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Kurzfassung
Die vorliegende Dissertation präsentiert die formale, computerunterstützte Ex-
ploration der Theorie der Gröbner Basen im mathematischen Assistenzsystem
Theorema 2.0. Die Hauptmotivation für diese Arbeit ist unsere Überzeugung,
dass eine vollständig formale, veri�zierte und sogar exekutierbare Darstellung
der Theorie deren zukünftige Erweiterung deutlich vereinfachen kann.

Den Kern der Formalisierung stellen sogenannte Reduktionsringe dar, die
vor über 30 Jahren von Buchberger eingeführt wurden. Reduktionsringe ver-
allgemeinern das ursprüngliche “Setting” von Gröbner Basen in Polynomringen
über Körpern zu einer viel größeren Klasse algebraischer Strukturen, nämlich im
Wesentlichen zu unitären kommutativen Ringen mit ein paar zusätzlichen Funk-
tionen und Relationen, die eine Handvoll nicht-trivialer Axiome erfüllen. Wir
haben alle zentralen Aspekte dieser Theorie in Theorema dargestellt, d. h. ins-
besondere alle wichtigen De�nitionen und Sätze, und haben sämtliche Resultate
mithilfe der automatischen und interaktiven Beweisfunktionen von Theorema
bewiesen. Außerdem haben wir den Buchberger-Algorithmus zur Berechnung
von Gröbner Basen in einer komplett generischen und direkt ausführbaren Weise
implementiert und die totale Korrektheit dieser Implementierung bewiesen. Das
Ergbnis von alledem ist nun als Sammlung von 16 Theorema-Theorien, beste-
hend aus insgesamt ca. 2240 Formeln, verfügbar, welche als Basis für zukünftige
Theorieexplorationen in Theorema dienen kann.

Obwohl die mathematischen Theorien, die wir formalisiert haben, keineswegs
neu sind, konnten wir dennoch auch direkt zu ihnen beitragen, und zwar durch
die drastische Verinfachung eines Beweises, die Verallgemeinerung von verschie-
denen De�nitionen und Resultaten, und, am allerwichtigsten, durch das Kor-
rigieren eines kleinen Fehlers in der Reduktionsringtheorie. Das alles unterstützt
de�nitiv die Behauptung, Mathematik würde davon pro�tieren, formal in einem
Computersystem behandelt zu werden, und ist deshalb eine zusätzliche Motiva-
tion für unsere Arbeit im Speziellen und für computerunterstützte Theorieexplo-
ration im Allgemeinen.

Schließlich berichtet die Dissertation auch über vier neue Werkzeuge in The-
orema, die wir im Rahmen unserer Arbeit entwickelt haben: einen Rewriting-
Mechanismus für Regeln erster- und höherer Ordnung, eine Sammlung von In-
ferenzregeln für allgemeine Prädikatenlogik, eine Beweisstrategie für interak-
tives Beweisen, und eine Sammlung von Funktionen zur Analyse der logischen
Struktur von Theorema-Theorien. Jedes dieser Werkzeuge hat sich bereits als
äußerst hilfreich in der Formalisierung der Gröbner Basen Theorie herausgestellt
und wird deshalb sicherlich auch in zukünftigen Theorieexplorationen in Theo-
rema Anwendung �nden.
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Abstract
This thesis presents the formal, computer-supported exploration of the theory
of Gröbner bases in the mathematical assistant system Theorema 2.0. The main
motivation for this work is our conviction that a fully formal, veri�ed and even
executable representation of the theory has the potential to facilitate its further
expansion in the future.

The core component of the computer-formalization are so-called reduction
rings, introduced by Buchberger more than 30 years ago. Reduction rings gen-
eralize the original setting of Gröbner bases in polynomial rings over �elds to a
much wider class of algebraic structures, namely essentially commutative rings
with multiplicative identity and a couple of further functions and relations, sat-
isfying a handful of non-trivial axioms. We represented the central aspects of
this theory in Theorema, including all the main de�nitions and theorems, and
proved the results correct using the automated- and interactive proving facilities
of Theorema. Moreover, we also implemented Buchberger’s algorithm for actu-
ally computing Gröbner bases in a completely generic and directly executable
manner and proved it totally correct. The result of all this is now available as
a collection of 16 Theorema theories, consisting in total of roughly 2240 for-
mulas, that may serve as the basis for future theory explorations in Theorema;
this, in particular, holds for eight theories exclusively dealing with elementary
mathematical concepts, such as sets, numbers, tuples, etc., that are themselves
absolutely independent of Gröbner bases, reduction rings and Buchberger’s al-
gorithm.

Although the mathematical theories we considered for formalization are by
no means novel, we nevertheless managed to contribute to them as well, by (dras-
tically) simplifying one proof, generalizing various de�nitions and results, and,
most importantly, correcting a subtle error in the theory of reduction rings. This
de�nitely gives evidence to the claim that mathematics pro�ts from being treated
formally in software systems and hence constitutes another motivation for our
work in particular and for computer-assisted theory exploration in general.

Finally, the thesis also reports on four tools in Theorema we developed in the
frame of our studies: a powerful �rst- and higher-order rewriting mechanism,
a set of inference rules for general predicate logic, a versatile proof strategy for
interactive proving, and a package of functions for analyzing the logical struc-
ture of one or more Theorema theories. Each of these four tools already proved
extremely useful during our formal treatment of Gröbner bases theory and will
certainly aid future theory explorations in Theorema as well.
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Chapter 1

Introduction

The work presented in this thesis belongs to the intersection of mathematics and
computer science: it is concerned with the formal, computer-supported explo-
ration of a mathematical theory in a mathematical assistant system. The ultimate
goal of computer-supported theory exploration in general is representing a sub-
stantial part of the whole corpus of mathematics in a fully formal and machine-
checked form and collecting it in extensive structured knowledge archives that
are accessible and comprehensible by humans and software systems alike. This
is motivated by the convictions of numerous scholars working in this �eld that
a formal, trusted and ideally even executable representation of the constituents
of mathematical theories (de�nitions, theorems, algorithms) bears the prospect
of leading to interesting new insights and thus signi�cantly aiding the further
expansion of the respective theories. We do not only genuinely share these con-
victions but even managed to give further evidence to them by means of concrete
improvements of existing theories obtained in the frame of our studies, as will
be seen.

The mathematical theory we considered for formalization1 is the theory of
Gröbner bases, originally invented by Buchberger in [Buc65]. More precisely,
because of the enormous size of the theory with hundreds of specializations,
generalizations and applications, we could only concentrate on small fragment of
it: the analysis of the complexity of Buchberger’s algorithm in the bivariate case,
and a generic, veri�ed, executable implementation of Buchberger’s algorithm in
so-called reduction rings.

The formal treatment of said theory was carried out in the Theorema math-
ematical assistant system [BJK+16], originally conceived by Buchberger in the
mid-nineties and now developed by his Theorema research group at the Research

1Throughout this thesis the meaning of the terms “formalization”, “formal treatment” and
“theory exploration” is representing mathematical content (de�nitions, theorems, algorithms,
etc.) in software systems.
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2 1. Introduction

Institute for Symbolic Computation. In fact, the concrete version of the sys-
tem used in our studies is the recently (summer 2014) released Theorema 2.0,
which, albeit following the same paradigms and design principles as its prede-
cessor version Theorema 1, considerably di�ers from Theorema 1 in a couple of
respects. This is the reason why we included a separate chapter on Theorema 2.0
in this thesis. Anyway, the resulting formalization is now available online from
h�p://www.risc.jku.at/people/amaletzk/Formalizations.html.

Please note that this introductory chapter is deliberately kept rather short,
since the subsequent chapters each start with quite thorough introductions to
the topics discussed there, including reviews of speci�c related work.

1.1 State-of-the-Art and Related Work
In this section we brie�y summarize the current state-of-the-art in formal, com-
puterized mathematics and automated reasoning in general. Work related specif-
ically to reduction rings can be found in Section 3.1, and to the formalization of
Gröbner bases theory in mathematical assistant systems in Section 4.1.1. Still,
we explicitly want to point out already here that the theory of reduction rings
our formalization is based upon has never been considered in any other mathe-
matical assistant system before—at least we are not aware of any.

Among the most widely used mathematical assistant systems are, in alpha-
betical order, ACL2 [KMM00], Coq [BC04], the members of the HOL family
(e. g. HOL Light [Har96]), Isabelle (in particular Isabelle/HOL) [NPW02, Wen16],
Mizar [BBG+15] and NuPRL [C+85]; see also [Wie06] for a qualitative compari-
son of these and other systems. Most of the systems listed here not only support
isolated theorem proving, i. e. where individual conjectures are entered into the
system one after the other and then proved or disproved (automatically or inter-
actively), but also the systematic development and structured, formal represen-
tation of whole mathematical theories in digital knowledge bases. Examples of
such knowledge bases are the Mizar Mathematical Library2 currently containing
roughly 1250 articles, Isabelle’s Archive of Formal Proofs3 and The Coq Users’
Contributions4, each covering a wide range of theories from basically all areas
of mathematics. Furthermore, HOL Light and Isabelle were heavily involved in
the recently �nished formal proof of the Kepler conjecture [H+15], and Coq in
the formal proof of the Feit-Thompson theorem [G+13].

