more details, see [134].

We start out by noting that the one advantage of the boundary-based form mentioned above
does not always apply as the descent direction V = −gΓ n might not be regular enough and
has to be regularized. Furthermore, in many numerical procedures, it is not enough to have
a descent direction that is only defined on the material interface. This is the case in the level
set method, see Section 1.2.1.4, or when a material interface is aligned with an underlying
finite element mesh and one wants to advect all mesh nodes in a descent direction. These
di�culties are usually treated by solving an additional boundary value problem just like in
the case of the distributed shape derivative, e.g., by solving the Laplace-Beltrami equation on
the material interface in the former case.

On the other hand, the computational overhead of solving an additional boundary value prob-
lem in the case of the volume form may be reduced to a minimum by defining this auxiliary
boundary value problem only in a small neighborhood of the material interface.

One benefit of the volume form is that, as mentioned above, it is more general, meaning that
for shapes with lower regularity the distributed shape derivative may be well-defined whereas
the Hadamard form is not.

A different aspect favoring the volume-based form (6.5) is concerned with numerical accuracy
of the approximation of the shape derivative when the underlying state and adjoint equations
are solved by the finite element method. In [111], the authors show that the finite element
approximation to the volume-based form converges quadratically to the “true” shape deriva-
tive on the continuous level as the mesh size tends to zero, whereas the boundary-based form
converges only linearly.

Another advantage pointed out in [44] is that the discretization process and the shape dif-
ferentiation commute for the volume expression but not for the boundary expression, i.e., a
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discretization of the boundary expression of the shape derivative does not generally lead to
the same expression as the shape derivative computed when the problem is first discretized.

For the above reasons, we will derive the shape derivative in its volume-based form (6.5).

6.2 Preliminaries

Recall the notation from Section 2.3, in particular recall the variable ferromagnetic set Ωf =

(Ωref
f \ Ωd) ∪ Ω where Ω is the part to be optimized. For (x, ζ) ∈ D × R, we define the

nonlinear, piecewise smooth function β = βΩ as

βΩ(x, ζ) := β1(ζ)χΩf (x) + β2(ζ)χD\Ωf (x)

= β1(ζ)(χΩ(x) + χ
Ωreff \Ωd(x)) + β2(ζ)(χ

D\Ωreff
(x) + χΩd\Ω(x)),

where χ is the indicator function of a given set. Again, note that the expression above is
meaningful since Ω ⊂ Ωd ⊂ Ωref

f .

We will derive the shape derivative for a shape optimization problem constrained by the fol-
lowing boundary value problem:

Find u ∈ H1
0 (D) such that

∫
D
βΩ(x, |∇u|2)∇u · ∇η dx = 〈F, η〉 ∀η ∈ H1

0 (D), (6.6)

where, in view of the model problem of Section 2.3, we assume that the right hand side
F ∈ H−1(D) is of the form

〈F, η〉 =

∫
D
f0 η dx+

∫
Ωmag

M1 · ∇η dx+

∫
D\Ωmag

M2 · ∇η dx, (6.7)

where f0 ∈ H1(D),M1 is a constant vector on each of the eight magnets andM2 is a constant
vector.

In the sequel, we make the following assumption for β1 and β2:

Assumption 9. The functions β1, β2 : R→ R satisfy the following conditions:

1. For i = 1, 2, the function s 7→ βi(s
2)s is strongly monotone with monotonicity constant

m and Lipschitz continuous with Lipschitz constant L:

(βi(s
2) s− βi(t2) t) (s− t) ≥ m(s− t)2 for all s, t ≥ 0,

|βi(s2) s− βi(t2) t)| ≤ L|s− t| for all s, t ≥ 0.

2. The functions β1, β2 are in C1(R).

3. There exist constants λ,Λ > 0 such that for i = 1, 2,

λ|ϕ|2 ≤ βi(|ρ|2)|ϕ|2 + 2β′i(|ρ|2)(ϕ · ρ)2 ≤ Λ|ϕ|2 for all ϕ, ρ ∈ R2.

Remark 6.3. From Assumption 9.1, it can easily be seen by setting t = 0 that, under Assumption
9.1, there exist constants c1, c2, c3, c4 > 0, such that

c1 ≤ β1(ζ) ≤ c2, c3 ≤ β2(ζ) ≤ c4 for all ζ ∈ R.
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Note that, in the special case where β1(ζ) := ν̂(
√
ζ) and β2(ζ) := ν0, the function βΩ is related

to νΩ defined in (2.11) as

βΩ(x, ζ2) = νΩ(x, ζ),

and (6.6) coincides with the magnetostatic boundary value problem defined on the electric
motor introduced in (2.14). Boundary value problem (6.6) models a nonlinear potential
equation defined on a domain which consists of two different materials both of which may
exhibit nonlinear material behavior. Note that the function βΩ, unlike νΩ, depends on the
square of |∇u|, which is meant to simplify some of the forthcoming calculations.

We consider the PDE-constrained shape optimization problem consisting of finding a shape
Ω out of a set of admissible shapes O which minimizes the functional J defined in (2.15)
subject to the PDE constraint (6.6). The problem reads

minimize J (u) =

∫
Ωg

|Br(u)−Bd|2dx

subject to Ω ∈ O and u solution of (6.6)
(6.8)

where

O =
{

Ω ⊂ Ωd ⊂ Ωref
f ,Ω open, Lipschitz with uniform Lipschitz constant LO

}
. (6.9)

The sets Ωd and Ωref
f are reference domains, see Section 2.3 and Figure 2.2. Here, Br(u)

denotes the radial component of the magnetic flux density B(u) in the air gap, i.e., Br(u) =
B(u) · ng = ∇u · τg where ng, τg are the vector fields defined in (2.16), and Bd ∈ C1(Ωg)
denotes the given desired radial component of the magnetic flux density along the air gap.
In order to obtain the first-order optimality conditions for this minimization problem we
compute the derivative of J with respect to the shape Ω. In the sequel, we emphasize the
dependence of J on the variable set Ω ∈ O by introducing Ĵ (Ω) := J (u(Ω)) where u(Ω)
denotes the solution to (6.6) for the given set Ω.

Given Assumption 9, we can state existence and uniqueness of a solution u to the state equa-
tion (6.6).

Theorem 6.4. Assume that Assumption 9.1 holds. Then problem (6.6) admits a unique solution
u ∈ H1

0 (D) for any fixed right-hand side F ∈ H−1(D) and we have the estimate

‖u‖H1
0 (D) ≤ c‖F‖H−1(D).

Proof. The proof is analogous to the proof of Theorem 2.7 using the Theorem of Zarantonello
(Theorem 2.5). Note that Assumption 9.1 yields the strong monotonicity and Lipschitz con-
tinuity of the operator BΩ : H1

0 (D)→ H−1(D) defined by

〈BΩ(u), η〉 :=

∫
D
βΩ(|∇u|2)∇u · ∇η dx,

by Lemma 2.6. Since the right hand side F is in H−1(D), Theorem 2.5 yields the existence
of a unique solution u ∈ H1

0 (D) to the equation BΩ(u) = F in H−1(D), which is just (6.6),
as well as the claimed stability estimate.
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6.3 Existence of Optimal Shapes

In this section, we show that problem (6.8) has a solution Ω? in the set of admissible solutions
O defined by (6.9). We make use of the following result [107, Theorem 2.4.10]:

Theorem 6.5. Let Ωn be a sequence in O. Then there exists Ω? ∈ O and a subsequence Ωnk

which converges to Ω? in the sense of Hausdorff, and in the sense of characteristic functions. In
addition, Ωnk and ∂Ωnk converge in the sense of Hausdorff towards Ω? and ∂Ω?, respectively.

Let now Ωn ∈ O be a minimizing sequence for problem (6.8). Note that such a sequence
exists since J ≥ 0. According to Theorem 6.5, we can extract a subsequence, which we still
denote by Ωn, which converges to some Ω? ∈ O. Denote un and u? the solutions of (6.6) with
Ωn and Ω?, respectively. It can be shown that un → u? in H1

0 (D):

Proposition 6.6. Let Ωn ∈ O be a minimizing sequence for problem (6.8) and Ω? be an ac-
cumulation point of this sequence as in Theorem 6.5. Assume there exists ε > 0 such that the
solution u of (6.6) satisfies

‖u?‖H1+ε(D)∩H1
0 (D) ≤ c

where c depends only on f andD. Then the sequence un ∈ H1
0 (D) corresponding to Ωn converges

to u? strongly in H1
0 (D), where u? is the solution of (6.6) in Ω?.

Proof. The proof can be found in [90].

Now, the existence of a solution Ω? ∈ O can be seen as follows:

inf
Ω∈O
Ĵ (Ω) = lim

n→∞
Ĵ (Ωn) = lim

n→∞
J (un) = J (u?) = Ĵ (Ω?),

where we used the fact that (Ωn) is a minimizing sequence, the notation un = u(Ωn) for the
solution to (6.6) with Ωn, and the continuity of J .
From now on, for better readability, we will drop the hat and just write J (Ω) instead of Ĵ (Ω).

6.4 Derivation of the Shape Derivative

6.4.1 Preliminaries

Recall that the continuously differentiable velocity field V has compact support, V ∈ D1(D,R2).
With this choice of V , the domain D is globally invariant under the transformation Tt, i.e.,
Tt(D) = D and Tt(∂D) = ∂D. For t ∈ [0, ε), Tt is invertible. Furthermore, for su�ciently
small t > 0, the Jacobian determinant

ξ(t) := detDTt (6.10)

of Tt is strictly positive. In the sequel, we use the notation DT−1
t for the inverse of DTt and

DT−>t for the transpose of the inverse. Then the following lemma holds [75]:

Lemma 6.7. For ϕ ∈W 1,1
loc (R2) and V ∈ D1(R2,R2) we have

∇(ϕ ◦ Tt) = DT>t (∇ϕ) ◦ Tt,
d

dt
(ϕ ◦ Tt) = (∇ϕ · V ) ◦ Tt,

dξ(t)

dt
= ξ(t) [div V (t)] ◦ Tt.
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6.4.2 An Abstract Differentiability Result

Let E and F be Banach spaces. Let G be a function

G : [0, τ ]× E × F → R, (t, ϕ, ψ) 7→ G(t, ϕ, ψ)

which is a�ne with respect to ψ and define

E(t) := {u ∈ E| dψG(t, u, 0; ψ̂) = 0 for all ψ̂ ∈ F}.

Let us introduce the following hypotheses.

Assumption 10 (H0). For every (t, ψ) ∈ [0, τ ]× F , we assume that

(i) the set E(t) contains only one element and we write E(t) = {ut},

(ii) the function [0, 1] 3 s 7→ G(t, sut + (1− s)u0, ψ) is absolutely continuous,

(iii) the function [0, 1] 3 s 7→ dϕG(t, sut + (1− s)u0, ψ; η) belongs to L1(0, 1) for all η ∈ E.

For t ∈ [0, τ ] and ut ∈ E(t), let us introduce the set

Y (t, ut, u0) :=

{
q ∈ F | ∀η ∈ E :

∫ 1

0
dϕG(t, sut + (1− s)u0, q; η)ds = 0

}
, (6.11)

which is called solution set of the averaged adjoint equation with respect to t, ut and u0. Note
that Y (0, u0, u0) coincides with the solution set of the usual adjoint state equation:

Y (0, u0, u0) =
{
q ∈ F | dϕG(0, u0, q; η) = 0 for all η ∈ E

}
.

The following result, proved in [198], allows us to compute the Eulerian semi-derivative of
Definition 6.1 without computing the material derivative u̇. The key is the introduction of the
set (6.11).

Theorem 6.8. Let Assumption (H0) hold and the following conditions be satisfied:

(H1) For all t ∈ [0, τ ] and all ψ ∈ F the derivative ∂tG(t, u0, ψ) exists.

(H2) For all t ∈ [0, τ ], Y (t, ut, u0) is single-valued and we write Y (t, ut, u0) = {pt}.

(H3) We have

lim
t↘0

G(t, u0, pt)−G(0, u0, pt)

t
= ∂tG(0, u0, p0).

Then, for all ψ ∈ F , we obtain

d

dt
(G(t, ut, ψ))|t=0 = ∂tG(0, u0, p0).
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6.4.3 Adjoint Equation

We introduce the Lagrangian associated to the minimization problem (6.8) for all ϕ,ψ ∈
H1

0 (D),

G(Ω, ϕ, ψ) :=

∫
Ωg

|Br(ϕ)−Bd|2 dx+

∫
D
βΩ(x, |∇u|2)∇ϕ · ∇ψ dx− 〈F,ψ〉,

where F ∈ H−1(D) is of the form (6.7). The adjoint state equation is obtained by differenti-
ating G with respect to ϕ at ϕ = u and ψ = p,

dϕG(Ω, u, p; η) = 0 for all η ∈ H1
0 (D),

or, equivalently,

2

∫
D
∂ζβΩ(x, |∇u|2)(∇u · ∇η)(∇u · ∇p)dx+

∫
D
βΩ(x, |∇u|2)∇p · ∇η dx

= −2

∫
Ωg

(Br(u)−Bd)Br(η)dx for all η ∈ H1
0 (D).