Although a digital knowledge base in the spirit of the aforementioned ex-
amples does not exist in Theorema (yet), there are nevertheless some remark-

2h�p://mmlquery.mizar.org/
3h�p://afp.sourceforge.net/
4 h�p://www.lix.polytechnique.fr/coq/pylons/contribs/index

http://www.risc.jku.at/people/amaletzk/Formalizations.html
http://mmlquery.mizar.org/
http://afp.sourceforge.net/
http://www.lix.polytechnique.fr/coq/pylons/contribs/index


1.2. Summary of Contributions 3

able achievements made using Theorema. For instance, Buchberger and Craciun
[Buc04b, Cra08] managed to automatically synthesize Buchberger’s algorithm
from its speci�cation using the novel “lazy thinking” approach, and Rosenkranz
[Ros05] developed a novel algebraic method for solving linear boundary value
problems. More recently, Windsteiger [LCK+13] formalized the theory of so-
called Vickrey auctions from theoretical economics in Theorema 2.0, marking the
�rst real application of the new version of the system.

1.2 Summary of Contributions
Our work can be divided into �ve parts, contributing to three di�erent levels of
computer-assisted theory exploration.

First of all, we formalized and formally veri�ed the complexity analysis of
Buchberger’s algorithm in the bivariate case in Theorema, following his origi-
nal elaboration in [BW79, Buc83c]. As soon as this was �nished, we turned to
the formalization of the theory of reduction rings and the implementation and
veri�cation of Buchberger’s algorithm in this far more general setting, accord-
ing to [Buc83a, Sti88]. Not very surprisingly, this necessitated the representation
of a range of elementary mathematical theories independent of reduction rings,
e. g. set theory, some algebraic structures, numbers, tuples, etc., in Theorema as
well. Therefore, we also took the e�ort of formalizing these theories, resulting
in stand-alone components that may now serve as solid foundations for other
theory explorations in Theorema in the future. Just to make this point very clear
we want to highlight that every single result in each of these three major for-
malizations was of course proved formally with Theorema.

The three contributions mentioned above are all on the formalization level.
However, it is important to note that we could contribute to the theory level itself
as well, in the sense that during our work we managed to drastically simplify a
proof and generalize some de�nitions and results in connection with the com-
plexity analysis, and even to �nd and correct subtle errors in the literature on re-
duction rings. These improvements are explained thoroughly in the subsequent
chapters.

Finally, in addition to the theory- and formalization levels, we also worked on
the system level, i. e. on Theorema itself, by developing a couple of useful tools
of general interest, i. e. not speci�cally related to particular theories: a mecha-
nism for �rst- and higher-order rewriting, a collection of general predicate logic
inference rules combined in a separate Theorema prover, a proof strategy for in-
teractive proving, and a package for analyzing the logical structure of Theorema
theories. Interestingly, none of these four tools was on our agenda at the begin-
ning of our studies but all of them turned out to be highly desirable only during



4 1. Introduction

our work.
Summarizing, our contributions are the following:

1. formalizing the complexity analysis of Buchberger’s algorithm in the bi-
variate case,

2. formalizing a considerable amount of the theory of reduction rings,

3. formalizing hundreds of results related to basic mathematical concepts
such as sets, numbers, etc.,

4. slightly improving the formalized theories by simpli�cations, generaliza-
tions and even minor corrections, and

5. implementing four useful tools for enhancing the Theorema system.

To the best of our knowledge we are not aware of any other research in con-
nection with the �rst or second item in the above list. So far, Gröbner bases
theory has only been considered for formal treatment in its most basic form
(without any advanced applications), solely in polynomial rings over �elds; see
Section 4.1.1 for more details. Although the tools mentioned in the �fth item
above are integral parts of most other mathematical assistant systems, an envi-
ronment for interactive proving has already been available in Theorema 1, and a
prover for general predicate logic existed in Theorema 2.0 already, we still want
to emphasize that the mechanism for higher-order rewriting and the package for
analyzing theories are completely novel in the frame of the Theorema project.

1.3 Organization of the Thesis
The remainder of this thesis is organized as follows. In Chapter 2 we brie�y sum-
marize the most important features and main design principles of the Theorema
system, in particular of Theorema 2.0. In addition, we explain the syntax and
semantics of constructs and notions part of the Theorema language that appear
frequently in the thesis. In Chapter 3 we thoroughly review the theory of re-
duction rings and Gröbner bases by stating essentially all de�nitions and results.
Moreover, we explicitly point out our own contributions to the theory and dis-
cuss why they were necessary. Afterward, in Chapter 4, we present the main
part of our work: the formalization of various elementary mathematical theories
as well as reduction ring theory, including a generic, veri�ed and directly exe-
cutable implementation of Buchberger’s algorithm, in Theorema. To that end, we
describe the coarse structure and size of the formalization and have a closer look
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at its individual components. In Chapter 5 we give account of another formaliza-
tion, but this time not related to reduction rings, but to the complexity analysis
of Buchberger’s algorithm in the bivariate case (in polynomial rings over �elds).
Then, in Chapter 6 we turn our attention away from working with Theorema
to working on Theorema by presenting the four new tools we developed in the
frame of our studies and which already proved to be extremely helpful. In Chap-
ter 7, �nally, we conclude the thesis by giving a short summary of our results
and �ndings and listing directions for potential future work.

Appendix A contains a sample Theorema-proof of a simple theorem in our
reduction-ring formalization for illustrating how such proofs typically look like.



Chapter 2

Overview of Theorema

Theorema1 [BCJ+06, Win14, BJK+16] is a mathematical assistant system, sup-
porting the user in many aspects of his everyday mathematical work. The The-
orema project was initiated in 1995 by Bruno Buchberger, who has served as its
leader ever since.

From its outset, Theorema was designed as a system for natural-style math-
ematics. This means that users of the system should not have to get acquainted
to a completely new language or syntax, a completely new way of proving, or
even a completely new style of doing mathematics �rst. Instead, the syntax of
Theorema closely resembles the one found in usual mathematical text-books,
with all sorts of Unicode characters, two-dimensional syntax (subscripts, under-
scripts, matrix-arrangements) etc. that are the basic ingredients of the rich and
expressive language of mathematics. Moreover, proofs generated by Theorema
cannot only be inspected as abstract, hardly readable data structures where lots
of fantasy might be needed to guess the meaning of certain constructs, but in-
stead they are displayed in nicely-formatted, structured proof documents, where
informal explanatory English (or whatever language) text is interspersed with
formal content; see Appendix A for a sample proof.

Another design goal in the development of Theorema was, and still is, the
integration of all facets of mathematical theory exploration in one coherent soft-
ware system: inventing new problems, introducing new concepts, designing and
implementing algorithms, performing computations, making conjectures, prov-
ing theorems, and even disseminating results. In short, Theorema advocates
the systematic development and formalization of theories instead of only iso-
lated theorem proving. Nevertheless, automated (and also interactive) mechani-
cal proving constitutes one of the core components of the system and is brie�y
looked at separately in Section 2.3.

1h�p://www.risc.jku.at/research/theorema/so�ware/

6

http://www.risc.jku.at/research/theorema/software/


2.1. Syntax and Semantics 7

In 2010, for various reasons described in [BJK+16], the Theorema system was
re-implemented from scratch, leading to version Theorema 2.0. The main design
goals did not change, of course, and as its predecessor version it is still based
on Mathematica [Wol]. The most evident di�erence between Theorema 1 and
Theorema 2.0, and actually one of the very reasons for developing Theorema 2.0
at all, is perhaps the improved user interface: unlike before, user interactions
(inserting new formulas, performing computations, initiating proofs, etc.) almost
exclusively happen through a graphical user interface rather than a command-
oriented mode, making the system easier to handle and thus more attractive for
end-users. Since all our work was carried out entirely in the new version of the
system, the term “Theorema” in the sequel always refers to Theorema 2.0 unless
explicitly stated otherwise.

One point needs to be addressed explicitly: although Theorema is based on
Mathematica, i. e. programmed in the Mathematica programming language and
distributed as a Mathematica package, no appeal to Mathematica’s huge algo-
rithm library and multitude of simpli�cation rules is made by default. Instead,
content input into Theorema is somehow “shielded” from unwanted evaluation
that usually happens in Mathematica, giving the user full control over how the
input shall be processed further. For example, the user can explicitly specify the
set of simpli�cation rules to be used in computations and proofs.

Before we present some further details of the syntax and semantics of Theo-
rema below, some words on notation and typesetting in this thesis are in place:
in the rest of this chapter and throughout this thesis, Theorema constants that
are no number literals are printed in typewriter font, whereas variables are
printed in italics. Theorema formulas are usually displayed in separate boxes
with light-gray background, as in2

∀
m∈N

∃
n∈N

n ≥ m ∧ isPrime[n− 1] ∧ isPrime[n+ 1] (prime twins)

In Chapter 4, sans serif font refers to Theorema theories (usually, such a
theory is also su�xed by .nb, indicating that it actually is a Theorema, or, more
precisely, Mathematica notebook).

2.1 Syntax and Semantics
In this section, we review the most important syntactical details of the Theorema
language; a thorough description of all aspects of the syntax of Theorema goes

2Formula (prime twins) has nothing to do with our work, of course, but was merely chosen
for demonstration purposes.
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beyond the scope of this thesis, though.
First and foremost, the language of Theorema is essentially a variant of un-

typed higher-order predicate logic with sequence variables, where function appli-
cation is denoted by square brackets (foo[x] instead of foo(x)). Sequence vari-
ables [KB04] are variables that may not only be instantiated by single terms,
but by sequences of terms of arbitrary �nite length (possibly even the empty se-
quence); in Theorema, sequence variables are always su�xed by three dots (e. g.
x...).