(6.12)

Furthermore, we introduce

A(∇u) := A1(∇u)χΩf +A2(∇u)χD\Ωf ,

Ai(∇u) := βi(|∇u|2)I + 2∂ζβi(|∇u|2)∇u⊗∇u ∈ R2,2, i = 1, 2.

Note that, with this notation, the variational form of the adjoint equation can be written as∫
D
A(∇u)∇p · ∇η dx = −2

∫
Ωg

(Br(u)−Bd)Br(η)dx for all η ∈ H1
0 (D).

The existence of a unique solution p ∈ H1
0 (D) can be easily seen.

Lemma 6.9. Let Assumption 9.3 hold. For given u ∈ H1
0 (D), the problem

Find p ∈ H1
0 (D)

such that
∫
D
A(∇u)∇p · ∇η dx = −2

∫
Ωg

(Br(u)−Bd)Br(η) dx ∀η ∈ H1
0 (D),

(6.13)

has a unique solution p ∈ H1
0 (D).

Proof. The proof is analogous to the proof of Lemma 2.30 exploiting Assumption 9.3.

6.5 Shape Derivative of the Cost Function

Now we give the result that the cost function J given by (6.8) is shape differentiable in
the sense of Definition 6.1 and provide a domain expression of the shape derivative using
Theorem 6.8.
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In this section we assume Ω ⊂ Ωd, V ∈ D1(R2,R2) and supp(V ) ∩ Ωg = ∅. Denote Ωd
k,

k = 1, .., 8, the connected components of Ωd (see Figure 2.2). Introduce Γdk the boundary
of Ωd

k. The four sides of Γdk are denoted Γd,Nk ,Γd,Wk ,Γd,Ek ,Γd,Sk where the exponents mean
“north”, “south”, “east”, “west”, respectively. We assume V · n = 0 on Γd,Sk and V · n ≤ 0

on Γd,Ek ∪ Γd,Wk ∪ Γd,Nk . These conditions guarantee that Ωt = Tt(Ω) ⊂ Ωd. In addition, we
assume that the vector field V is such that the transformation Tt satisfies Tt(Ωmag) = Ωmag

for t small enough.

Theorem 6.10. Let β1 and β2 satisfy Assumption 9. Then the functionalJ is shape differentiable
and its shape derivative in the direction V is given by

dJ (Ω;V ) =−
∫
D

(f0 div(V ) +∇f0 · V )p dx

−
∫

Ωmag

P′(0)∇p ·M1 dx−
∫
D\Ωmag

P′(0)∇p ·M2 dx

+

∫
D
βΩ(x, |∇u|2)Q′(0)∇u · ∇p dx

−
∫
D

2∂ζβΩ(x, |∇u|2)(DV >∇u · ∇u)(∇u · ∇p) dx,

(6.14)

where P′(0) = (div V )I − DV >, Q′(0) = (div V )I − DV > − DV , I ∈ R2×2 is the identity
matrix, and u, p ∈ H1

0 (D) are the solutions of the problems (6.6) and (6.13), respectively.

Proof. Theorem 6.10 can be shown by applying Theorem 6.8. We only sketch the proof here
and refer the reader to [90] for the details.

Given a vector field V ∈ D1(D,R2), we consider the transformation Tt defined by (6.2) and
introduce the transformed domain Ωt := Tt(Ω). The Lagrangian G(Ωt, ϕ, ψ) at the trans-
formed domain Ωt for ϕ,ψ in H1

0 (D) is given by

G(Ωt, ϕ, ψ) =

∫
Ωg

|Br(ϕ)−Bd|2 dx+

∫
D
βΩt(x, |∇ϕ|2)∇ϕ · ∇ψ dx− 〈F,ψ〉,

with F as in (6.7). We apply Theorem 6.8 to the function

G(t, ϕ, ψ) := G(Ωt, ϕ ◦ T−1
t , ψ ◦ T−1

t ),

which, after the change of variables x = Tt(x̂), reads

G(t, ϕ, ψ) =

∫
Ωg

|Br(ϕ)−Bd ◦ Tt|2 ξ(t)dx+

∫
D
βΩ(x, |M(t)∇ϕ|2)Q(t)∇ϕ · ∇ψ dx

−
∫
D
f0 ◦ Ttψ ξ(t)dx−

∫
Ωmag

M1 · P(t)∇ψ dx−
∫
D\Ωmag

M2 · P(t)∇ψ dx,

where M(t) = DT−>t , P(t) = ξ(t)M(t) and Q(t) = ξ(t)M(t)>M(t), and ξ(t) is defined in
(6.10). Here, we used the assumption Tt(Ωmag) = Ωmag. It can be seen that J (Ωt) =
G(t, ut, ψ) for all ψ ∈ H1

0 (D), where ut ∈ H1
0 (D) solves∫

D
βΩ(x, |M(t)∇ut|2)Q(t)∇ut · ∇ψ dx

=

∫
D
f0 ◦ Tt ψ ξ(t)dx+

∫
Ωmag

M1 · P(t)∇ψ dx+

∫
D\Ωmag

M2 · P(t)∇ψ dx.
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The verification of Hypotheses (H0)–(H3) of Theorem 6.8 with E = F = H1
0 (D) can be

found in [90]. It follows from Theorem 6.8 that dJ (Ω;V ) = ∂tG(0, u, p), where u ∈ H1
0 (D)

solves the state equation (6.6) and p ∈ H1
0 (D) is the solution of the adjoint equation (6.12).

In order to compute ∂tG(0, u, p), we note that M′(0) = −DV >, P′(0) = (div V )I − DV >,
Q′(0) = (div V )I −DV > −DV and that the integrals on Ωg vanish since V = 0 on Ωg.

Remark 6.11. Note that the last integral in (6.14) is well-defined thanks to Assumption 9.3. To
see this, note that V ∈ C1(D,R2) and that, for all ζ ∈ R2, we have β′(|ζ|2)|ζ|2 ≤ Λ. Hence∣∣∣∣∫

D
2∂ζβΩ(x, |∇u|2)(DV >∇u · ∇u)(∇u · ∇p) dx

∣∣∣∣ ≤ C ∫
D
∂ζβΩ(x, |∇u|2)|∇u|2|∇u · ∇p| dx

≤ CΛ

∫
D
|∇u · ∇p| dx <∞.

The other terms in (6.14) are obviously well-defined.

6.6 Application to Model Problem

In this section, we use the shape derivative derived in Theorem 6.10 for applying a gradient-
based optimization algorithm to the model problem (2.17) introduced in Section 2.3. Recall
that the problem consists in finding the shape Ω ∈ O of the ferromagnetic subdomain in-
side the design subdomain Ωd of the electric motor depicted in Figure 2.2 such that the cost
functional (2.15), i.e.,

J (Ω) =

∫
Ωg

|Br(uΩ)−Bd|2dx,

is minimized. In the notation of this chapter, we define

β1(ζ) := ν̂(
√
ζ), M1 := νmagM

⊥, f0 := J3,

β2(ζ) := ν0, M2 := 0,
(6.15)

where ζ ∈ R+
0 , such that boundary value problem (6.6) becomes the magnetostatic problem

(2.14). In order to apply Theorem 6.10, we need to check Assumption 9 for β1, β2 as chosen
in (6.15). Obviously, all conditions are satisfied for β2 = ν0. Concerning β1, Assumption
9.1 follows from (2.20) and (2.21). The continuous differentiability of β1 as required in
Assumption 9.2 follows from Lemma 2.3. Finally, we note that Assumption 9.3 for β1 is
equivalent to

∃λ, Λ > 0 : λ|ϕ|2 ≤ ϕ>DT (ρ)ϕ ≤ Λ|ϕ|2, ∀ρ, ϕ ∈ R2.

It holds thatmin{λ1(|ρ|), λ2(|ρ|)}|ϕ|2 ≤ ϕ>DT (ρ)ϕ ≤ max{λ1(|ρ|), λ2(|ρ|)}|ϕ|2 where λ1(|ρ|),
λ2(|ρ|) denote the eigenvalues of DT (ρ), see (2.29). Then, properties (2.19) yield Assumption
9.3 with λ = ν and Λ = ν0.
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Thus we can apply Theorem 6.10 and the shape derivative reads

dJ (Ω;V ) =−
∫
D

(J3 div(V ) +∇J3 · V )pdx−
∫

Ωmag

νmagP′(0)∇p ·M⊥

+

∫
D
νΩ(x, |∇u|)Q′(0)∇u · ∇pdx−

∫
Ωf

ν̂ ′(x, |∇u|)
|∇u|

(DV >∇u · ∇u)(∇u · ∇p)dx

where P′(0) = (div V )I − DV >, Q′(0) = (div V )I − DV > − DV , I ∈ R2×2 is the identity
matrix, and u, p ∈ H1

0 (D) are the solutions of the problems (2.14) and (2.31), respectively.
Note that for the model problem (2.17), there are no electric currents, thus we set J3 = 0.

6.6.1 Numerical Method

Based on the shape derivative dJ (Ω;V ) derived in (6.14), we employ a gradient-based op-
timization algorithm. For that purpose, in each iteration we compute a vector field V which
is a descent direction for J , i.e., we compute a vector field V such that dJ (Ω;V ) < 0, and
move the interface between the material and the air subdomain a certain distance into the
direction of V .

6.6.1.1 Setup of Interface

We represent the material interface by a polygon consisting of 191 points around each of the
eight parts Ωd

k of the design subdomain Ωd (see Figure 6.2) and move the points of these
polygons along the calculated velocity field V in the course of the optimization process. Each
element of the design area whose center of gravity is inside this polygon is considered to
contain ferromagnetic material, the others are considered to be air.

Note that we do not advect the mesh nodes as it is often done in shape optimization since,
in our problem, it is important that some fixed parts of the motor such as the air gap or the
magnets are not altered. For that reason, it is more practical to work with a representation of
the interface which is decoupled from the mesh nodes.

6.6.1.2 Descent Direction

In order to get a descent in the cost functional, we compute the velocity field as follows. We
choose a symmetric and positive definite bilinear form

b : H1
0 (Drot)×H1

0 (Drot)→ R

defined on the subdomain Drot of D representing the rotor and compute V as the solution of
the following variational problem:

Find V ∈ Ph such that b(V,W ) = −dJ (Ω;W ) for all W ∈ Ph. (6.16)

Here, Ph ⊂ H1
0 (Drot) is a finite dimensional subspace. OutsideDrot we extend V by zero. Note

that, by this choice, the condition V = 0 on Ωg, which is assumed in Section 6.5, is satisfied.
The obtained descent directions V ∈ Ph will also be inW 1,∞(D,R2) and, consequently, they
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shape optimization, iter =33, J(u)=0.00096605

Figure 6.2: Top left: Initial design with polygon consisting of 191 points representing the
material interface. Top right: Design after 10 iterations of Algorithm 3, together with vector
field V . Center left: Final design after 33 iterations. Center right: Zoom of final design.
Bottom: Final design after 33 iterations of Algorithm 3.
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are admissible vector fields defining a flow T Vt . The solution V computed this way is a descent
direction for the cost functional since

dJ (Ω;V ) = −b(V, V ) < 0.

For our numerical experiments, we choose the bilinear form

b : H1
0 (Drot)×H1

0 (Drot)→ R

b(V,W ) =

∫
Drot

(αDV : DW + V ·W ) dx.
(6.17)

Here, the penalization function α ∈ L∞(Drot) is chosen as

α(x) =


1 x ∈ Ωd,
10 x ∈ Ωd,ε \ Ωd,
102 else,

where Ωd,ε = {x ∈ Drot : dist(x,Ωd) ≤ ε} for some small ε > 0. With this choice of α, we
ensure that the resulting velocity field V is small outside the design region Ωd.

We remark that the numerical overhead of using the volume form of the shape derivative
compared to Hadamard’s boundary-based form is the solution of the auxiliary boundary value
problem (6.17). However, the additional numerical effort of solving this linear boundary value
problem is negligible compared to the effort of solving the nonlinear state equation (2.17b).
Furthermore, we solve this problem only on the reduced computational domain Drot ⊂ D.