Note that only the language of Theorema is that of untyped higher-order
logic. The semantics of an expression is solely determined by the rewrite rules
(e. g. simpli�cation rules for computation, or inference rules for logical reason-
ing) currently available in a theory exploration. In principle, users of Theorema
have a lot of freedom to compose these rules according to their taste and needs,
for working, say, in Zermelo-Fraenkel set theory, (typed or untyped) higher-
order logic, constructive type theory, or whatever. It is clear, though, that Theo-
rema provides a standard logical environment by default, which �ts the language
of Theorema and is more or less untyped predicate logic—�rst-order, for the most
part (where, e. g., the application of a universally quanti�ed variable f to some
arguments is interpreted just as syntactic application). In our work, we stuck
to these standards, only adding a bit of higher-order logic, namely higher-order
rewriting (where the application of universally quanti�ed f to arguments is not
just interpreted syntactically; see Section 6.1), to the inferencing facilities.

In the rest of this section we discuss the various syntax elements of Theorema
that occur in this thesis.

Propositional logic. The syntax of propositional logic in Theorema adheres
to traditional conventions. Only note that conjunctions and disjunctions may be
written “vertically” to save space, as

∧


ϕ1

ϕ2
...
ϕn

∨


ϕ1

ϕ2
...
ϕn

Binders. The syntax of variable binders, such as logical quanti�ers, sums and
products, and set- and tuple abstractions, resembles that of ordinary mathemat-
ics. Variables bound by such constructs, however, are always written under the
respective binder, e. g.

∀
x,y
ϕ ∃

P[z]
ϕ

∑
i=1,...,n

t {t |
a∈A

ϕ}
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These four examples also illustrate the four types of variable ranges available
in Theorema: the range of the universal quanti�er is unrestricted, meaning that
x and y can be completely arbitrary; z ranges over objects satisfying the unary
predicate P ; i ranges over integers between 1 and n (both inclusive); a ranges
over elements of the setA. It is possible to bind more than one variable at once, as
in the �rst example above. For instance, the range a, b, c ∈ A binds variables a, b
and c, all of which are restricted to elements of A. In connection with predicate-
ranges, as in the second example, one must be careful to observe that the given
predicates are always considered unary, i. e.

∀
P[x,y,z]

ϕ ≡ ∀
P[x],P[y],P[z]

ϕ

which is particularly convenient in connection with domain decision predicates
restricting the “type” of variables, see Section 2.2 and also Remark 1.

Of course, binders and ranges can be combined arbitrarily. Moreover, it is
possible to impose further constraints on the instances of bound variables by
adding conditions under the respective variable ranges, e. g.

∀
a,b,c∈Z
a3+b3=c3

ϕ
∑

i=2,...,1000

isPrime[i]

t

Tuples. Tuples are �nite ordered lists of arbitrary elements, i. e. one and the
same tuple may contain elements of completely di�erent kinds (numbers, sets,
other tuples, etc.); they are characterized by the unary predicate isTuple. The
following notation related to tuples is used in this thesis:

• |T | denotes the length of tuple T .

• Ti denotes the i-th element of tuple T ; if i is not a natural number between
1 and |T |, Ti is unde�ned.

• 〈x, y, . . .〉 denotes the tuple whose �rst element is x, second element is y,
etc.

• Similar to set abstractions, there are also tuple abstractions 〈t |
i=a,...,b

ϕ〉whose

meaning should be obvious; note, however, that only step ranges are al-
lowed here, because tuples are ordered and only step ranges entail a natu-
ral ordering on their elements.

• T x a denotes the tuple T with a appended at the end.

• ay T denotes the tuple T with a prepended at the beginning.
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• SonT denotes the concatenation of tuples S and T .

• aET asserts that a is contained in tuple T , i. e. that a = Ti for some i.

Number intervals. In Theorema, the various sets of numbers are as usual
denoted by N, Z, Q, etc. By de�nition, N does not include 0; if 0 shall be included,
N0 is used instead.

In addition, Theorema also provides a simple means for constructing number
intervals: to that end, the respective set-symbol is sub-scripted by some kind of
step range of the form a, . . . , b, where a is the lower boundary of the interval
and b is the upper one (both included); for instance, Z−4,...,10 denotes the set of
all integers between −4 and 10. If intervals shall not be bounded from below
and/or above, −∞ (resp.∞) may be used as the respective interval endpoint. In
that sense, Z is a mere shorthand for Z−∞,...,∞, and N for Z1,...,∞.

2.2 Functors and Domains in Theorema
Starting from its very beginnings, Theorema advocates the use of so-called func-
tors (in the Theorema sense, see below) as the method of choice for building
hierarchies of domains in a generic and nonetheless concise and structured way
[Buc96, Buc03, Win99]. Because we employed functors and domains in our for-
malization of reduction ring theory (see Chapter 4), and because of their impor-
tance in general, we present the main ideas behind functors and domains and
how they are actually used in Theorema in this section.

Roughly, a Theorema-functor is a function that maps domains (and/or other
mathematical objects) to domains. A domain in Theorema, in turn, is essen-
tially a function that interprets constant- and function symbols by mapping them
to concrete constants and functions.3 For instance, the most prominent exam-
ples of domains in our formalization of reduction ring theory are the various
reduction rings (�elds, integers, integer quotient rings, etc.) that interpret the
reduction-ring-related functions �, multN, mult, lcrd etc., but also the purely
ring-theoretic constants and functions 0, 1, + and ∗; see Chapters 3 and 4 for
more details. Of course, every domain D also has a “carrier”, i. e. a class of ob-
jects that are meant to be contained in D (in some sense). Carriers, however, are
not speci�ed by sets, but merely by the domain-interpretations of the symbol ∈
as unary domain membership predicates.

A functor, �nally, maps existing domains and/or other arguments to a new
domain, i. e. in some sense it “constructs” a new domain from existing ones (pos-

3Domains in Theorema must not be confused with domains in the algebraic sense, where they
are assumed to be rings without zero divisors.
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sibly none). The new domain usually interprets a symbol σ in terms of the inter-
pretation of σ in the argument domains it depends upon.

To illustrate the abstract description of domains and functors in a concrete
example, consider the product Lex of two ordered domains A and B, ordered
lexicographically; this domain is actually also included in our reduction-ring-
formalization. In Theorema 2.0, Lex would be de�ned by the following functor:

Lex[A,B] := ∆
N

∀
x1,y1,x2,y2,z

∈
N
[z] :⇔

∧


isTuple[z]
|z| = 2
∈
A
[z1]

∈
B
[z2]

(∈ L)

〈x1, y1〉 �
N
〈x2, y2〉 :⇔

∨{ x1 �
A
x2

x1 = x2 ∧ y1 �
B
y2

(� L)

Let us shed some light one the syntax and semantics of the Theorema functor:

• The �rst two lines are a so-called global declarations. They bind some vari-
ables (in this case, once N and once x1, x2, y1, y2, z) that are bound in all
subsequent formulas in the scope of the global declarations. N is bound
by a special functor-construct, to be read as “Lex[A,B] is some domain
N such that . . . ”, whereas the other variables are universally quanti�ed.
In addition to these two types of global declarations, there are also global
implications of the form A ⇒ that simply constrain all formulas in their
scope by condition A, and global abbreviations of the form let

x=t
that allow

to abbreviate the term t by variable x in all formulas in their scope. Global
declarations are not restricted to de�nitions of functors, but are a general
means for formula-input in Theorema.

• The last two lines are Theorema formulas (in the scope of the preceding
global declarations). The �rst one de�nes membership in the new domain,
the second one the order relation.

• The interpretation of a symbol σ in some domainD is always denoted by σ
D

.
Internally, such an expression is represented by DomainOperation[D, σ],
e. g. x1 � x2 is represented by the curried Mathematica expression
DomainOperation[,� ][x1, x2].
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Summarizing, Lex[A,B] contains precisely those objects that are tuples of length
2, whose �rst element is contained in domain A and whose second element is
contained in B. The order relation on Lex[A,B] is the lexicographic combina-
tion of the order relations on A and B.

But how do we know that A and B interpret �? How do we know that they
interpret ∈? The answer is simple: we do not know anything about A and B.
Thus, it may well be that they leave some symbols uninterpreted, which does not
cause any trouble at all; it is perfectly �ne in Theorema if compound expressions
cannot be simpli�ed to atoms, not only in connection with functors. After all, we
only need to pose constraints on the argument domains whenever we want to
prove something about Lex. For instance, assuming that both A and B interpret
�, and in both cases the resulting relation is a partial ordering, we may prove
that the same is true also for Lex[A,B]. Moreover, the variables x1, x2, y1, y2
in the Lex functor are not restricted to elements ofA and B, respectively, which
is due to exactly the same paradigm of allowing compound expressions not to
simplify to atoms: if x1 or x2 is not contained in A (but even if they are!), the
relation x1 �

A
x2 might not simplify to either True or False.

Remark 1. Abusing notation, the assertion that several objects x1, . . . , xn belong
to a domain D is denoted simply by ∈

D
[x1, . . . , xn] throughout this thesis, i. e.

∈
D
[x1, . . . , xn] abbreviates ∈

D
[x1] ∧ . . .∧ ∈

D
[xn].

2.3 Proving in Theorema
Proving in Theorema proceeds by repeatedly reducing proof situations, starting
from an initial one, to (ideally) simpler ones until either all proof situations are
trivial (success) or no more reductions can be carried out (failure). The reduc-
tion of proof situations happens by applying inference rules, and the overall proof
search is guided by proof strategies. We brie�y describe these three main compo-
nents below.

Proof situations. A proof situation consists of three parts: the goal, the knowl-
edge base, and some additional meta information (available rewrite rules, con-
stants generated during the proof search, etc.). In this thesis, in particular in
Section 4.5, proof situations are denoted by sequents K ` Γ where K is the
knowledge base, consisting of a sequence of assumptions, and Γ is the goal; note
that the goal is always only a single formula.

Inference rules. An inference rule transforms a proof situation into an or-
dered list of new proof situations, ideally “simpler” ones, with the meaning that
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the logical validity of the original proof situation is implied by the validity of all
of the new ones; thus, if the list of new situations is empty, the original one is
proved. Inference rules are combined in so-called provers.

Inference rules have to be implemented on the meta level of Theorema, as
Mathematica transformation rules, and no appeal to actual Theorema formulas
justifying the logical correctness of the rules needs to be made, but the seman-
tics of the logic, so to say, is solely de�ned by the inference rules themselves. For
simple rules from the predicate logic calculus this approach might be feasible,
but the philosophy of Theorema is to not only have such simple rules, but to de-
velop special inference rules for particular theories (like a decision procedure for
Presburger arithmetic, a method for proving geometric theorems by computing
Gröbner bases, and many more; see [Buc04a]). True, the current approach makes
the integration of advanced rules into the system quite straight-forward, but its
drawback is the resulting gap between the formula- and the inference level: in-
ference rules implemented as mere Mathematica programs might not adequately
re�ect the actual formulation of the corresponding object-level theory, bearing
the danger of making the logic inconsistent.4 Although several solutions to over-
come this problem exist, and one of them has already been investigated in the
context of Theorema 1 in [GB07], the concrete implementation of such a solution
in Theorema is still future work.

Of course, the issues discussed above also a�ected the development of spe-
cial provers in the frame of our formalizations of reduction ring theory and the
complexity analysis of Buchberger’s algorithm, as described in Chapters 4 and 5.
Therefore, we must emphasize that all the special inference rules that are part
of our provers are at least informally justi�ed by object-level formulas, as can be
seen when they are explained in detail in Sections 4.5 and 5.3.
Remark 2. In Theorema there is no distinction between inference rules (de�ning
the semantics of objects), tactics (reducing proof situations by applying inference
rules) and tacticals (combining tactics), as in other proof assistants; everything is
subsumed by the kind of inference rules described above. In the future, however,
a sharp distinction between these three concepts might become inevitable, es-
pecially in connection with the aforementioned inconsistency-issues of special
rules: special rules rather being special tactics that merely apply actual inference
rules (maybe even given as object-level formulas) is one of the possible solutions
of the problem.

Proof strategies. A proof strategy, �nally, guides the overall proof search by
applying inference rules. It determines where to continue in the proof if there

4In most cases inference rules are more or less the “direct” translations of object-level formu-
las, but in principle they could be arbitrary.
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are several alternatives, how to proceed if more than one rule is applicable to a
proof situation (apply all, apply only one, etc.), and when to abort a proof attempt
because of constraints on the total search time and proof depth.

Unlike (special) inference rules, proof strategies are typically rather generic
and feasible for exploring any sort of mathematical theory. Actually, in our whole
formal treatment of reduction ring theory we used only two di�erent strategies:
the default automatic one and, most importantly, a novel interactive one where
it is actually the user who guides the proof search by deciding, at each stage
of the proof, how to proceed. The interactive strategy is not part of the o�cial
distribution of Theorema 2.0 yet (but is planned to be included in the near future)
and explained thoroughly in Section 6.3.



Chapter 3

Reduction Rings and Gröbner
Bases

In this chapter we present the theory of reduction rings that has been formalized
in the frame of this thesis. First, we start with an overview of the theory mainly
consisting of the historical background and the motivation for considering re-
duction rings. Then, we introduce the main notions and concepts of the theory,
as well as the axioms that characterize reduction rings. Finally, we present the
main results of the theory.

Please note that small parts of this chapter are also contained in [Mal15b].

3.1 Overview
Reduction rings were �rst introduced by Buchberger in 1983 [Buc83a, Buc84]
and later generalized by Stifter in the late 1980s [Sti85, Sti88, Sti91, Sti93]. In a
nutshell, they are structures where an algorithmic approach to Gröbner bases
is possible, and hence generalize the – what we will refer to as original setting
throughout this chapter – polynomial rings over �elds Gröbner bases were orig-
inally invented for [Buc65, Buc70]. Due to the numerous applications of Gröbner
bases not only in computer algebra, but also many other scienti�c and engineer-
ing disciplines, it is apparent that a generalization to a wider class of algebraic
structures than just (commutative) polynomial rings over �elds is highly desir-
able. And indeed, apart from the reduction ring approach that we consider in this
thesis there are many other approaches as well, listed in Section 3.1.1. One of the
most signi�cant di�erences between these approaches and reduction rings is that
the former only consider polynomial rings, or at least require some kind of grad-
ing, whereas the crucial idea behind reduction rings is precisely not to require
any polynomial structure or grading in the �rst place, as will be explained in

15
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the subsequent sections. Instead, polynomial rings and their coe�cient domains
can be treated by a uniform methodology, or, stated di�erently, polynomial rings
over reduction rings inherit the property of being a reduction ring from their
coe�cient domain (this property is “preserved”): if R is a reduction ring, then
Gröbner bases can be computed inR, and moreoverR[x1, . . . , xn] (and also other
structures, likeRk) can be turned into a reduction ring as well.

The fundamental idea behind reduction rings was the generalization of the
notion of “S-polynomial” or, equivalently, “critical pair”, to rings without any
grading: in such rings it is not possible to decompose the elements into a “leading
part” and into a “rest”, which is crucial in the original setting. Hence, the central
concept in reduction rings is that of a non-trivial common reducible that will be
introduced in De�nition 3.2.16. Intuitively, a non-trivial common reducible of
two ring elements can be reduced modulo both elements (reduction in reduction
rings directly generalizes reduction in the original setting, see De�nition 3.2.2)
but only in a non-trivial way, in some sense. Quite some abstraction is necessary
for extracting the characteristic properties of S-polynomials and critical pairs in
the original setting that encompass precisely this kind of non-triviality.

Anyway, all notions de�ned in reduction rings (in particular also non-trivial
common reducibles) depend on a couple of additional parameters, like a partial
Noetherian order relation. For a �xed commutative ring with identityR, di�er-
ent choices of these parameters may be feasible for turning R into a reduction
ring, i. e. makingR together with the parameters satisfy certain axioms (see Sec-
tion 3.3). As noted in [Buc83a], these axioms should both be strong and weak at
the same time: strong axioms facilitate the proofs of theorems in reduction rings,
like Theorem 3.5.3, whereas weak axioms allow for a wider class of algebraic
structures to be turned into reduction rings. Moreover, when proving that the
property of being a reduction ring is preserved by certain “functors” (e. g. when
moving from R to R[X]), strong axioms are desirable in the premise, whereas
weak axioms are desirable in the conclusion. According to [Buc83a] �nding a
good balance in the axioms took quite some attempts.

Although the intuition behind most of the notions and axioms is rather clear
in the case of integral domains, things become much more technical and com-
plicated if the rings in question are allowed to contain also zero divisors; this,
of course, also has an e�ect on the resulting theorems and proofs. Nevertheless,
in our formalization we decided that the reward of being able to treat also non-
integral domains was worth the price of increased technicalities, so in the rest of
this chapter we never assume that the ring we are talking about is free of zero
divisors. Actually, these technicalities were one of the main motivations for the
formal treatment of the theory in Theorema: delegating some of the technically
demanding but conceptually simple tasks to the system for being taken care of
either in a fully automatic, or at least interactive, manner clearly is a great ad-
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vantage. Future work on the theory, which we believe is possible and even has
the potential to lead to interesting new insights (see Chapter 7), may thus also
bene�t from our formalization.

Reduction rings generalize the original setting in the sense that Gröbner
bases can be de�ned and computed (for a given �nite ideal basis), and hence
can be used to solve various problems related to ideals, like the membership-
and congruence problem and the ideal equality problem. In addition, the well-
known elimination property of Gröbner bases in the original setting (see, e. g.,
[KR00] page 195), as well as the possibility to compute Gröbner bases of syzygy-
modules (see, e. g., [KR00], page 148), translate more or less one-to-one to the
reduction ring setting. All this is described in detail in Section 3.5.

Although reduction ring theory was invented more than 30 years ago and
we did not make any major contributions to it in the frame of our thesis, it is
nevertheless presented in almost full detail1 in the subsequent sections, which,
in our opinion, is justi�ed by the following three reasons:

1. A substantial part of this thesis is about the formalization of reduction
ring theory. Hence, in order to make it as self-contained as possible, the
theoretical background of reduction rings is included as well.

2. No uniform presentation of the theory in the literature exists so far. After
their introduction in [Buc83a], reduction rings were slightly generalized
and extended �rst in [Sti88] and then in [Sti91], but these latter two articles
merely focus on the novel aspects and do not really draw a comprehensive
picture of all of the theory.

3. We made some contributions to the theory itself that have not been doc-
umented yet, and also slightly deviate from the existing literature in that
we distinguish between reduction rings and algorithmic reduction rings.

The contributions to reduction rings that are mentioned above will explicitly
be pointed at as soon as they become visible in the presentation of the theory
in the sections below. Nevertheless, we already hint at them now, such that the
reader familiar with reduction rings knows what to expect:

• The de�nition of irrelativity, as introduced in [Sti88], turned out to be er-
roneous. We �xed it and complemented irrelativity by the new notion of
correlativity.

• We introduced an equivalence relation in reduction rings that allows us to
make �elds algorithmic reduction rings as well.

1Most proofs are omitted, though.
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• We distinguish between reduction rings and algorithmic reduction rings,
the latter being a subclass of the former. In addition to the purely algebraic
axioms of plain reduction rings, algorithmic reduction rings also need to
satisfy axioms that ensure the (relative) computability of certain functions
(most notably, Buchberger’s algorithm for computing Gröbner bases).