6.6.1.3 Updating the Interface

For updating the interface, we perform a backtracking line search algorithm: Once a descent
direction V is computed, we move all interface points a step size τ = τinit in the direction
given by V and evaluate the cost function for the updated geometry. If the cost value has not
decreased, the step size τ is halved and the cost function is evaluated for the new, updated
geometry. We repeat this step until a decrease of the cost function has been achieved. When
the step size becomes too small such that no element switches its state, the algorithm is
stopped.

6.6.2 Numerical Results

The procedure is summarized in Algorithm 3:

Algorithm 3. Initialization: Set k = 0, choose initial design Ω0, compute J (Ω0), set up
interface, (6.16) for a descent direction Vk. Choose parameter d̄.

(i) Move interface a distance dk in direction of Vk and set Ωk+1 the updated domain, where
dk = d̃k d̄/‖Vk‖L∞(DRot) and d̃k is chosen as max{1, 1/2, 1/4, . . . } such that J (Ωk+1) <
J (Ωk)

(ii) If no decrease could be achieved: Stop

(iii) Compute descent direction Vk+1 using (6.16) on Ωk+1, set k ← k + 1 and go to (i)
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Figure 6.3: Left: Radial component of magnetic flux density along the air gap for initial and
final design compared with desired curve. Right: Objective function during optimization
process.

Note that for each evaluation of J , the state equation (6.6) has to be solved, and for each
computation of a descent direction V from (6.16), the state u and adjoint state p, which is
the solution to (6.12), with the current shape Ω are required. Here, the parameter d̄ must
be set by the user and determines the size of the steps taken during the algorithm. In our
experiments, we set d̄ to three times the minimal edge length of the mesh.

The final design after 33 iterations of Algorithm 3 is depicted in Figure 6.2. The cost function
is reduced from 1.7104∗10−3 to 0.96605∗10−3, see Figure 6.3 where also the radial component
of the magnetic flux density for the initial and final design are shown. Figure 6.2 also shows
the final design together with the magnetic field. Note that the result obtained by the shape
optimization algorithm exhibits some symmetry even though we did not enforce it. From the
right picture in the center of Figure 6.2, it can be seen that, due to the interface handling
we chose, a jagged interface occurs. This issue serves as a motivation for introducing the
interface finite element method of Chapter 7.
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Chapter 7

A Local Mesh Modification Strategy
for Interface Problems

In the numerical experiments of Sections 3.3, 4.8 and 6.6, we were confronted with material
interfaces that evolved in the course of the optimization procedure. In order to evaluate
the corresponding sensitivities in the next iteration of the optimization algorithm, the state
equation (2.14) and the adjoint equation (2.31) have to be solved on the updated geometry.
This raises the question of how to resolve a marching material interface in each iteration of
the given algorithm. In the experiments presented in Sections 3.3, 4.8 and 6.6, we neglected
this aspect and decided for each element of the underlying triangulation whether it should
contain ferromagnetic material or air by just looking at the position of its centroid. This
approach does not only lead to an irregular, jagged interface as can be seen from Figure 6.2,
but also yields a loss of accuracy as the mesh parameter h approaches zero. It is well-known
that, when using standard finite element methods, the interface must be resolved by the
mesh in order to obtain optimal convergence rates of the approximate solution uh to the true
solution u in the L2(D) and H1(D) norms, see also [29].
A straightforward approach to deal with this problem would be to create a new triangulation
which resolves the updated geometry in each iteration of the algorithm. Of course, proceeding
like this is computationally very expensive and should be avoided. Another approach which is
very commonly used in shape optimization is to not only move the interface into the direction
prescribed by the vector field V obtained from (6.16), but to advect all nodes of the finite
element mesh in this direction, see e.g. [135, 187, 199, 200]. The vector field V is usually
smooth enough such that self-intersection of the mesh does typically not occur. However, the
approach can become problematic whenmore complex geometries with geometric constraints
are involved, as it is the case for our model problem. Here, fixed parts of the electric motor like
the circular air gap should not be altered under any circumstances. Although this could be
dealt with by specifying problem (6.16) on a suitable subdomain with appropriate boundary
conditions, it may be more convenient to have a description of the interface that is decoupled
from the mesh. Another shortcoming of this kind of interface treatment is that no topological
changes can be performed.
Besides the approaches mentioned above, there exist several other, more sophisticated in-
terface methods that are well-studied. A brief overview over existing methods to deal with
moving and non-matching interfaces, such as the extended finite element method (XFEM),
the immersed FEM or the unfitted Nitsche method, was given in Section 1.3.
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Another approach to deal with interfaces in the context of finite elements is presented in
[82, 83]. This method is based on a patch hierarchy of a quadrilateral mesh and modifies
the basis functions supported on patches which are cut by the interface. The bilinear basis
functions on the four quadrilaterals of an intersected patch are replaced by piecewise linear
functions on eight triangles in such a way that the interface is resolved more accurately.
Therefore, the method can also be interpreted as a fitted finite element method on a mixed
quadrilateral-triangular grid. However, the modification of the basis is done in an implicit
parametric way without actually modifying the nodes of the mesh. One advantage of this kind
of method over the ones mentioned above is that this method has a fixed number of unknowns
independently of the position of the interface relative to the mesh. The given mesh is modified
only locally near the material interface and the method is relatively easy to implement. Of
course, this kind of interface finite element method is not restricted to applications from shape
and topology optimization, but is applicable to a wide variety of physical problems involving
material interfaces such as multiphase flows or evenmultiphysics problems like fluid-structure
interaction.

Themethodwe present in this chapter is an adaptation of themethod introduced in [82,83] to
the case of triangular meshes. We start out from a triangulation with a hierarchical structure
and modify some mesh nodes near the interface in such a way that, on the one hand, the
interface is captured, and on the other hand, amaximum angle condition is satisfied. Similarly
to [82], we show that this maximum angle condition yields the standard discretization error
estimates in the L2(D) and H1(D) norms. Furthermore, we consider the condition number
of the stiffness matrix and investigate requirements on the finite element basis which would
guarantee optimal conditioning with respect to the discretization parameter h.

Finally, we mention that a very similar approach to ours is currently also being investigated
independently in [112]. There, the modification of the finite element space is done in a
parametric way without actually moving the mesh nodes. The authors also show a maximum
angle condition and optimal order of convergence, but do not treat the issue of the condition
number of the stiffness matrix with respect to small angles.

This chapter is an extension of the results presented in [89].

7.1 Preliminaries

We introduce the method for the linear potential equation in a bounded, polygonal compu-
tational domain D ⊂ R2 consisting of two non-overlapping, open subdomains, D = Ω1 ∪Ω2,
Ω1∩Ω2 = ∅, which represent two materials with different material coe�cients κ1, κ2 > 0. On
the material interface Γ := Ω1∩Ω2, we have to require that the solution as well as the normal
flux are continuous. For simplicity, we assume homogeneous Dirichlet boundary conditions
on ∂D. The problem reads as follows:

−div (κi∇u) = f in Ωi, i = 1, 2,

JuK = 0 on Γ,
s
κ
∂u

∂n

{
= 0 on Γ,

u = 0 on ∂D,

(7.1)
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where, again, J·K denotes the jump of a function across the interface Γ and the material
coe�cient function κ given by

κ(x) =

{
κ1, x ∈ Ω1,

κ2, x ∈ Ω2.

The weak form of problem (7.1) reads

Find u ∈ H1
0 (D) such that a(u, v) :=

∫
D
κ∇u · ∇v dx =

∫
D
f v dx ∀v ∈ H1

0 (D). (7.2)

We assume that the boundaries of the two subdomains as well as the right hand side f are
su�ciently regular such that

u ∈ H1
0 (D) ∩H2(Ω1 ∪ Ω2),

i.e., the restrictions of u ∈ H1
0 (D) to Ω1 and Ω2 belong to H2(Ω1) and H2(Ω2), respectively,

see e.g. [29].

Let {Th} be a regular family of subdivisions of D into triangular elements which is shape-
regular, i.e., there exists a number σ0 > 0 such that, for all elements T , the ratio between the
diameter hT of T and the radius ρT of the largest inscribed circle in T is bounded from below,
ρT /hT ≥ σ0. This is equivalent to the condition that there exists θ0 > 0 such that, for all
elements T , all interior angles are bounded from below by θ0, see e.g. [47,221]. Let now the
mesh size h be fixed. We assume that Th has been obtained by one uniform refinement of a
coarser mesh T2h. By this assumption, also T2h is shape-regular, and Th has a patch-hierarchy,
i.e., always four elements T1, T2, T3, T4 ∈ Th can be combined to one larger triangle T ∈ T2h.
We will refer to this larger element as the makro element or patch.

We need to make an assumption on the makro mesh T2h:

Assumption 11. We assume that the mesh of makro elements T2h is such that, for each makro
element T ∈ T2h, the interface Γ either

1. does not intersect the interior of T , or

2. intersects ∂T in exactly two distinct edges, or

3. intersects ∂T in one vertex and in the opposite edge.

This assumption basically just excludes the case where one edge of the makro element is cut
by the interface more than once. For a smooth interface Γ, this assumption can always be
enforced by choosing a fine enough makro mesh T2h. We consider a makro element T ∈ T2h

to be cut by the interface if the intersection of the interior of the makro element with the
interface is not the empty set.

7.2 Description of the Method

The method presented in this chapter is a local mesh adaptation strategy, meaning that only
makro elements close to the interface Γ are modified. Given the hierarchic structure of the
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mesh, on every makro element we have four elements of the mesh Th and six vertices, see
Figure 7.1(a),(b). The idea of the method is the following: For each makro element that is
cut by the interface, move the points which lie on the edges of the makro element along the
corresponding edge. This is done in such a way that, on the one hand, the interface is resolved
accurately, and, on the other hand, all interior angles in the four triangles are bounded away
from 180◦. For a makro element T that is cut by the interface, we distinguish four different
configurations as follows:

In the case where the makro element is cut by the interface in two distinct edges, we denote
the vertex of the makro element where these two edges meet by P1, and the other two vertices
in counter-clockwise order by P2 and P3. The parameters s, t, r ∈ [0, 1] represent the positions
of the points P4, P5, P6 along the corresponding edges by

P4(s) = P1 + s
P2 − P1

|P2 − P1|
, P5(t) = P2 + t

P3 − P2

|P3 − P2|
, P6(r) = P1 + r

P3 − P1

|P3 − P1|
,

respectively. The parameters r and s will always be chosen in such a way that the intersection
points of the interface and the edges P1P3 and P1P2 are the points P6 and P4, respectively.
Thus, we identify the position of the interface relative to the makro element T by the two
parameters r, s. We choose the parameter t such that a maximum angle condition is satisfied
as follows:
Configuration A: 0 < r, s ≤ 1/2. Set t = 1/2.
Configuration B: 1/2 < r, s < 1. Set t = 1− s.
Configuration C: 0 < s ≤ 1/2 < r < 1 (Configuration C1) or 0 < r ≤ 1/2 < s < 1
(Configuration C2). Set t = 1/2.

The case where the makro element is cut in one vertex and the opposite edge has to be con-
sidered separately. We denote the vertex of the makro element where it is cut by the interface
by P2 and the other vertices, in counter-clockwise ordering, by P3 and P1, see Figure 7.1(b).
The location of the interface is given by the position of the point P6 on the edge between P3

and P1. In this case, we also need to rearrange the triangles T2 and T4.
Configuration D:
Configuration D1: 0 < r ≤ 1/2. Set s = r and t = 1/2.
Configuration D2: 1/2 < r < 1. Set s = 1/2 and t = r.
With this setting, it is possible to show the requiredmaximum angle condition on the reference
patch T̂ defined by the outer makro vertices P̂1 = (0, 0)>, P̂2 = (1, 0)>, P̂3 = (1/2,

√
3/2)>.

Remark 7.1. The choice of t = 1− s in Configuration B can without any problems be replaced
by the choice t = r. This can be exploited if the position of P5 affects the neighboring patch in an
unwanted way, see Figure 7.2. We refer to this choice as Configuration B’.

7.3 Maximum Angle Condition

The convergence behavior of a finite element approximation uh to the true solution u of prob-
lem (7.1) is usually shown by Céa’s lemma and an interpolation error estimate. A condition
that is su�cient and necessary for such an interpolation error estimate is that all interior
angles of triangles in the family of meshes {Th}h>0 are bounded away from 180◦, see [30].
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(a) Patch for configurations A–C (b) Patch for configuration D

(c) Configuration A (d) Configuration B

(e) Configuration C (f) Configuration D

Figure 7.1: (a), (b): Patches for different configurations. (c)-(f): Different configurations of
mesh points depending on position of the interface.
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Note that this maximum angle condition is not necessary for optimal convergence rates. In
fact, it may happen that the interpolation error is large, while the discretization error is very
small, see [98] for an example. We show that the mesh modification strategy introduced in
Section 7.2 does not violate the maximum angle condition.
We start with a maximum angle condition on the reference patch T̂ .

Lemma 7.2. Let the reference patch T̂ be intersected in two distinct edges or in one vertex and
the opposite edge and apply the mesh modification strategy described in Section 7.2. Then, all
interior angles in triangles of the reference patch T̂ are bounded by 150◦, independent of the
parameters r, s ∈ [0, 1] representing the location of the interface.

Proof. We have to ensure for each of the four subtriangles T̂1, T̂2, T̂3, T̂4 that all of their three
interior angles are not larger than 150◦.

For three points P , Q, R in R2, define

](P,Q,R) := cos−1

(
(P −Q,R−Q)

|P −Q| |R−Q|

)
the interior angle of the triangle with vertices P , Q, R at point Q.

In Configuration A–C, the sub-triangles T̂1, T̂2 and T̂3 all have one angle of 60◦. Obviously,
the remaining two angles are bounded from above by 120◦. It remains to check the angles in
sub-triangle T̂4:

Configuration A: For r, s ∈ (0, 1/2], we get for the angle in point P4 that

](P6, P4, P5) < ](P1, P4, P5) = 180◦ − ](P5, P4, P2) ≤ 180◦ − ](P5, P1, P2).

Since the reference patch T̂ is equilateral, it holds ](P5, P1, P2) = α/2. Analogously, we
get for the angle in point P6 that ](P5, P6, P4) < 180◦ − α/2. It is easy to see that the
angle in point P5 increases with r, s and thus is maximized for r = s = 1/2, which yields
that ](P4, P5, P6) ≤ ](P4(1/2), P5, P6(1/2)) = 180 − β − γ = α. Here we used that, for
r = s = t = 1/2, the four sub-triangles are congruent.

Configuration B: Note that, by the special choice of s, t, in this case we have that the line going
through P4 and P5 is parallel to the edge connecting P1 and P3 for all values of s ∈ (1/2, 1).
Thus, we have

](P4, P5, P6) ≤ ](P4, P5, P3) = 180◦ − γ, and

](P4, P5, P6) = 180◦ − γ − ](P6, P5, P3)

≥ 180◦ − γ − ](P6(1/2), P5(1/2), P3) = 180◦ − γ − β = α.

The angles in P4 and in P6 must also be bounded from above by 180◦ − α = 120◦.

Configuration C: We consider the case where r ∈ (1/2, 1) and s ∈ (0, 1/2]. The reverse case is
treated analogously. For the angle in the fixed point P5 = P5(1/2) = (P2 + P3)/2, we get the
estimates

](P4, P5, P6) ≤ ](P4, P5, P3) ≤ ]((P4(1/2), P5, P3) = 180◦ − γ,
](P4, P5, P6) ≥ ](P4, P5, P6(1/2)) ≥ ](P1, P5, P6(1/2)) = ](P5, P1, P2) = α/2.
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Thus, the angles ](P6, P4, P5) and ](P5, P6, P4) are also bounded from above by 180◦− β/2.

Configuration D: We consider only Configuration D1, the corresponding result for Configura-
tion D2 follows analogously. In Configuration D, the sub-triangles T̂1 and T̂3 both have one
angle of 60◦ such that the remaining two angles of these triangles are bounded by 120◦. We
need to consider triangles T̂2 and T̂4. Due to the choice of the parameter s, the line going
through P4 and P6 is parallel to the edge connecting P2 and P3 for all values of r. In T̂2,
](P6, P4, P2) = 180◦ − β and, therefore, the other two angles are bounded by β. In T̂4, we
have for r ∈ (0, 1/2] that

](P6, P2, P5) ≤ β,
](P2, P5, P6) ≤ ](P2, P5, (P3 + P1)/2) = 180− β,
](P5, P6, P2) ≤ ](P3, P6, P4) = 180− γ.

Finally, noting that α = β = γ = 60◦ yields the statement of the lemma.

Lemma 7.2 ensures that, for any smooth interface cutting the reference patch T̂ , there exists a
subdivision of T̂ into T̂1, T̂2, T̂3, T̂4 such that all interior angles are bounded away from 180◦.
However, it is important to note that in Configurations B and D, nodes which do not lie on the
interface Γ are moved. This may cause the nodes of the patch adjacent to this non-intersected
makro edge to move in an undesired way. In order to avoid troubles in this respect, we need
to make another assumption on our makro mesh.

Assumption 12. If a makro element T ∈ T2h is cut by the interface then all patches adjacent
to non-intersected edges of T are not cut by the interface, nor are they modified by any other
neighboring patch other than T .

For an illustration of which cases are excluded by assumption 12, see Figure 7.2. Again, this
assumption can be ensured by choosing a su�ciently fine makro mesh. Under this additional
assumption we get the maximum angle condition on the whole modified mesh.

Corollary 7.3. Let the makro mesh T2h be shape-regular and let Assumptions 11 and 12 hold.
Then, after applying the mesh modification strategy described in Section 7.2, all interior angles
in the modified mesh are bounded away from 180◦.

Proof. The maximum angle condition of Lemma 7.2 for the reference patch T̂ together with
the shape-regularity of the makro mesh T2h yield that also the subtriangles of all physical
patches T ∈ T2h which are cut by the interface satisfy a maximum angle condition. Due
to Assumption 12, those patches which are not cut by the interface but whose nodes are
modified due to the adjustment of one of the neighboring makro elements can be treated in
the same way as in Configuration C in the proof of Lemma 7.2. Again, the maximum angle
condition on these physical elements follows from the shape-regularity of the makro mesh.
Finally, the maximum angle condition trivially holds for all patches that are not affected by
the interface.

Remark 7.4. We mention that a violation of Assumption 12 does not automatically result in a
failure of the method described in Section 7.2. In fact, e.g., the situation illustrated in the left
picture of Figure 7.2 could be resolved by applying Configuration B’ to the right patch, i.e., by
putting the node on the common edge towards the bottom of the edge.
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Figure 7.2: Examples of constellations that are excluded by Assumption 12. Left: Two ad-
jacent patches are cut by the interface. Right: central patch is not cut by the interface, but
affected, since lower left and lower right patch are in Configuration D.

From now on, let Th denote the locally modified mesh and Vh the corresponding space of
globally continuous, piecewise linear basis functions on Th.

7.4 A Priori Error Estimates

This section follows the lines of [82] where the analogous results are shown for the case of a
quadrilateral mesh. The proofs of Lemmas 7.6 and 7.8 as well as Theorem 7.9 are analogous
to [82] and are given here for completeness of the presentation.

Nowwe are in the position to show an a priori error estimate for the finite element solution uh.
Since we have the maximum angle condition of Corollary 7.3, we get the interpolation error
estimates for smooth functions v ∈ H2(T ) ∩ C(T ) on the triangle T ∈ Th,

‖∇k(v − Ihv)‖L2(T ) ≤ C h2−k
T,max‖∇

2v‖T , k = 0, 1, (7.3)

where Ih : H2(T ) → Vh|T denotes the Lagrangian interpolation operator, C is a positive
generic constant, and hT,max is the maximum edge length of T , see e.g. [25]. In the case
where the interface Γ is not polygonal but smooth with C2 parametrization, and an element
of the modified mesh Th is intersected by Γ, the solution u is not smooth across the interface
and, hence, estimate (7.3) cannot be applied.

In Lemma 7.8 we will provide the corresponding interpolation error estimate for k = 1 in the
case of a C2-smooth interface Γ, which will allow us to show the discretization error estimate
of Theorem 7.9. By the procedure described in Section 7.2, we approximate the smooth
interface Γ by a polygonal curve which we denote by Γh. This polygonal curve subdivides the
computational domain D into the subdomains Ω1

h and Ω2
h. For i = 1, 2, let T ih be the set of

triangles in Ωi
h, i.e., T ih = {T ∈ Th : T ⊂ Ωi

h}. Then it holds

Ωi
h =

⋃
T∈T ih

T and Ωh =
⋃
T∈Th

T = Ω1
h ∪ Ω2

h.
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In the case where the interface Γ is not resolved exactly by Γh, the di�culty arises in those
triangles T whose interior is cut by the interface. Then the solution is not in H2 on these
triangles. We will denote the union of such elements by Sh,

Sh =
⋃

T∈Th:int(T )∩Γ6=∅

T ,

and the set of such triangles on either side of the discrete interface by Sih,

Sih =
⋃

T∈T ih :int(T )∩Γ 6=∅

T ,

for i = 1, 2. Then it holds Sh = S1
h ∪ S2

h. For an illustration of this notation, see Figure 7.4.
Recall the piecewise constant material coe�cient function κ, and let κh be the piecewise
constant discrete material coe�cient function, i.e.,

κ(x) =

{
κ1, x ∈ Ω1,

κ2, x ∈ Ω2,
κh(x) =

{
κ1, x ∈ Ω1

h,

κ2, x ∈ Ω2
h.

The discrete approximation of the weak formulation (7.2) reads

Find uh ∈ Vh such that ah(uh, vh) :=

∫
D
κh∇uh · ∇vh dx =

∫
D
f vhdx ∀vh ∈ Vh. (7.4)

Noting that Vh ⊂ H1
0 (D) and that the right hand sides of problems (7.2) and (7.4) coincide

for test functions vh ∈ Vh, taking the difference of these two variational equations yields the
Galerkin orthogonality relation

a(u, vh)− ah(uh, vh) = 0 ∀vh ∈ Vh, (7.5)

for u, uh the solutions to problems (7.2) and (7.4), respectively. Furthermore, we define S
to be the area between the discrete and the continuous interface, i.e., the area where the
discrete and the continuous bilinear forms differ, and ST the intersection of S with a triangle
T ∈ Th,

S =
2⋃
i=1

(
Ωi
h \ Ωi

)
, and ST = S ∩ T. (7.6)

Moreover, for T ⊂ Sh, we introduce the parts of the discrete and continuous interface inside
T as

Γh,T = Γh ∩ T and ΓT = Γ ∩ T .

As a first step for deriving the interpolation error estimate, we quantify the distance between
the smooth interface Γ with a C2 parametrization and its discrete approximation Γh. For that
purpose, we need the following lemma.

Lemma 7.5. Let h > 0 and f ∈ C2(0, h) with f(0) = f(h) = 0. Then, for all x ∈ (0, h), there
is a constant C > 0 such that

f(x) ≤ C h2.



172 CHAPTER 7. A LOCAL MESH MODIFICATION STRATEGY

Figure 7.3: Illustration of notation: Domain is divided into Ω1 (brown area) and Ω2 (blue);
T 1
h = {T1, T2, T3, T4}, T 2

h = {T5, T6, T7, T8}, Ωi
h is union of triangles in T ih , i = 1, 2; S1

h = T3,
S2
h = T6, Sh = T3 ∪ T6; ΓT denotes the intersection of an element T with the interface Γ and

Γh,T its polygonal approximation.

Proof. Let x ∈ (0, h). A second order Taylor expansion around points x0 = 0 and x1 = h
yields that there exist number ξ0, ξ1 ∈ (0, h) such that

f(x) =f(0) + x f ′(0) +
1

2
x2 f ′′(ξ0), (7.7)

f(x) =f(h) + (x− h) f ′(h) +
1

2
(x− h)2 f ′′(ξ1). (7.8)

Since x ∈ (0, h) there exists η ∈ (0, 1) such that x = η h and thus h−x = (1−η)h. Multiplying
equation (7.7) by the factor min{η, 1 − η}/η and equation (7.8) by min{η, 1 − η}/(1 − η),
and summing up gives

1

max{η, 1− η}
f(x) =

min{η, 1− η}
η

η h f ′(0) +
min{η, 1− η}

1− η
(−(1− η)h) f ′(h)

+
min{η, 1− η}

η

1

2
η2 h2 f ′′(ξ0) +

min{η, 1− η}
1− η

1

2
(1− η)2 h2 f ′′(ξ1)

=min{η, 1− η}h2 f
′(0)− f ′(h)

h

+
ηmin{η, 1− η}

2
h2 f ′′(ξ0) +

(1− η)min{η, 1− η}
2

h2 f ′′(ξ1)

where we used that f(0) = f(h) = 0. By the mean value theorem, there exists ξ2 ∈ (0, h)
such that (f ′(0)− f ′(h))/h = −f ′′(ξ2). Thus, we get

f(x) ≤ 3

2
max{η, 1− η}min{η, 1− η} max

ξ∈(0,h)
|f ′′(ξ)|h2,

which yields the statement of Lemma 7.5 with C = 3
8 max
ξ∈(0,h)

|f ′′(ξ)|.