Below, proofs of lemmas and theorems about irrelativity, correlativity and
the equivalence relation are spelled out in detail, since they cannot be found
anywhere in the literature. For all other proofs, however, we only refer to the
articles and reports they are contained in, possibly pointing out some minor dif-
ferences that may arise due to our revised/new de�nitions. It must be noted,
however, that every single result in the theory was proved formally in Theorema
and is now part of our formalization, where its proof can be inspected in a nicely-
formatted, natural-style proof document.

3.1.1 Other Generalizations
There are many other approaches to generalizing Gröbner bases from polyno-
mial rings over �elds to wider classes of algebraic structures, both commutative
and non-commutative. To the best of our knowledge, however, they all di�er
from the reduction ring approach in that they only consider polynomial rings
(or at least rings some other form of grading, see e. g. [Rob85]), whereas, as
mentioned above, the key idea behind reduction rings is precisely not to require
any polynomial structure in the �rst place.

The following is a (non-exhaustive) list of commutative generalizations of
Gröbner bases to rings of the from A[X]:

• The case A = Z is considered, for instance, by Lauer [Lau76] and Ayoub
[Ayo83].

• The case ofA being a Euclidean domain is considered by Kandri-Rody and
Kapur [KRK88].

• The case ofA being a principal ideal domain is considered by Pan [Pan88].

• Pauer [Pau07] and Francis and Dukkipati [FD14] treat the case where A is
a Noetherian ring, e. g. a polynomial ring.

• The case where A is a boolean ring is dealt with by Sato et al. [SIS+11].

• Spear [Spe77], Trinks [Tri78], Zacharias [Zac78] and Schaller [Sch79] as-
sume that A satis�es certain computability conditions, like decidability of
ideal membership and solvability of systems of linear equations by means
of �nite sets of generators.
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Besides commutative polynomial rings, various authors generalized Gröbner
bases to non-commutative algebras (as before, the list is non-exhaustive):

• Bergman [Ber78] generalizes the setting to associative A-algebras, where
A is only assumed to be a commutative ring with identity.

• Rings of di�erential operators (e. g. Weyl algebras) are studied by Galligo
[Gal85] and Insa and Pauer [IP98].

• Mora [Mor86, Mor94], Kandri-Rody and Weispfenning [KRW90], Weispfen-
ning [Wei92] and Levandovskyy [Lev05] consider non-commutative poly-
nomial rings over �elds.

• Reinert [Rei06] generalized the setting a little further by dealing with func-
tion rings over �elds.

• Non-commutative polynomial rings over rings, �nally, are studied by Mi-
alebama Bouesso and Sow [MBS15].

Although reduction ring theory subsumes most of the commutative general-
izations of Gröbner bases, it cannot handle non-commutative rings so far.

3.1.2 Notation
Throughout the whole chapter, and also Chapter 4, we use the following nota-
tion:

• If B ⊆ R and R is a ring, then ideal(B) denotes the ideal generated by
B over R. If B is �nite, B = {b1, . . . , bn}, then we also denote the ideal
generated by B by ideal(b1, . . . , bn), omitting the set braces.

• ≡B denotes the ideal congruence relation modulo the ideal generated by
B, i. e. x ≡B y :⇔ x− y ∈ ideal(B).

• For n ∈ N, Zn abbreviates the quotient ring Z/nZ.

3.2 Auxiliary Notions
First and foremost, reduction rings need to be commutative rings with identity.
Hence, let for the remainder of this chapter (R,+, ·, 0, 1) be such a commutative
ring with identity; neither does it need to possess any polynomial structure or
grading, nor does it have to be an integral domain.

The following typed variables will be used throughout this chapter:
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• a, b, c, d,m, n (possibly sub-scripted) for elements ofR, and

• C,G for subsets ofR.
In order for (R,+, ·, 0, 1) to be turned into a reduction ring, it also has to be

endowed with
• a partial Noetherian (i. e. well-founded) order relation � ⊆ R×R,

• for every c an arbitrary �nite set Ic, and

• for every c and i ∈ Ic a set M i
c ⊆ R.

�, I and M are the basic ingredients of reduction rings. All other auxiliary
notions that are introduced in this section are de�ned solely in terms of these
three objects (and the ring constants +, ·, 0 and 1, of course). In particular, the
set Mc is de�ned as Mc :=

⋃
i∈Ic M

i
c and is called the set of multipliers of c, i. e.

it consists of those elements c may be multiplied with when reducing another
element (see De�nition 3.2.2). The splitting of Mc into the M i

c is merely for
technical reasons that will become clearer in Section 3.2.3.

Comparison to the original setting. In the original setting, the order rela-
tion� is just the polynomial ordering induced by an arbitrary term ordering. The
Mc are identical for all polynomials c and just the set of all proper monomials.
�

3.2.1 Reduction
We now turn to one of the most important concepts in reduction rings, namely
that of reduction:
De�nition 3.2.1 (Reduction using Multipliers). An element a is said to be re-
ducible to some element b modulo c using m, written as a →m,c b, i� b ≺ a,
m ∈Mc and b = a−mc.
a is reducible modulo c using m, written as a →m,c, i� there exists b with
a→m,c b.
De�nition 3.2.2 (Reduction Relation). An element a is said to be reducible to
some element b modulo the set C , written as a →C b, i� a →m,c b for some
c ∈ C , m ∈ Mc. The binary relation→C is called the reduction relation induced
by C ; if C is clear from the context, the “induced by C” will be omitted.
Remark 3. Since� is Noetherian, i. e. well-founded, and apparently→C ⊆� for
every C , every chain of reductions a1 →C a2 →C . . . is necessarily �nite. This
important property of reduction is the prerequisite for an algorithmic treatment
of the theory, as it ensures termination of various procedures.
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Comparison to the original setting. Reduction in reduction rings is de�ned
completely analogously to reduction in the original setting (note again that there
the Mc are simply the set of monomials). �

Now that we have introduced the basic reduction relation, there are still a
couple of other notions related to reduction we must introduce.

De�nition 3.2.3 (Irreducibility and Normal Forms). An element a is said to be
reducible modulo C , written as a →C , i� there exists some b with a →C b;
otherwise, it is said to be irreducible. An element d is said to be a normal form of
a modulo C i� a→∗C d and d is irreducible modulo C .

De�nition 3.2.4 (Closures of Reduction, Common Successor). As usual, ↔C ,
→∗C and↔∗C denote the symmetric-, the re�exive-transitive-, and the re�exive-
symmetric-transitive closure of→C , respectively. a ↓∗C b holds i� a and b have a
common successor, i. e. there exists some s with a→∗C s and b→∗C s.

De�nition 3.2.5 (Connectibility Below). a and b are said to be connectible below
d modulo C , written as a ↔≺dC b, i� there exists a sequence of ring elements
e0, e1, . . . , ek with a = e0 ↔C e1 ↔C . . . ↔C ek = b, and ei ≺ d for all
0 ≤ i ≤ k.

3.2.2 Gröbner Bases
Having introduced the reduction relation we can immediately turn to the crucial
notion in our theory, namely that of Gröbner bases:

De�nition 3.2.6 (Gröbner Basis). A set G is called a Gröbner basis i� the reduc-
tion relation it induces has the Church-Rosser property, i. e. whenever a ↔∗G b
then also a ↓∗G b. G is called a Gröbner basis of C i� it is a Gröbner basis and
ideal(G) = ideal(C).

It is a well-known fact that the Church-Rosser property is always equivalent
to con�uence, and that con�uence of→G is equivalent to local con�uence since
→G satis�es the �nite chain condition (see Remark 3). However, a seemingly
even weaker alternative characterization of the Church-Rosser property is made
use of when proving Theorem 3.5.3: the so-called “generalized Newman lemma”.

Comparison to the original setting. Apart from the Church-Rosser property
of→G, there are also several other characterizations of Gröbner bases that could
all be taken as their de�nition in the original setting:

• the leading term of every polynomial in ideal(G) is the multiple of the
leading term of an element of G,
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• every ideal element can be reduced to 0 modulo G, or

• every S-polynomial of elements of G can be reduced to 0 modulo G.

Clearly, the �rst alternative is meaningless in reduction rings, since in general
there is no such concept as “leading term”. An analogue to the third possibility
is precisely the Main Theorem of reduction ring theory (Theorem 3.5.3). The
second characterization with reducibility of ideal elements to 0 is more tricky;
see Section 3.6.3 for details. �

3.2.3 Correlativity and Irrelativity
In this subsection we focus on the notions of irrelativity and correlativity, where
the latter cannot be found in the literature but was introduced in the course of
the formalization of the theory in Theorema. The following paragraphs consist
of an in-depth discussion of the di�erences between irrelativity in our sense and
in the sense of [Sti91], and the rationale behind correlativity. Readers who are
not interested in all this may immediately proceed to De�nition 3.2.12.

The notion of irrelativity cannot be found in the original paper by Buchberger
[Buc83a], but was introduced by Stifter in [Sti85] in order to properly deal with
zero-divisors; this, in fact, is also the reason for splittingMc into theM i

c (see also
[Sti88]). In [Sti85, Sti88], however, the sets Ic are restricted to {+,−}, meaning
that there the Mc are split into only two sets M+

c and M−
c . Later, in [Sti91], the

Ic are generalized to arbitrary �nite sets for being able to turn the k-fold direct
product of R, i. e. Rk, into a reduction ring if R is one, too (see Section 3.4.5).
This caused a re-de�nition of irrelativity that we found to be erroneous, and
in order to give evidence to this claim, we �rst present the original de�nition
according to [Sti91] (page 405), which we call “irrelativeS” to distinguish it from
our revised de�nition of irrelativity:

De�nition 3.2.7 (IrrelativeS). The two pairs (m1, c1) and (m2, c2) are said to be
irrelativeS i� either c1 6= c2 or there exists some i ∈ Ic1 such that m1 ∈M i

c1
and

m2 ∈Mc1\M i
c1

.