It follows directly from Lemma 7.5 that for the distance δΓ between Γ and Γh it holds δΓ =
O(h2). Using this observation, we get the following lemma on the L2 and H1 norms in S.
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Lemma 7.6 ([82]). Let Γ be a smooth interface with C2-parametrization, and let S be the
region between the discrete and the continuous interface, see (7.6). Then, for a function φ ∈
H1(Ω1 ∪ Ω2), it holds that

‖φ‖L2(S) ≤ C h ‖φ‖H1(Ω2∪Ω2). (7.9)

Moreover, for a discrete function φh ∈ Vh, it holds

‖∇φh‖L2(S) ≤ C h1/2‖∇φh‖L2(Ω1∪Ω2). (7.10)

Proof. This proof is following the lines of [82].

Let T be an element of the mesh Th that is cut by the interface, i.e., T ⊂ Sh. It holds that
|T | = O(h2) and it follows from Lemma 7.5 that δΓ = O(h2) and thus |ST | = O(h3). For
a piecewise linear function φh ∈ Vh, the gradient ∇φh is constant on T . Thus, a scaling
argument yields that

‖∇φh‖2L2(ST ) ≤ C h‖∇φh‖
2
L2(T ),

which yields (7.10) after summation over all triangles T ⊂ Sh. For showing (7.9), we use
that, due to δΓ = O(h2), we have the Poincaré-like estimate

‖φ‖2L2(ST ) ≤ C
(
h2‖φ‖2L2(ΓT ) + h4‖∇φ‖2L2(ST )

)
,

see e.g. [48], where the trace ΓT is seen from ST . Summing over all triangles in Sh gives

‖φ‖2L2(S) ≤ C
(
h2‖φ‖2L2(Γ) + h4‖∇φ‖2L2(S)

)
,

which yields (7.9) by the trace inequality ‖φ‖L2(Γ) ≤ C‖φ‖H1(Ω1∪Ω2).

By means of Lemma 7.6, we can estimate the difference between the discrete and the con-
tinuous bilinear form, since it holds

|a(φ, ψ)− ah(φ, ψ)| =
∣∣∣∣∫
D

(κ− κh)∇φ · ∇ψdx
∣∣∣∣ =

∣∣∣∣∫
S

(κ− κh)∇φ · ∇ψdx
∣∣∣∣

≤|κ1 − κ2|‖∇φ‖L2(S)‖∇ψ‖L2(S)

Lemma 7.6 yields the following result:

Corollary 7.7 ([82]). Let Γ be a smooth interface with C2 parametrization. Then the following
estimates holds for the difference between the continuous and the discrete bilinear forms defined
by (7.2) and (7.4), respectively: For all φh, ψh ∈ Vh, it holds

|a(φh, ψh)− ah(φh, ψh)| ≤C h ‖∇φh‖L2(D)‖∇ψh‖L2(D),

and for all φ ∈ Hk+1(Ω1 ∪ Ω2), ψ ∈ H l+1(Ω1 ∪ Ω2), we have that

|a(φ, ψ)− ah(φ, ψ)| ≤C hk+l ‖∇φh‖Hk(Ω1∪Ω2)‖∇ψh‖Hl(Ω1∪Ω2).
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Nowwe can show the interpolation error estimate for the case of a smooth interface that is not
resolved by the triangulation. Recall that Ih denotes the nodal Lagrange interpolator which
is piecewise linear on Ωh and satisfies Ih v(xi) = v(xi) for all mesh nodes xi of the mesh Th.

Lemma 7.8 ([82]). Let D ⊂ R2 be a domain with convex, polygonal boundary and Γ a smooth
interface with C2 parametrization. Let u ∈ H2(Ω1 ∪ Ω2) ∩H1

0 (D) and Ih the nodal Lagrange
interpolation operator. Then it holds that

‖∇(u− Ihu)‖L2(D) ≤ C h ‖u‖H2(Ω1∪Ω2). (7.11)

Proof. This proof follows the lines of [82], which is based on [33].

If the interface is resolved exactly by the modified finite element mesh, the result is standard,
see (7.3). We divide the interpolation error into two parts,

‖∇(u− Ihu)‖2L2(D) = ‖∇(u− Ihu)‖2L2(D\Sh) + ‖∇(u− Ihu)‖2L2(Sh). (7.12)

For the first term, we can use estimate (7.3), since the solution u is smooth enough in D \Sh
to obtain

‖∇(u− Ihu)‖2L2(D\Sh) ≤ C h
2‖∇2u‖2L2(D\Sh) ≤ C h

2‖∇2u‖2L2(Ω1∪Ω2).

To deal with the second term, we introduce for u ∈ H2(Ωi) (i = 1, 2) a continuous extension
ũi ∈ H2(D) to the complete domain D. The existence of such an extension is guaranteed
because Γ is smooth, see e.g. [211], and it holds

‖ũi − u‖H2(Ωi) = 0, and ‖ũi‖H2(D) ≤ ‖ũ‖H2(Ωi), i = 1, 2. (7.13)

We will derive an estimate for ‖∇(u − Ihu)‖2
S1
h
. The corresponding estimate on S2

h follows
analogously. The triangle inequality yields

‖∇(u− Ihu)‖L2(S1
h) ≤‖∇(u− ũ1)‖L2(S1

h) + ‖∇(ũ1 − Ihũ1)‖L2(S1
h)

+ ‖∇(Ihũ1 − Ihu)‖L2(S1
h).

(7.14)

The last term on the right hand side vanishes since Ihu = Ihũ1 on S1
h for the nodal Lagrange

interpolator. The first term can be treated as follows: Noting that u− ũ1 vanishes everywhere
on S1

h except on S, we get by Lemma 7.6 and the continuity of the extension (7.13) that

‖∇(u− ũ1)‖L2(S1
h) ≤ ‖∇(u− ũ1)‖L2(S) ≤ ‖∇u‖L2(S) + ‖∇ũ1‖L2(S) ≤ C h‖u‖H2(Ω1∪Ω2).

Finally, noting that ũ1 ∈ H2(D), the interpolation error on the right hand side of (7.14) can
be estimated in the standard way (7.3) for each triangle T ⊂ S1

h. Summation over all T ⊂ S1
h

yields

‖∇(ũ1 − Ihũ1)‖L2(S1
h) ≤ C h‖∇2ũ1‖L2(D) ≤ C h‖∇2u‖L2(D). (7.15)

In the last step, we again used the continuity of the extension (7.13). The statement follows
by combining (7.12), (7.14) and (7.15) and the analogous estimate on S2

h.
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Theorem 7.9 ([82]). Let D ⊂ R2 be a domain with convex polygonal boundary, split into
D = Ω1 ∪ Γ ∪ Ω2, where Γ is a smooth interface with C2-parametrization. We assume that Γ
divides D in such a way that the solution u belongs to H1

0 (D) ∩H2(Ω1 ∪ Ω2) and satisfies the
stability estimate ‖u‖H2(Ω1∪Ω2) ≤ cs‖f‖. Then, for the corresponding modified finite element
solution uh ∈ Vh, we have the estimates

‖∇(u− uh)‖L2(D) ≤ C h ‖f‖ and ‖u− uh‖L2(D) ≤ C h2 ‖f‖.

Proof. The proof is identical to [82], except that the patch size hP is replaced by the global
mesh size h. The proof is given for sake of completeness.

We start by estimating the H1-seminorm error

c‖∇(u− uh)‖2L2(D) ≤ ah(u− uh, u− uh)

= ah(u− uh, u− Ihu) + ah(u− uh, Ihu− uh).

For the first part, we use the Cauchy-Schwarz inequality and the interpolation estimate (7.11)
as usual. The second part can be estimated with the Galerkin orthogonality (7.5) and Corol-
lary 7.7:

ah(u− uh, Ihu− uh) = (ah − a)(u, Ihu− uh)

≤ C h ‖∇u‖H1(Ω1∪Ω2)‖∇(Ihu− uh)‖L2(D)

≤ C h ‖f‖L2(D)

(
‖∇(Ihu− u)‖L2(D) + ‖∇(u− uh)‖L2(D)

)
.

Here, we have used the notation (a−ah)(·, ·) = a(·, ·)−ah(·, ·) for better readability. By using
Young’s inequality and absorbing the last term into the left-hand side, we obtain

‖∇(u− uh)‖2L2(D) ≤ C
(
‖∇(u− Ihu)‖2L2(D) + h2‖f‖2L2(D)

)
. (7.16)

The H1-seminorm estimate follows with Lemma 7.8.

To estimate the L2-norm error, we make use of a dual problem. Let z ∈ H1
0 (D) be the solution

of

a(φ, z) = ‖u− uh‖−1
L2(D)

(u− uh, φ)L2(D) ∀φ ∈ H1
0 (D). (7.17)

The solution z lies in H1
0 (D) ∩ H2(Ω1 ∪ Ω2) and ‖z‖H2(Ω1∪Ω2) ≤ cs. By testing (7.17) with

φ = u− uh, we have

‖u− uh‖L2(D) = a(u− uh, z) = ah(u− uh, z) + (a− ah)(u− uh, z). (7.18)

For the second part, Corollary 7.7 gives

(a− ah)(u− uh, z) ≤ C h ‖∇(u− uh)‖L2(D)‖z‖H2(Ω1∪Ω2).

Next, we insert the interpolant Ihz into the first part of (7.18) and use the Galerkin orthog-
onality (7.5):

ah(u− uh, z) = ah(u− uh, z − Ihz) + ah(u− uh, Ihz)
= ah(u− uh, z − Ihz) + (ah − a)(u, Ihz)

= ah(u− uh, z − Ihz) + (ah − a)(u, Ihz − z) + (ah − a)(u, z).
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For the first term, we use the Cauchy-Schwarz inequality, the remaining terms can be handled
with Corollary 7.7:

ah(u− uh, z − Ihz) ≤ C‖∇(u− uh)‖L2(D)‖∇(z − Ihz)‖L2(D),

(ah − a)(u, Ihz − z) ≤ C h‖u‖H2(Ω1∪Ω2)‖∇(z − Ihz)‖L2(D),

(ah − a)(u, z) ≤ C h2‖u‖H2(Ω1∪Ω2)‖z‖H2(Ω1∪Ω2).

Finally, we use Lemma 7.8, the H1-seminorm estimate (7.16) and stability estimates for the
primal and dual solutions to obtain

‖u− uh‖L2(D) ≤ C h2‖u‖H2(Ω1∪Ω2)‖z‖H2(Ω1∪Ω2) ≤ C h2‖f‖L2(D).

7.4.1 Numerical Experiments

We applied the method described in Section 7.2 to problem (7.1) where D = (−1, 1)2, Ω1 =
B(xm, 0.4) with xm = (0.1, 0.2)>, Ω2 = D \ Ω1, κ1 = 1, κ2 = 10, and the right hand side as
well as the Dirichlet data were chosen in such a way that the exact solution is given by

u(x) =

{
−4κ1κ

2
2R

2‖x− xm‖2 + 2R4κ2(2κ2κ1 − 1) x ∈ Ω1,

−2κ2‖x− xm‖4 x ∈ Ω2.

The optimal order of convergence stated in Theorem 7.9 can be observed in Table 7.1. Note
that all elements of the makro mesh have one right angle and two angles of 45◦, which results
in an upper bound for the maximum angle of 180◦ − 45◦/2 = 157.5◦.

nVerts h ‖u− uh‖L2(D) rate L2 ‖∇(u− uh)‖L2(D) rate H1 θmax
289 h0 0.00724623 – 0.175665 – 140.334

1089 h0/2 0.00180955 2.0016 0.087845 0.9998 138.116
4225 h0/4 0.000453133 1.9976 0.0439104 1.0004 143.084

16641 h0/8 0.000113451 1.9979 0.0219536 1.0001 152.223
66049 h0/16 0.0000283643 1.9999 0.0109756 1.0002 149.110

263169 h0/32 0.00000709548 1.9991 0.00548762 1.0001 155.643

Table 7.1: Convergence history of interface problem (7.1) using mesh adaptation strategy as
mesh size approaches zero.

7.5 Condition Number

The procedure of Section 7.2 guarantees that no angle of the modified mesh becomes too
large. However, it may happen that some angles in the triangulation are getting arbitrarily
close to zero, which usually yields a bad condition of the finite element system matrix. Also
this problem was addressed in [83] for the case of quadrilateral elements, and we adapt the
procedure to the triangular case here.
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Figure 7.4: Left: Material coe�cient κ without interface technique. Right: κ with interface
technique

The idea consists in a hierarchical splitting of the finite element space Vh into the standard
piecewise linear finite element space V2h on the makro mesh T2h and the space of piecewise
linear “bubble” functions Vb which vanish on the nodes of the makro elements,

Vh = V2h + Vb. (7.19)

Let Φh := {φ1
h, . . . , φ

Nh
h } be the nodal basis of the space Vh. Any function vh ∈ Vh can be

decomposed into the sum of a function v2h ∈ V2h = spanΦ2h with Φ2h = {φ1
2h, . . . , φ

N2h
2h } and

a function vb ∈ Vb = spanΦb with Φb = {φ1
b , . . . , φ

Nb
b },

vh =

Nh∑
i=1

vihφ
i
h =

N2h∑
i=1

vi2hφ
i
2h +

Nb∑
i=1

vibφ
i
b = v2h + vb ∈ V2h + Vb.

We denote the hierarchical basis of the space Vh = V2h + Vb by Φhier := Φ2h ∪ Φb =
{φ1

2h, . . . , φ
N2h
2h , φ1

b , . . . , φ
Nb
b }. In this setting, it is possible to show the usual bounds on the

eigenvalues of the system matrix provided that the following two conditions are satisfied:

Assumption 13. We assume that

• there exists a constant C > 0 independent of h, r, s such that

C−1 ≤ ‖∇φ‖ ≤ C, (7.20)

for all φ ∈ {φ1
2h, . . . , φ

N2h
2h , φ1

b , . . . , φ
Nb
b }, and
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• there exists a constant C > 0 independent of h, r, s, such that for all vb ∈ Vb

|vib| ≤ C‖∇vb‖Ni , i = 1, . . . , Nb, (7.21)

whereNi denotes the patch around the vertex xi of themesh Th, i.e.,Ni =
⋃
T∈Th:xi∈T T .

Given the basis Φhier, let Kh denote the stiffness matrix of the model problem (7.1) and let
vh be the coe�cient vector of a function vh ∈ Vh in this basis. Lemmas 7.10 and 7.11 give
estimates on the maximal and minimal eigenvalues of the system matrix Kh, respectively.
Both results are proven in [83] following the ideas of [32].

Lemma 7.10 (large eigenvalues). Let Assumption 13 hold. Then there exists a constant C > 0
independent of the interface location such that it holds

v>hKhvh = a(vh, vh) ≤ Cv>h vh ∀vh ∈ Vh.

Lemma 7.11 (small eigenvalues). Let Assumption 13 hold. Then there exists a constant C > 0
independent of the interface location such that it holds

v>hKhvh = a(vh, vh) ≥ C h2v>h vh ∀vh ∈ Vh.

The combination of Lemma 7.10 and Lemma 7.11 gives the following result for the condition
number of the system matrix Kh:

Theorem 7.12. Let Assumption 13 hold. Then there exists a constant C > 0 independent of the
interface location such that

cond2(Kh) ≤ C h−2.

Here, cond2(Kh) denotes the condition number of the stiffness matrixKh associated with the
Euclidean vector norm.

7.5.1 Scaling of the Basis Functions

It remains to check whether conditions (7.20) and (7.21) are satisfied for the finite element
spaces arising in the method described in Section 7.2. Note that both conditions are satisfied
for standard finite element spaces on regular grids, which can be shown by inverse inequali-
ties. Thus, since the makro mesh T2h is not affected by the location of the interface, condition
(7.20) is satisfied for all basis functions φ ∈ Φ2h.

In this section, we will investigate whether, after a proper scaling, both conditions also hold
for the basis functions φib, i = 1, . . . , Nb, independently of the location of the interface. This
has to be checked for each of the four configurations A–D. Configuration A is analogous to
what is called Configuration B1 in [83] and was treated in detail there.

7.5.1.1 Configuration C

We will go through the details in the case of Configuration C1, i.e., in the case where r is
close to 1, s is close to 0 and t = 1/2, see Figure 7.1(e). Note that the steps for Configuration
C2 are analogous. We will show (7.20) and (7.21) on the equilateral reference patch T̂ with
nodes
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P1 = (0, 0)>, P2 = (1, 0)>, P3 = (1/2,
√

3/2)>,

P4 = (s, 0)>, P5 = (3/4,
√

3/4)>, P6 = r(1/2,
√

3/2)>.

The corresponding condition on the physical patches follows from the shape-regularity of the
patch mesh T2h. By φ̃4, φ̃5, φ̃6, we denote the nodal add-on basis functions which take the
value 1 at the vertices P4, P5, P6, respectively, and vanish on all other nodes. For the gradients
of these basis functions, we have for r → 1, s→ 0 that

‖∇φ̃4‖2T1 = O
(

1
s

)
, ‖∇φ̃4‖2T2 = O(1), ‖∇φ̃4‖2T4 = O(1),

‖∇φ̃5‖2T2 = O(1), ‖∇φ̃5‖2T3 = O(1− r), ‖∇φ̃5‖2T4 = O(1),

‖∇φ̃6‖2T1 = O(s), ‖∇φ̃6‖2T3 = O
(

1
1−r

)
, ‖∇φ̃6‖2T4 = O(1).

Thus, introducing the scaling factors

τ4 =
√
s, τ5 = 1, τ6 =

√
1− r,

and the scaled basis functions φi := τiφ̃i, for i = 4, 5, 6, we get condition (7.20).

Considering condition (7.21), we have to show for each i ∈ {1, . . . , Nb} that there exists a
constant C independent of h, r and s such that

(vib)
2 ≤ C‖∇vb‖2L2(Ni) ∀vb ∈ Vb,

where Ni denotes the union of all elements that have Pi as a node. Again, due to the shape-
regularity of the makro mesh T2h, it is enough to show (7.21) on the reference patch T̂ . It is
su�cient to show this condition for only one triangle T of the neighborhood Ni, i.e.,

(vib)
2 ≤ C‖∇vb‖2L2(T ) ∀vb ∈ Vb.

We begin with the degree of freedom corresponding to point P4 and consider the subtrian-
gle T1, see Figure 7.1(a). A function vb ∈ Vb restricted to T1 has contributions from the
two degrees of freedom corresponding to P4 and P6, thus the above condition is in this case
equivalent to

1 ≤ C‖∇φ4 + v∇φ6‖2L2(T1) ∀v ∈ R. (7.22)

We have

∇φ4|T1 = τ4

(
1
s

− 1√
3 s

)
, ∇φ6|T1 = τ6

(
0
2√
3 r

)
, |T1| = 1

4

√
3 r s,

and

‖∇φ4‖2L2(T1) = τ2
4

r√
3s
, ‖∇φ6‖2L2(T1) = τ2

6
s√
3r
, (∇φ4,∇φ6)T1 = −τ4 τ6

1
2
√

3
,

and thus, for r close to 1 and s close to 0, we have that

‖∇φ4 + v∇φ6‖2L2(T1) = ‖∇φ4‖2L2(T1) + 2v(∇φ4,∇φ6)T1 + v2‖∇φ6‖2L2(T1) ≈
1√
3
. (7.23)

Thus, condition (7.22) is satisfied if C >
√

3.

Similarly, we consider the basis function corresponding to point P5 on T2 and show the exis-
tence of a constant C such that

1 ≤ C‖∇φ5 + v∇φ4‖2L2(T2) ∀v ∈ R. (7.24)

Here, we have
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∇φ5|T2 =

(
0
4√
3

)
, ∇φ4|T2 = τ4

(
− 1

1−s
− 1√

3(1−s)

)
, |T2| = 1

8

√
3(1− s),

and

‖∇φ5‖2L2(T2) = 2(1−s)√
3
, ‖∇φ4‖2L2(T2) = τ2

4
1

2
√

3(1−s) , (∇φ5,∇φ4)T2 = −τ4
1

2
√

3
,

and thus, again for r ≈ 1 and s ≈ 0,

‖∇φ5 + v∇φ4‖2L2(T2) ≈
2√
3
. (7.25)

Condition (7.24) follows for C >
√

3
2 .

In an analogous way, it can be shown that

‖∇φ6 + v∇φ5‖2L2(T3) ≈
1

2
√

3
,

for r close to 1 and s close to 0. This, together with (7.23) and (7.25) yields that, in Config-
uration C1, condition (7.21) is satisfied for C > 2

√
3 in the case of Configuration C.

7.5.1.2 Configuration B

Let us now have a look at Configuration B, i.e., the case where both r and s are close to 1.
For the gradients of the basis functions, we get t = 1− s, r, s→ 1

‖∇φ̃4‖2T1 = O(1), ‖∇φ̃4‖2T2 = O(1), ‖∇φ̃4‖2T4 = O( 1
1−s),

‖∇φ̃5‖2T2 = O(1), ‖∇φ̃5‖2T3 = O(r − 1), ‖∇φ̃5‖2T4 = O( 1
1−s),

‖∇φ̃6‖2T1 = O(1), ‖∇φ̃6‖2T3 = O( 1
1−r ), ‖∇φ̃6‖2T4 = O(1− s),

thus we get condition (7.20) by scaling the basis functions by

τ4 =
√

1− s, τ5 =
√

1− s, τ6 =
√

1− r.

Considering condition (7.21), we again treat the three basis functions corresponding to P4,
P5, P6 individually:

• For the basis function corresponding to node P6, analogous calculations as in Configu-
ration C1 above yield that

‖∇φ6 + v∇φ5‖2L2(T3) ≈
1√
3

for r, s ≈ 1. Thus, condition (7.21) is satisfied.

• For point P5 we get

‖∇φ5 + v∇φ4 + w∇φ6‖2L2(T2∪T3∪T4) ≈
1√
3

(
(v − 1)2 + w2

)
for r, s ≈ 1, which vanishes for v = 1 and w = 0. In this case, condition (7.21) can
be shown by looking at triangle T5 in the neighboring patch, see Figure 7.5(a). Due to
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Assumption 12, point P7 stays the midpoint of the makro edge and triangle T5 has two
edges with length of order 1 and one edge of length t = 1−s, see Figure 7.6(a). Due to
the scaling of the basis function φ5 = τ5φ̃5 with τ5 =

√
1− s and since the basis function

φ7 already has the correct scaling to fulfill (7.20), i.e., τ7 = 1 (cf. Configuration C), we
get for r, s ≈ 1 that

‖∇φ5 + v∇φ7‖2L2(T5) ≈
1

2
√

3
,

which yields condition (7.21).

• Similarly, for the point P4 we get for r, s ≈ 1 that

‖∇φ4 + v∇φ5 + w∇φ6‖2L2(T1∪T2∪T4) ≈
(v − 1)2

√
3

,

which vanishes for v = 1. Also here, we can have a look at the triangles coming from
the adjacent patch, see Figure 7.5(a). This case is more involved since we have to
distinguish several cases depending on where the interface leaves the adjacent patch,
see Figures 7.6(b)–(f). Depending on the configuration of the adjacent patch (consisting
of triangles T6–T9 in Figure 7.5), the basis functions corresponding to points P8 and P10

have different scaling factors. Therefore, a proof of condition (7.21) in this case becomes
quite technical and remains to be shown in a rigorous way.

7.5.1.3 Configuration D

We consider Configuration D1, where the interface parameter r is close to 0 and remark that
analogous findings hold for Configuration D2 due to symmetry. For the gradients of the basis
functions, we obtain

‖∇φ̃4‖2T1 = O(1), ‖∇φ̃4‖2T2 = O(1
r ), ‖∇φ̃5‖2T3 = O(1), ‖∇φ̃5‖2T4 = O(1),

‖∇φ̃6‖2T1 = O(1), ‖∇φ̃6‖2T2 = O(1
r ), ‖∇φ̃6‖2T3 = O(1), ‖∇φ̃6‖2T4 = O(1).

We scale the basis functions by the factors

τ4 =
√
r, τ5 = 1, τ6 =

√
r.

which yields condition (7.20). For the degree of freedom corresponding to the node P5, we
get that condition (7.21) is satisfied due to

‖∇φ5 + v∇φ6‖2L2(T3) =
2√
3
.

However, for the remaining two degrees of freedom, condition (7.21) cannot be shown by
only considering the subtriangles T1–T4. Similarly to Configuration B, the condition can be
shown for the degree of freedom corresponding to P4 by looking at the triangle T6 (note that
P8 and P10 must be the midpoints of the corresponding makro edges due to Assumption 12).
For the degree of freedom corresponding to P6, again we have to distinguish several cases
depending on where the interface leaves the adjacent patch. Also this technical discussion
remains open.
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Figure 7.5: Reference patch together with two adjacent patches for Configurations A–C (left)
and Configuration D (right).