Even if one does not go into the subtle details of the theory, to the proofs of
the main results where irrelativity is needed, one can see that irrelativeS does not
state what it should: although it clearly should be symmetric (this immediately
becomes obvious when looking at De�nitions 3.2.15 and 3.2.16, for instance), in
general it is not. For instance, if Ic = {1, 2}, M1

c ⊂ M2
c , m1 ∈ M1

c and m2 ∈
M2

c \M1
c , then (m1, c) and (m2, c) are irrelativeS , but (m2, c) and (m1, c) are not.

This counterexample works because the M i
c do not need to form a partition of

Mc: they may overlap or even be empty.
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In principle, there are at least two ways to adapt the de�nition of irrelativity
for making it symmetric. However, for the sake of simplicity we restrict the sets
Ic to {1, 2} for now, because even this simpler setting su�ces to demonstrate
why neither of the two alternatives, called irrelative1 and irrelative2 below, is
suitable. Later, when we present the real de�nitions of irrelativity and correla-
tivity we used in our formalization, in De�nitions 3.2.12 and 3.2.13, the Ic may
of course be arbitrary again. Moreover, since the case c1 6= c2 is not interesting
for our purpose anyway, we �x c and de�ne irrelative1 and irrelative2 only for
that particular c.

De�nition 3.2.8 (Irrelative1). Two elementsm1 andm2 are said to be irrelative1,
written irr1(m1,m2), i� m1 ∈M1

c ∧m2 ∈M2
c or m1 ∈M2

c ∧m2 ∈M1
c .

De�nition 3.2.9 (Irrelative2). Two elementsm1 andm2 are said to be irrelative2,
written irr2(m1,m2), i� m1 /∈M1

c ∧m2 /∈M2
c or m1 /∈M2

c ∧m2 /∈M1
c .

Remark 4. Irrelative1 corresponds to irrelativity according to [Sti85, Sti88] (where
Ic is {+,−}).

Obviously, both irrelative1 and irrelative2 are symmetric, but unfortunately
neither of them can be taken as the de�nition of irrelativity, because irrelativity
has to satisfy the two crucial properties (I1) and (I2), for all m1,m2,m3,m4,m ∈
Mc:

irr(m1,m2) ⇒ (¬irr(m1,m) ∨ ¬irr(m2,m)) (I1)

(¬irr(m1,m2) ∧ irr(m3,m4)) ⇒
∨{

irr(m1,m3) ∧ irr(m2,m3)
irr(m1,m4) ∧ irr(m2,m4)

(I2)

Property (I1) is needed in the proof of the Main Theorem of reduction ring
theory (Theorem 3.5.3), and (I2) in the proof that polynomial rings over reduction
rings can be made reduction rings themselves. We will prove now that neither
irrelative1 nor irrelative2 satis�es both (I1) and (I2) at the same time (with irr
replaced by irr1 or irr2, respectively).

Lemma 3.2.10. Irrelative1 does not satisfy (I1).

Proof. We have to construct M1
c and M2

c and �nd m1,m2,m such that the left-
hand-side of (I1) holds but the right-hand-side does not. For this, let m ∈ M1

c ∩
M2

c . No matter how we choose m1 and m2, the right-hand-side de�nitely fails
because we always have irr1(m1,m) and irr1(m2,m). Thus, we only need to
make sure that irr1(m1,m2) holds, which can always be achieved since M1

c ∩
M2

c 6= ∅.

Lemma 3.2.11. Irrelative2 does not satisfy (I2).
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Proof. We have to construct M1
c and M2

c and �nd m1,m2,m3,m4 such that
the left-hand-side of (I2) holds but the right-hand-side does not. For this, let
m1,m2 ∈M1

c ∩M2
c . No matter how we choose m3 and m4, the right-hand-side

de�nitely fails because we always have ¬irr2(m1,m) and ¬irr2(m2,m) for any
m. This also ensures that the �rst conjunct on the left-hand-side holds, and so
we only need to make sure that irr2(m3,m4) holds. This is possible if M1

c *M2
c

and M2
c *M1

c .

The solution we employed to overcome the issues with irrelativity and (I1)
and (I2) is not committing ourselves to one of the two alternatives, but somehow
to use both. Our de�nition of irrelativity, to be found below in De�nition 3.2.12,
basically is the one of irrelative1, and instead of irrelative2 we introduce the new
concept of correlativity in De�nition 3.2.13. However, this alone does not su�ce
to �x our problems with (I1) and (I2), because still irrelativity and correlativity
do not satisfy both of them. Instead we also had to tweak one of the reduction
ring axioms listed in Section 3.3.1, namely (R6), by replacing the condition “not
irrelative” by “correlative”. The e�ect of this adjustment was that the two cru-
cial properties (I1) and (I2) could be replaced by only one new property. Before
it is presented, though, we �nally introduce our de�nitions of irrelativity and
correlativity; note that from now on the sets Ic may be arbitrary again:

De�nition 3.2.12 (Irrelative). The two pairs (m1, c1) and (m2, c2) are said to be
irrelative w. r. t. i, j ∈ Ic1 , written as irri,j((m1, c1), (m2, c2)), i�

• c1 6= c2 or

• m1 ∈M i
c1

, m2 ∈M j
c1

and i 6= j.

De�nition 3.2.13 (Correlative). The two elements m1 and m2 are said to be
correlative w. r. t. c, written as cor(m1,m2; c), i� there exists some i ∈ Ic with
m1 ∈M i

c and m2 ∈M i
c .

In contrast to all the previous variants of irrelativity, and also to correlativity,
our variant explicitly depends on the two indices i and j and does not quantify
them existentially. Correlativity, on the other hand, is not de�ned for pairs of
ring elements, but only for two individual ring elements w. r. t. a third one.

The crucial property of correlativity and irrelativity in our setting, which
replaces (I1), is stated in the following

Lemma 3.2.14. Form1,m2 ∈Mc:
If ¬cor(m1,m2; c) then there exist i, j ∈ Ic such that irri,j((m1, c), (m2, c)).

Proof. Follows immediately from De�nitions 3.2.12 and 3.2.13.
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Property (I2) does not have an analogue in our setting, because of the slightly
modi�ed de�nition of non-trivial common reducibles (De�nition 3.2.16) where
the indices i, j are made explicit (just as in our de�nition of irrelativity). See also
Section 3.4.4.

Please also note that correlativity is not just the negation of irrelativity. For
instance, if Ic = {1, 2} and M1

c = M2
c , then both irr1,2((m1, c), (m2, c)) and

cor(m1,m2; c) hold for all m1,m2 ∈Mc.

3.2.4 Common Reducibles
After the notions of irrelativity and correlativity have been introduced, we turn
again to the reduction relation, or, more precisely, to common reducibles.

De�nition 3.2.15 (Common Reducible). An element a is called a common re-
ducible of c1 and c2 w. r. t. i, j ∈ Ic1 , written as cri,j(a, c1, c2), i� there exist
m1,m2 such that a →m1,c1 , a →m2,c2 , and moreover irri,j((m1, c1), (m2, c2))
holds.

De�nition 3.2.16 (Non-Trivial Common Reducible). An element a is called a
non-trivial common reducible (ntcr) of c1 and c2 w. r. t. i, j ∈ Ic1 , written as
c1Mai,jc2, i� cri,j(a, c1, c2) and there do not exist m1,m2 such that

1. irri,j((m1, c1), (m2, c2)),

2. a→m1,c1 ,

3. a→m2,c2 , and

4. a−m1 c1 →m2,c2 or a−m2 c2 →m1,c1 .

De�nition 3.2.17 (Minimal Non-Trivial Common Reducible). An element a is
called a minimal non-trivial common reducible (mntcr) of c1 and c2 w. r. t. i, j ∈
Ic1 , written as c1Oai,jc2, i� c1Mai,jc2 and a is minimal (w. r. t. �) with this property.

Remark 5. Since � in general is only a partial ordering, there may well exist
several minimal non-trivial common reducibles for given c1, c2, i, j.

Comparison to the original setting. In the original setting, the mntcrs of
two non-zero polynomials c1 and c2 are precisely those monomials of the form
d · lcm(lp(c1), lp(c2)) for non-zero coe�cients d (lp denotes the leading power-
product). The indices i, j do not matter, since |Ic1| = 1 in this case. �

In addition to (minimal) non-trivial common reducibles of two elements we
also need (minimal) non-trivial common reducibles of only one element. This
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seemingly strange concept was introduced in [Sti85] to be able to deal with pos-
sible zero-divisors. However, the “unary” versions are only needed for proving
that R[X] is a reduction ring if R is, but they are not needed at all in R itself
(e. g. for proving Theorem 3.5.3).

De�nition 3.2.18 (Unary Non-Trivial Common Reducible). An element a is
called a unary non-trivial common reducible (untcr) of c, written as cMa, i� a→{c}
and there do not exist m1,m2 such that

1. a→m1,c,

2. a→m2,c, and

3. a−m1 c→m2,c.

De�nition 3.2.19 (Unary Minimal Non-Trivial Common Reducible). An ele-
ment a is called a unary minimal non-trivial common reducible (umntcr) of c,
written as cOa, i� cMa and a is minimal (w. r. t. �) with this property.

As pointed out in [Sti85, Sti88] there is a crucial di�erence between cMai,jc and
cMa (and hence also between cOai,jc and cOa): on the one hand, if cMai,jc for some
i, j ∈ Ic, then not necessarily cMa, because there might exist m1,m2 ∈Mc such
that ¬irri,j((m1, c), (m2, c)) and a →m1,c, a →m2,c and a −m1 c →m2,c. On the
other hand, cMa does not imply cMai,jc for some i, j ∈ Ic either: amight not even
be a common reducible of c and c w. r. t. i, j (in the sense of De�nition 3.2.15),
for instance if |Ic| = 1.