Summarizing, we have seen that the suggested scaling of the basis functions yields condition
(7.20) and also that condition (7.21) is satisfied for all bubble functions vb ∈ Vb except in
the two limiting cases in Configurations B and D mentioned above. We remark that (7.21) is
only a su�cient condition, thus it may still be possible to show the bound on the condition
number of Theorem 7.12 even if (7.21) does not hold.

In a practical implementation, an appropriate scaling of the basis functions can be achieved
by a simple diagonal scaling of the stiffness matrix. Instead of solving the linear system
Khuh = fh we solve the system

K̃hũh = f̃h with K̃h = D−1/2KhD
−1/2, ũh = D1/2uh, f̃h = D−1/2fh, (7.26)

where D = diag(Kh). By this scaling, we achieve that the diagonal entries of the scaled
stiffness matrix K̃h are equal to 1, which can be interpreted as a scaling of the basis functions
such that ‖∇φi‖2 = a(φi, φi) = (K̃h)ii = 1.

7.5.2 Numerical Experiments

In this section, we illustrate in two simple examples how the choice of the hierarchical basis
(7.19) together with the diagonal scaling (7.26) of the stiffness matrix reduces the condition
number of the system matrix in the presence of small angles. As a rough measure of the con-
dition number, we consider the number of iterations of the conjugate gradient (CG) method
which, given a right hand side vector, is needed to reduce the initial residual by a given factor
(here by the factor 10−10). Note that, for the CG method, the number of required iterations
is of the order of the square root of the condition number, see e.g. [156,222].
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Figure 7.6: Possible different configurations of adjacent patches when patch consisting of
points P1–P6 is cut by the interface. (a) Patch adjacent to non-intersected makro edge in
Configuration B. (b)–(f) Patch adjacent to intersected makro edge in Configuration B for
different configurations of this patch. (g) Patch adjacent to non-intersected makro edge in
Configuration D.
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(a) (b)

Figure 7.7: Interface problem with circular interface; x-coordinate of center of circle is in-
cremented by steps of 0.01 between x = −0.5 and x = 0.5. Right: Number of CG iterations
needed to reduce the initial residual by a factor of 10−10 depending on position of circle for
standard FE approach (blue) and for hierarchical basis with scaling (7.26) (orange).

As a first example we consider a circular interface at different positions within the computa-
tional domain. The finite element system is solved for a range of values of the x-coordinate
xM,1 of the midpoint of the circle between −0.5 and 0.5, see Figure 7.7(a). Figure 7.7(b)
compares the number of CG iterations needed for solving the original system in the standard
finite element basis and the scaled system together with the hierarchical basis. It can be seen
that the latter approach yields a much better condition, though a dependence on the location
of the interface is still observable.

In a second example, we investigate the condition of the system when some angles approach
zero. For that purpose, we divide the computational domain D into the subdomains ΩtIF

1 :=

{(x1, x2) ∈ D : x2 > 0.5+ tIF } with coe�cient κ = 1, ΩtIF
2 := D \ΩtIF

1 with κ = 10 as well as
the interface ΓtIF , and let the parameter tIF tend to zero. By this procedure, the horizontal
material interface, which is parallel to the edges of the mesh at x2 = 0.5, approaches these
edges and produces very small angles (due to Configurations A and B), see the right picture
of Figure 7.8. Table 7.2 compares the number of CG iterations for the different approaches
as the interface parameter, and therefore the minimal angle, approaches zero.
From the numerical experiments conducted in this section, we can conclude that the condition
number of the stiffness matrix Kh can be significantly improved by using a hierarchical basis
and scaling the system of finite element equations according to (7.26). However, we also
see that there is still a dependence of this condition number on the location of the interface
relative to the makro mesh which is most likely due to the presence of very small angles.

We mention that, in this thesis, all linear systems arising in the discretization of the state
and adjoint equations were solved using a direct solver, namely the PARDISO (parallel direct
solver) project [131,183,184]. A bad condition of the system matrix also affects the accuracy
of the solution obtained by direct methods. However, in the case of direct solvers, we have
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Figure 7.8: Horizontal interface approaching the line {y = 0.5} as tIF goes to zero. As tIF
decreases, smallest angle in mesh gets smaller and condition of system matrix deteriorates
(see Table 7.2).

control over the number of valid digits in the solution to a system of linear equations. As a
rule of thumb, using floating point arithmetic with d digits (e.g., d = 16 when using double
precision in C++), the first d− log10(κ(A))− 1 many digits of the solution are reliable where
κ(A) denotes the condition number of the system matrix A, see e.g. [190].

It is subject of future investigation to design a robust preconditioner for iterative methods by
replacing the node-wise diagonal scaling (7.26) by a patch-wise block diagonal scaling which
can be understood as an additive Schwarz preconditioner.

no scaling diagonal scaling
tIF θmin θmax Φh Φ2h ∪ Φb Φh Φ2h + Φb

1/8 45 90 537 357 210 134
1/16 45 90 507 339 208 139
1/32 45 90 492 323 210 141
1/64 45 90 488 323 212 142
1/128 15.255 108.43 493 320 228 143
1/256 6.5463 113.2 571 379 229 149
1/512 3.0556 115.02 705 474 239 160
1/1024 1.4786 115.82 789 566 253 177
1/2048 0.72756 116.2 854 655 284 197
1/4096 0.36092 116.38 1015 828 353 235
1/8192 0.17975 116.48 1072 1053 414 314
1/16384 0.0897 116.52 1176 1373 507 404
1/32768 0.044806 116.54 1234 1667 629 481
1/65536 0.022392 116.55 1284 1984 711 593

Table 7.2: Number of CG iterations needed for solving linear system of problem (7.1) on
domain of Figure 7.8 for decreasing sequence of interface parameter tIF without and with
preconditioning (7.26), using the standard basis of the FE space Vh or the hierarchical splitting
(7.19) into V2h + Vb.
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Part IV

Combined Topology and Shape
Optimization with Interface Handling
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Chapter 8

Numerical Optimization Results

In this chapter, we combine the techniques we developed so far in this thesis and apply them
to two design optimization problems for electric motors which are, from a practical point
of view, slightly more relevant than the model problem introduced in Section 2.3. The first
practical problem is posed on the same motor geometry as in Section 2.3, but we optimize
with respect to a different objective functional. In the second practical example, we deal with
a synchronous reluctance motor, which does not have permanent magnets. There, the design
subdomain consists of the whole rotor and the goal is to maximize the torque of the motor.

8.1 Implementation

We make a few remarks concerning the numerical simulation and optimization results ob-
tained in this section as well as in Sections 3.3, 4.8 and 6.6:

• All arising PDEs were solved approximately by piecewise linear, globally continuous
finite elements on triangular meshes.

• Given a geometry description of the electric motor, a triangular mesh was obtained
by NETGEN, see [186]. In order to allow for different rotor-to-stator constellations,
the rotor and the stator are meshed individually and are connected by a third mesh
representing the air gap. This air gap mesh has particularly high resolution which yields
a higher accuracy of the computed magnetic field in this very important region.

• The system of nonlinear equations arising from the finite element discretization of the
nonlinear state equation was solved by a damped Newton method, see, e.g., [76, 156,
222].

• All systems of linear equations arising from the finite element discretization were solved
using the parallel direct solver PARDISO [131,183,184].

• The model problem introduced in Section 2.3 was solved on a mesh with 44810 degrees
of freedom and 89454 elements where we chose a particularly fine discretization in the
design regions Ωd (53488 design elements). For the synchronous reluctance motor of
Section 8.4, we used a mesh consisting of 24935 vertices and 49768 elements (17888
design elements).

189
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• All numerical simulation and optimization results were obtained using our own imple-
mentation in C++.

8.2 Combined Topology and Shape Optimization with Interface
Handling

One drawback of Algorithm 2 presented in Section 4.8, where the design is represented by a
level set function whose evolution is steered by the topological derivative, is that the topolog-
ical derivative is not defined on the interface and, therefore, the procedure is not well-defined
there. In a numerical realization, the generalized topological derivative at the material inter-
face is obtained by averaging over the neighboring elements of the mesh, see Remark 4.79.
However, there is still no guarantee that the material interface arising from an optimization
procedure that is guided by the topological derivative is smooth. In particular, when combin-
ing Algorithm 2 with the mesh adaptation strategy of Chapter 7, we observed that Assumption
11 was often violated.

For this reason, we recommend the following two-stage optimization procedure:

Algorithm 4. (Combined topology and shape optimization with interface handling)

Stage I: Apply Algorithm 2 to find an optimal topology.

Stage II:

(i) Approximate the final design of Stage II by polygonal interface.

(ii) Apply Algorithm 3 with the following modification:
For each solve of the state and adjoint equations for u and p, the local mesh adap-
tation strategy of Section 7.2 is applied for the updated polygonal interface.

Remark 8.1. A more natural version of Algorithm 4 consists in skipping step II(i) and perform-
ing shape optimization based on the level set method, see Section 1.2.1.4, using the level set
representation of the final result of Stage I. However, due to the difficulties arising in the nu-
merical treatment of the Hamilton-Jacobi equation (1.1) (in particular on non-structured grids)
which we pointed out in Section 1.2.1.4, we used an explicit representation of the interface and
the gradient-like method of Algorithm 3. The extension to a level-set based shape optimization
method should cause no fundamental problems and is subject of future work.

8.3 Minimizing Total Harmonic Distortion

The goal of the model problem introduced in Section 2.3 was to achieve a smooth rotation of
the rotor by having a smooth radial component of the magnetic flux density Br in the air gap.
With the choice of the objective functional (2.15), we tried to achieve this by minimizing the
L2 distance between Br and a given sine curve, see Figure 2.3. However, in practice it is not
clear how big the amplitude of this given sine curve should be chosen.
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Figure 8.1: Top left: Initial Design. Top right: Design after two iterations of topology opti-
mization by Algorithm 2. Center left: Final design of topology optimization after 47 iterations.
Center right: Initial design for shape optimization by approximation of topology optimization
result. Bottom left: Final design of shape optimization with mesh adaptation strategy after
10 iterations. Bottom right: Zoom on modified mesh.
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Figure 8.2: Radial component of magnetic flux density along the air gap for initial and final
designs. Left: Stage I (Topology optimization). Right: Stage II (Shape Optimization)

A better way to achieve a smooth radial component of B is the following: We consider Br
along a circular curve inside the air gap as a periodic signal and decompose it into its Fourier
coe�cients,

Br(u)(ϕ) =
∞∑
k=1

Ak sin (ω k ϕ) +Bk cos (ω k ϕ), (8.1)

where Ak, Bk ∈ R, ϕ ∈ [0, 2π] and ω denotes the number of pole pairs of the motor. In
the motor introduced in Section 2.3, we have eight magnetic poles, thus ω = 4. Due to the
geometry of the motor, the coe�cients Ak are approximately zero and will be neglected. The
total harmonic distortion (THD) measures the contributions of higher harmonics (i.e., k > 1)
to the total signal, see [45, 66, 87, 130]. For practical purposes, we only consider the first
N = 20 harmonics. Then, the total harmonic distortion of Br reads

THD(Br) =

√√√√∑N
k=2B

2
k∑N

k=1B
2
k

,

where the coe�cients Bk are according to (8.1). The minimization of the THD filters out all
higher harmonics. In order to make sure that first harmonic does not become too small, we
minimize the functional

J (u) =
THD(Br(u))2

B1(Br(u))
,

where B1(Br(u)) denotes the coe�cient B1 in (8.1). In our implementation, we computed
the Fourier coe�cients by a least square approach.

Figure 8.1 shows the evolution of the design by using Algorithm 4 starting from an initial
design. The final design obtained after a total of 47 iterations is approximated by an ex-
plicit polygonal interface, which served as an initial guess for the shape optimization. The
final design after the shape optimization procedure together with the local mesh modification
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Figure 8.3: Final designs after Stage II together with magnetic field lines.

strategy introduced and analyzed in Chapter 7 can be seen in the bottom row of Figure 8.1.
Figure 8.2 shows the curve Br for the initial and the final design of both stages of the opti-
mization procedure, and Figure 8.3 the final design together with the magnetic field.

We remark that in step II(i), we approximated the final design of Stage I by a polygonal inter-
face by hand. Here, we enforced symmetry of the design among the eight parts of the design
area Ωd and also within each of these eight parts. By proceeding like this, we introduce a
rather large approximation error and the objective value increases. After shape optimization,
we get a smoother and more symmetric design, however the objective value is still larger than
for the final design of Stage I. As mentioned in Remark 8.1, Algorithm 4 could be improved by
performing Stage II by a level set method. Moreover, in all of our experiments, we performed
the optimization of the eight parts of the design region Ωd independently in order to allow
for more general designs. If one is only interested in symmetric designs, we recommend to
compute sensitivities only in one of the eight parts and to perform the same design updates
in each part in every iteration. We remark that the source of non-symmetry in FE-based shape
and topology optimization is often a non-symmetric mesh.

8.4 Maximizing Torque for Synchronous Reluctance Motor

In this final section of the thesis, we consider a different kind of electric motors, namely a
synchronous reluctance motor which does not contain any permanent magnets. Compared
to electrical machines with permanent magnets, this kind of motor performs generally worse,
but is more robust and cheaper to manufacture. The key component of this kind of motors is
that the magnetic flux is guided by so-called flux barriers, i.e., narrow air regions inside the
ferromagnetic material in the rotor. The optimal number and shape of such flux barriers is
subject of active research, see, e.g. [70,126], but has, to the knowledge of the author, so far
only been considered from a parametric point of view.

In contrast to the model problem used in the previous numerical experiments, here, we are
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Figure 8.4: Top left: Initial Design. Top right: Design after one iteration of topology opti-
mization by Algorithm 2. Center left: Design after two iterations of topology optimization
by Algorithm 2. Center right: Final design of topology optimization after 19 iterations. Bot-
tom left: Initial design for shape optimization by approximation topology optimization result.
Bottom right: Final design of shape optimization with mesh adaptation strategy after 10 iter-
ations.
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Figure 8.5: Final design after Stage II together with magnetic field lines.

interested in an objective which comprises all possible positions of the rotor (inner part of the
motor) relative to the stator (outer part). We are interested in maximizing the average of the
torque over all different rotor positions. Therefore, we consider the functional

J =
1

N

N∑
k=1

T (ϕk)

where T (ϕ) denotes the torque of the motor at rotor position ϕ ∈ [0, 2π] and {ϕk}nk=1 is an
equidistant subdivision of the interval [0, 2π]. For a fixed rotor position ϕ, the torque can be
expressed as

T (ϕ) = ν0

∫
Γ0

∇u>ϕ Q(x)∇uϕ ds,

with the symmetric matrix

Q(x) =
1√

x2
1 + x2

2

(
x1 x2

x22−x21
2

x22−x21
2 −x1 x2

)
,

see [81], where Γ0 is a circular curve inside the air gap, and uϕ is the solution to the mag-
netostatic boundary value problem (2.17b) for the rotor-to-stator constellation given by the
angle ϕ. Note that, compared to the previous examples, here the magnetizationM⊥ in (2.13)
vanishes and the current density J3 is piecewise constant in the coil areas. In each of the coil
subdomains, the induced electric current J3 is a periodic sine-like function in terms of the
rotation angle ϕ.

Since we are interested in a high mean torque, we minimize the functional −J . Due to the
periodicity of the motor and the form of the currents, it su�ces to consider only a sixth of
a full rotation. For the equidistant rotation angles we chose N = 15 and {ϕ1, . . . , ϕN} =
{0, 2, 4, . . . , 28}.
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Figure 8.4 shows the evolution of the design in the course of the two-stage optimization
procedure summarized in Algorithm 4. Note that, here, the approximation of the final design
of the topology optimization algorithm by an explicit, polygonal interface actually yields a
slight improvement of the objective function. The final design after Stage II of Algorithm 4 is
shown in Figure 8.5.

We remark that further studies have to be done including the choice of different initial con-
figurations since, as it is usual in gradient-based optimization, we can only guarantee local
optimality of the obtained designs. However, the presented result should serve as an illustra-
tion of the flexibility of the method.



Conclusion and Outlook

Conclusion

This thesis was motivated by a particular class of problems, namely by the task to find an op-
timal distribution of ferromagnetic material within a design area of an electric motor, where
the word “optimal” is understood with respect to a given objective functional. Here, we con-
sidered the situation where the ferromagnetic material exhibits nonlinear material behavior,
resulting in a PDE-constrained shape optimization problem with a quasilinear PDE constraint.

For this problem, we considered the On/Off method introduced in [163] for optimal design
problems in electromagnetics. We generalized the method, which is based on a discretization
of the state equation, to the continuous level and showed first numerical results for a model
problem.

Motivated by this topology optimization method based on the sensitivity of the objective func-
tion with respect to a perturbation of the material coe�cient, we investigated the connection
between this kind of sensitivities and the mathematical concept of the topological derivative.
We derived an explicit formula for the topological derivative of a shape functional which is
constrained by the equation of two-dimensional nonlinear magnetostatics, which, in addition
to a term that is well-known from the case of linear PDE constraints, also contains a second
term which accounts for the nonlinearity of the problem. Numerical tests showed, however,
that in the case of electrical machines this second term of the topological derivative is negligi-
ble compared to the first term. We derived the topological derivative for both the introduction
of air inside ferromagnetic material and the other way around, which allowed us to use a level
set algorithm based on the topological derivative.

We also considered the same problem from the perspective of shape optimization by means of
smooth perturbations of the material interfaces and derived the shape derivative for the same
PDE-constrained shape optimization problem. We obtained numerical optimization results by
applying this sensitivity information in a gradient-like method.

Numerical approaches to shape and topology optimization usually yield material interfaces
which evolve in the course of the optimization procedure. In order to accurately resolve these
interfaces, which are not necessarily aligned with the underlying triangular finite element
mesh, we developed a mesh adaptation strategy. The approach consists in modifying the
finite element mesh only locally in a neighborhood of the interface while ensuring that none
of the interior angles of the triangular mesh becomes too large. This allowed us to show
optimal order of convergence as the mesh size tends to zero. Furthermore, we investigated
the issue of the condition number of the finite element matrix in terms of small angles.
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Finally, we combined all of the techniques developed in this thesis and applied them to two
practically interesting design optimization problems. We used a two-stage optimization pro-
cedure consisting of topology optimization in the first stage, followed by shape optimization
including the interface finite element method as a post-processing in the second stage. This
optimization procedure allows to obtain interesting, smooth designs without any a priori
knowledge of the optimal solution.

Possible future work

The work presented in this thesis can be extended in the following directions:

• While the setting of two-dimensional magnetostatics is widely accepted for the simu-
lation and optimization of electrical machines, there are applications where the three-
dimensional model (2.6a) should preferred. This is the case for motors whose axial
dimension is small compared to its diameter.

The generalization of the On/Off method using material sensitivities to the 3D case is
straightforward and has been used in the literature [161].

To the knowledge of the author, the rigorous derivation of the topological derivative for
three-dimensional nonlinear magnetostatics is an open problem.

The application of Theorem 6.8 to the derivation of the shape derivative for the curl-curl
problem is possible under slight modifications, as it was noted in [198].

An extension of the interface finite element method of Chapter 7 to the case of globally
continuous, piecewise linear finite elements on a tetrahedral mesh seems possible. Also
here, the main ingredient for showing optimal convergence rates will be to prove a
maximum angle condition. In the case of three-dimensional magnetostatics, however,
where Nédélec elements are used, the situation is not clear.

• Isogeometric analysis (IgA) was introduced in [115] and has gained very much popular-
ity in many fields of engineering since then. Isogeometric analysis uses spline functions
for both representing the geometry and the solution to the PDE. The big advantage of
IgA over the finite element method is that spline-based geometries can be represented
exactly. This approach has particularly big potential for the simulation and optimization
of electrical machines since the performance of electric machines depends on the mag-
netic field in the air gap, which is usually of circular shape and has to be approximated
in the finite element method.

Several authors have considered shape optimization in the framework of isogeometric
analysis in a parametric way [114,154], where sensitivities are computed with respect
to a certain (fixed) number of control points which represent the geometry. Nonpara-
metric shape optimization in the framework of isogeometric analysis has also been con-
sidered in [71,85].

• The magnetostatic model (2.6) we used throughout this thesis describes very well the
setting of an electric motor which rotates at constant speed. However, in the starting
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phase, when the motor is accelerated from rest to a rotation at constant speed, time-
dependent effects have to be considered and the preferred model is the magnetoqua-
sistatic model (2.5). A potential way to treat this parabolic problem is to use space-time
methods such as [132] which has the great advantage that it can be parallelized in
time, see [86]. We mention that, for the linear magnetoquasistatic model, the shape
derivative has been derived in [110].

• Another active field of research in the context of optimization of electrical equipment is
the field of uncertainty quantification and robust optimization. As we mentioned in Sec-
tion 2.4, the B–H-curve defining the reluctivity function ν̂ is not known explicitly, but
interpolated or approximated from measured data, which are subject to measurement
errors. Therefore, the B–H-curve should be modeled in a stochastic way. Uncertainty
quantification for nonlinear magnetostatics has been considered in [177, 178]. In or-
der to obtain robust designs, these uncertainties should also be accounted for in the
optimization procedure as it was done in [72,172].

• A further possible extension of the presented methods is multi-material optimization,
i.e., finding an optimal configuration consisting of three or more different materials, as it
has already been considered in [3,148,220]. This way, it would be possible to find opti-
mal designs consisting of not only air and ferromagnetic material, but the right position
and shape of the permanent magnets could be included into the optimization process,
too. Although, in general, only magnets of rectangular shape are used in practice, topol-
ogy optimization might give interesting insights into other possibilities. In particular,
an extension of the level set algorithm based on the topological derivative [19] to the
multi-material case would be interesting.

• A comparison of the results of this thesis with different, well-established topology and
shape optimization methods such as density-based methods, the phase-field method or
the original level-set method based on shape sensitivities would be interesting.

• Another issue that is very relevant for practical applications is the fact that it should
be possible to actually manufacture the final designs of the optimization process. In
particular, highly oscillating shapes should be avoided. This can be achieved by adding
the perimeter of the structure, multiplied with a weighting factor, to the cost function,
which serves as a regularization of the problem and which is common practice in shape
optimization. It is, however, not possible to compute the topological derivative of this
additional perimeter term. In [18], a promising way to incorporate the perimeter of
a structure into a topology optimization process by the level set algorithm [19] is pre-
sented. Furthermore, we mention the topology optimization approaches dealing with
manufacturing constraints and thickness control [7,148] as well as the phase-field/level
set approach [213] which allows to adjust the complexity of the arising designs by a
parameter. Furthermore, we mention the recent work [4] where the level set method
is employed under a constraint which ensures that the final design can be produced by
additive manufacturing.

• While the numerical experiments conducted in Section 4.7 showed that the second term
J2 in the topological derivative for the nonlinear case is negligible compared to the first
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term J1 in the case of electrical machines, it would be interesting to investigate situa-
tions where this term can become more important. This might be the case in situations
where the difference between the maximal and minimal value attained by the nonlinear
function ν̂ is smaller.



List of Notation

Ωref
air Air reference domain (fixed)

P0 Gradient of unperturbed adjoint state at point x0

D Hold-all domain representing the electric motor together with air regions

B Magnetic flux density / magnetic induction

H Magnetic field intensity / magnetizing force

J Objective function

M Matrix in first term of topological derivative in Case I; related to polarization matrix

M(2) Matrix in first term of topological derivative in Case I; related to polarization matrix

ν0 Magnetic reluctivity in vacuum or air (constant)

ν1 Constant magnetic reluctivity in ferromagnetic domain in simplified linear case

νΩ Global reluctivity function in D given the ferromagnetic subset Ω

ν̂ Magnetic reluctivity function in ferromagnetic subdomain

Ωmag Magnet areas (fixed)

Ω Subdomain of Ωref
f that is currently occupied with ferromagnetic material (subject to

optimization)

Ωd Design subdomain (fixed)

Ωc Coil areas

Ωf Subset of motor that is currently occupied with ferromagnetic material (subject to
optimization)

Ωg Air gap region (fixed)

Ωref
f Ferromagnetic reference domain (fixed)

G̃ Linearization of J

G̃ψ Generalized topological derivative for design represented by level set function ψ
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AΩ Operator representing left hand side of magnetostatic boundary value problem for
given design ω

Bd Desired radial component of magnetic flux density in air gap in model problem (sine
curve)

dJ (Ω;V ) Shape derivative of J in direction of vector field V

F Right hand side of magnetostatic boundary value problem comprising magnetization
and impressed currents

G(x0) Topological derivative at spatial point x0

H Variation of direct state at scale 1

K Variation of adjoint state at scale 1

SW (V ) Operator representing nonlinearity of T

T Operator representing flux in nonlinear material, T (W ) = ν̂(|W |)W forW ∈ R2

Tt Transformation in direction of vector field V

U0 Gradient of unperturbed direct state at point x0

V Velocity field defining shape perturbation

u State variable in 2D magnetostatics (third component of magnetic vector potential)

THD Total harmonic distortion
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