The last two de�nitions related to common reducibles are that of critical pair
multipliers and critical pairs:

De�nition 3.2.20 (Critical Pair Multipliers). The two elements m1 and m2 are
called critical pair multipliers of c1 and c2 w. r. t. a and i, j ∈ Ic1 , written as
(m1, c1)♦ai,j(m2, c2), i�

1. c1Oai,jc2,

2. irri,j((m1, c1), (m2, c2)),

3. a→m1,c1 and

4. a→m2,c2 .

De�nition 3.2.21 (Critical Pair). The two elements b1 and b2 constitute a crit-
ical pair of c1 and c2 w. r. t. a and i, j ∈ Ic1 i� there exist m1,m2 such that
(m1, c1)♦ai,j(m2, c2) and a→mk,ck bk for k = 1, 2.

Remark 6. It is important to note that two elements c1 and c2 may have several
critical pairs (possibly in�nitely many) even for �xed a and i, j ∈ Ic1 .
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Comparison to the original setting. In the original setting two polynomials
have exactly one critical pair for each mntcr. The di�erences of the critical pairs
are precisely the S-polynomials (di�ering only by constant factors). �

3.2.5 Equivalence Relation
The last auxiliary notion needed before we can specify what it means for R to
be a reduction ring is the binary relation∼. This relation cannot be found in the
existing literature but rather was introduced in the course of our formalization,
in order to be able to turn �elds into algorithmic reduction rings.

De�nition 3.2.22. Fix m ∈ R. Two elements x, y ∈ R are called equivalent
modulom, written as x ∼m y, i�

1. y = mx,

2. a ≺ b ⇔ ma ≺ mb for all a, b ∈ R,

3. n ∈M i
c ⇔ mn ∈M i

c for all c ∈ R\{0} and i ∈ Ic,

4. c1Oxi,jc2 ⇔ c1O
y
i,jc2 for all c1, c2 ∈ R and i, j ∈ Ic1 , and

5. cOx ⇔ cOy for all c ∈ R

De�nition 3.2.23 (Relation ∼). Two elements x, y ∈ R are called equivalent,
written as x ∼ y, i� there exists a unit (i. e. an invertible element)mwith x ∼m y.

As shown in Lemma 3.2.24, ∼ is an equivalence relation on R. Apparently,
it is quite strong, which is re�ected in the fact that in the reduction ring Z it
coincides with equality. In �elds, however, all non-zero elements are equivalent
to each other, as can be seen in Section 3.4.1. Maybe it is possible to relax the
de�nition of ∼ a bit and still keep the validity of the lemmas stated below; after
all, fewer equivalence classes in a reduction ring have the potential to increase
the e�ciency of Buchberger’s algorithm for computing Gröbner bases, because
fewer mntcrs might have to be considered (see Section 3.5.1).

We now state and prove some important facts about ∼ and ∼m.

Lemma 3.2.24. ∼ is an equivalence relation onR.

Proof. Re�exivity is obvious, since we trivially have a ∼1 a for all a ∈ R and 1
is a unit. For symmetry and transitivity note that all �ve requirements in De�ni-
tion 3.2.22 are either equalities or equivalences and hence symmetric and tran-
sitive, that the inverse of a unit is itself a unit, and that the product of two units
is again a unit. Hence, if a ∼m b and mn = 1, then b ∼n a, and if a ∼m1 b and
b ∼m2 c, then a ∼m2m1 c.
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Lemma 3.2.25. Assume a ∼m b and x→n,c y. Then alsomx→mn,c my.

Proof. From a ∼m b, by De�nition 3.2.22, we know y ≺ x⇔ my ≺ mx as well
as n ∈Mc ⇔ mn ∈Mc by the de�nition ofMc as the union of all theM i

c . From
x →n,c y, by De�nition 3.2.1, we know y = x − n c, y ≺ x and n ∈ Mc, and
we have to show my = mx − (mn) c, my ≺ mx and mn ∈ Mc. All three
sub-goals follow immediately from what we know and the fact that R is a ring,
so we are done.

Lemma 3.2.26. Assume a ∼m b and irri,j((m1, c1), (m2, c2)) for some i, j ∈ Ic1 .
Then also irri,j((mm1, c1), (mm2, c2)).

Proof. If c1 6= c2 the the goal follows trivially from De�nition 3.2.12; hence,
assume c1 = c2 =: c. From irri,j((m1, c), (m2, c)) we know i 6= j, m1 ∈ M i

c

and m2 ∈ M j
c , and we have to show i 6= j, mm1 ∈ M i

c and mm2 ∈ M j
c . The

�rst sub-goal is already known, and the latter two follow immediately from the
third requirement in De�nition 3.2.22.

Lemma 3.2.27. Assume a ∼m b and (m1, c1)♦ai,j(m2, c2) for some i, j ∈ Ic1 . Then
also (mm1, c1)♦bi,j(mm2, c2).

Proof. The proof proceeds similarly as the ones before, using De�nitions 3.2.22
and 3.2.20 and Lemmas 3.2.25 and 3.2.26.

Lemma 3.2.28. Assume a ∼m b and x ↔≺aC y for some x, y ∈ R. Then also
mx↔≺bC my.

Proof. From x↔≺aC y we obtain e0, . . . , ek such that x = e0 ↔C . . .↔C ek = y
and ei ≺ a (0 ≤ i ≤ k). From Lemma 3.2.25 we can infer mei ↔C mei+1

(0 ≤ i < k), and from De�nition 3.2.22 we know mei ≺ ma = b (0 ≤ i ≤ k).
Thus, our goal is witnessed by the sequence me0, . . . ,m ek.

3.3 Reduction Ring Axioms
Now that all auxiliary notions have been introduced, we can present the axioms
describing reduction rings and algorithmic reduction rings in detail. The distinc-
tion between (plain) reduction rings and algorithmic reduction rings was �rst in-
troduced in our Theorema-formalization; in the literature, the term reduction ring
is used for what we call algorithmic reduction ring. Although the driving inten-
tion behind reduction ring theory from its outset was the algorithmic treatment
of ideal-theoretic problems, we nevertheless found a clear separation between
the algorithmic and the non-algorithmic aspects of the theory reasonable.
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3.3.1 Plain Reduction Rings
The following is the list of the nine axioms characterizing (plain) reduction rings
in terms of the usual ring operations and the auxiliary notions de�ned in Sec-
tion 3.2. It has to be pointed out that no single axiom requires the solvability
of certain “higher-order” problems in R, like deciding ideal membership. The
names of the axioms are precisely the same as in [Sti85, Sti88, Sti91], and apart
from some minor di�erences, to be discussed below, the axioms themselves are
the same as well.

(R0) If c 6= 0, then 1 ∈Mc.

(R1) If c 6= 0 and m ∈Mc, then −m ∈Mc.

(R2) If c 6= 0 and m ∈Mc, then mc 6= 0.

(R3) If b, c 6= 0, there exist m1,m2, . . . ,mk ∈Mc such that b =
∑

i=1,...,kmi.

(R4) If a 6= 0, then 0 ≺ a.

(R5) If a→m,c b, then there are m1,m2, . . . ,mx and n1, n2, . . . , ny such that

1. a+d→m1,c a+d−m1 c→m2,c . . .→mx,c a+d−(m1+. . .+mx) c =
b+ d− (n1 + . . .+ny) c←ny ,c . . .←n2,c b+ d−n1 c←n1,c b+ d and

2. m1 + . . .+mx = m+ n1 + . . .+ ny.

(R6) If a→m1,c b1, a→m2,c b2 and cor(m1,m2; c), then there are n1, n2, . . . , nk
such that

1. b1 ↔n1,c a−m1 c−n1 c↔n2,c . . .↔nk,c a−(m1+n1+. . .+nk) c = b2,
2. m1 + n1 + . . .+ nk = m2, and
3. a− (m1 + n1 + . . .+ ni) c ≺ a for all 1 ≤ i ≤ k.

(R7) If c1Mai,jc2 then there are k, l ∈ Ic1 , a � a and m such that

1. c1Oai,jc2,
2. for every e 6= 0 and m ∈Me, also mm ∈Me,
3. if a+ e ≺ a then a+me ≺ a, for all e,
4. if b→e d then mb↔e md, for all b, d, e, and
5. in case c1 = c2 =: c: if a →m1,c and a →m2,c then mm1 ∈ M i

c and
mm2 ∈M j

c , or vice versa, for all m1 ∈Mk
c and m2 ∈M l

c.

(R8) If cMa then there are a � a and m such that
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1. cOa,
2. for every e 6= 0 and m ∈Me, also mm ∈Me,
3. if a+ e ≺ a then a+me ≺ a, for all e, and
4. if b→e d then mb↔e md, for all b, d, e.

Some remarks on the axioms are in place:

• Axiom (R3) is only needed to prove that ≡B coincides with ↔∗B (Theo-
rem 3.5.7). It is neither needed for proving the Main Theorem, nor for
establishing the correctness of Buchberger’s algorithm.

• In (R5) and (R6) the sum-constraints on the multipliers are only present
because of possible zero divisors (multipliers, i. e. elements of Mc, may be
zero divisors!). If R is an integral domain, though, (R5) could simply be
phrased as

a→C b⇒ a+ d ↓∗C b+ d

and (R6) as

a→m1,c b1 ∧ a→m2,c b2 ∧ cor(m1,m2; c)⇒ b1 ↔≺a{c} b2.

• In [Sti85, Sti88, Sti91], the condition in (R6) is “(m1, c) and (m2, c) not ir-
relative” instead of “m1 and m2 correlative w. r. t. c”. This is due to the
problem related to the original de�nition of irrelativity, as discussed in de-
tail in Section 3.2.3.

• In [Sti85, Sti88, Sti91], the �fth item in (R7) only requires (mm1, c) and
(mm2, c) to be irrelative if (m1, c) and (m2, c) are. Here, we explicitly
specify the subsets of Mc the two multipliers mm1 and mm2 have to be
contained in. However, this only needs to hold if m1 ∈Mk

c and m2 ∈M l
c,

not for all m1,m2 ∈Mc.

• Axiom (R8) is only needed to prove that polynomial rings over reduction
rings can be made reduction rings themselves, but as (R3) it is not needed
at all in the proof of the Main Theorem.

Finally, we can state the de�nition of (plain) reduction rings:

De�nition 3.3.1 (Reduction Ring). The structure (R,+, ·, 0, 1,�, I,M) is a re-
duction ring i� (R,+, ·, 0, 1) is a commutative ring with identity, � is a partial
Noetherian order relation, the Ic (for c ∈ R) are �nite index sets, the M i

c (for
c ∈ R, i ∈ Ic) are sets of ring elements, and the axioms (R0)–(R8) are satis�ed.



3.3. Reduction Ring Axioms 31

3.3.2 Algorithmic Reduction Rings
In order to be an algorithmic reduction ring, the reduction ring (R,+, ·, 0, 1,�
, I,M) must additionally be endowed with the four functions lcrd, ulcrd, rdm
and cpm. The behavior of these functions is speci�ed by the �rst of the following
four axioms, whereas the last axiom only depends on the usual constants and
operations from plain reduction rings.

(R9) For every c1, c2 6= 0 and i, j ∈ Ic1 , lcrd(c1, c2, i, j) =: L is a �nite set
only containing ring elements a with c1Oai,jc2. Moreover, for every a with
c1Oai,jc2 there exists a ∈ L with a ∼ a.

(R10) For every c 6= 0, ulcrd(c) =: L is a �nite set only containing ring elements
a with cOa. Moreover, for every a with cOa there exists a ∈ L with a ∼ a.

(R11) For all a and c, if a→{c}, then a→rdm(a,c),c. Otherwise, rdm(a, c) = 0.

(R12) For all c1, c2 6= 0, i, j ∈ Ic1 and a ∈ lcrd(c1, c2, i, j), cpm(c1, c2, a, i, j) is
a pair (m1,m2) with (m1, c1)♦ai,j(m2, c2).

(R13) There does not exist an in�nite sequence of setsC1, C2 . . .with Red(C1) (
Red(C2) ( . . ., where Red(C) := {a ∈ R|a→C}.

Again, some remarks on the axioms are in place:

• Axioms (R9) and (R10) imply that there can only be �nitely many equiv-
alence classes of mntcrs of c1 and c2 w. r. t. i, j, and umntcrs of c, respec-
tively; this ensures termination of Buchberger’s algorithm. In [Sti85, Sti88,
Sti91], where the two axioms are subsumed under the single axiom (RT2),
the axioms require the numbers of mntcrs and umntcrs themselves to be
�nite, which is too strong.

• According to (R11), rdm(a, c) has to be a suitable multiplier for reducing
a modulo c, if this is possible. This axiom corresponds to (RE2) in the
literature.

• Axiom (R12) and function cpm are new. In the literature, suitable critical-
pair multipliers are simply obtained using rdm, but since we have to make
sure that the multipliers are irrelative, we need a separate function.

• The last axiom, (R13), is (only) needed to ensure termination of Buch-
berger’s algorithm. In [Sti85, Sti88, Sti91], it is referred to as (RT1).

The de�nition of algorithmic reduction rings is obvious now:
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De�nition 3.3.2 (Algorithmic Reduction Ring). The structure (R,+·, 0, 1,�
, I,M, lcrd, ulcrd, rdm, cpm) is an algorithmic reduction ring i� (R,+·, 0, 1,�
, I,M) is a reduction ring and axioms (R9)–(R13) are satis�ed as well.

It is important to note that the term “algorithmic” in “algorithmic reduction
ring” does not mean that the various operations (lcrd, ulcrd, . . . , but also +, ·,
�, . . . ) are e�ectively computable. It only means that in algorithmic reduction
rings, Buchberger’s algorithm for computing Gröbner bases can be de�ned and
behaves according to its speci�cation (see Section 3.5.1), but it is an algorithm
only relative to the e�ective computability of the underlying operations it is de-
�ned in terms of (which are precisely the aforementioned operations in reduction
rings). This computability is nowhere required, but as can be seen in Section 3.4,
all known algorithmic reduction rings do indeed have computable�, I , M , lcrd,
ulcrd, rdm and cpm, if the basic ring operations are computable.

3.4 Known Algorithmic Reduction Rings
In this section we list some well-known commutative rings with identity and
describe how the various additional functions and relations (�, I , M , lcrd, . . . )
can be de�ned for turning them into algorithmic reduction rings. The �rst four
rings in the list below are part of our formalization, the others are not (yet).

3.4.1 Fields
Fields are the simplest examples of reduction rings, but as has been pointed out
a couple of times already, it took some e�ort to make them algorithmic reduc-
tion rings as well. Following [Buc83a, Buc84], any �eld K (of any characteristic,
not necessarily algebraically closed, �nite or in�nite, etc.) can be turned into a
reduction ring by setting

a � b :⇔ a = 0

Ic := {1}

M1
c := K\{0}

With these de�nitions, the proof that (K,+, ·, 0, 1,�, I,M) is a (plain) re-
duction ring is almost immediate; note, for instance, that a→c b i� a, c 6= 0 and
b = 0, and that actually every set C ⊆ K is already a Gröbner basis. This might
raise the question why one should consider �elds as reduction rings at all, and
why we introduced the equivalence relation ∼ for making �elds algorithmic re-
duction rings. The answer is that even though the treatment of �elds themselves
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is completely trivial, �elds may form the basis of a hierarchy of functors2 that are
known to preserve the property of being a (plain or algorithmic) reduction ring;
this, in particular, includes the functor that maps domainsD to polynomial rings
over D, see Section 3.4.4. Clearly, the polynomial ring K[x1, . . . , xn] cannot be
dealt with so easily any more, but if the �eld K was known to be an algorith-
mic reduction ring, it could be treated by exactly the same methodology as any
other polynomial ring over an algorithmic reduction ring, and even any other
non-polynomial algorithmic reduction ring due their uniform construction.

The problem with the original versions of Axioms (R9) and (R10) without the
equivalence relation ∼, which can be found in [Buc83a] as Axiom (T2), is that
they require the numbers of mntcrs and umntcrs to be �nite. In a �eld with �,
I and M de�ned as above, however, one can easily see that for all c1, c2 6= 0
and c1 6= c2, every a 6= 0 satis�es c1Oa1,1c2. Hence, in in�nite �elds the original
versions of the two axioms are violated.3 Our revised version of the axioms hold
trivially, though, thanks to the following

Lemma 3.4.1. In (K,+, ·, 0, 1,�, I,M) there are only two equivalence classes
modulo ∼: {0} and K\{0}.

Proof. Trivial.

For completing the informal “proof” thatK can be turned into an algorithmic
reduction ring we now present feasible de�nitions of the remaining functions:

lcrd(c1, c2, i, j) :=

{
∅ ⇐ c1 = 0 ∨ c2 = 0 ∨ c1 = c2
{1} ⇐ otherwise

ulcrd(c) :=

{
∅ ⇐ c = 0
{1} ⇐ otherwise

rdm(a, c) :=

{
0 ⇐ c = 0
a/c ⇐ otherwise

cpm(c1, c2, i, j, a) := (rdm(a, c1), rdm(a, c2))

It is apparent that (K,+, ·, 0, 1,�, I,M, lcrd, ulcrd, rdm, cpm) satis�es (R9)–
(R13) and thus is an algorithmic reduction ring.
Remark 7. Before introducing ∼ we tried to solve the problem with in�nitely
many mntcrs di�erently, by changing the ordering � in K to 0 ≺ 1 � x for
x 6= 0. This would indeed solve the problem, but on the other hand violate (R7)
and (R8).

2In the Theorema sense; see Section 2.2.
3Interestingly, this fact is explicitly pointed out also in [Buc83a], but no solution is provided

there.
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3.4.2 Integers
The construction of the reduction ring of integers Z is similar as for �elds, apart
from �:

a � b :⇔ |a| < |b| ∨ (|a| = |b| ∧ a ≤ b)

Ic := {1}

M1
c := Z\{0}

where < is the standard ordering on Z.
The proof that (Z,+, ·, 0, 1,�, I,M) really constitutes a reduction ring can

be modeled after the one in [Buc83a]. The new version of (R6) does not play
a role anyway, because the Ic are all singletons, meaning that all multipliers
m1,m2 ∈Mc are correlative and none are irrelative.

Knowing that (Z,+, ·, 0, 1,�, I,M) is a reduction ring makes �nding suit-
able de�nitions for the remaining functions needed in algorithmic reduction
rings rather easy. As before, we follow [Buc83a]; for this, we �rst introduce
the auxiliary function lr as

lr(c) :=

{
quo(|c|, 2) ⇐ even(c)

−quo(|c|+ 1, 2) ⇐ otherwise

where quo(a, b) denotes the quotient of the division of a by b. If c 6= 0, lr(c) is
the least element (w. r. t. �) that can be reduced modulo c. Now the remaining
functions can be de�ned as

lcrd(c1, c2, i, j) :=

{
∅ ⇐ c1 = 0 ∨ c2 = 0 ∨ c1 = c2

{max�(lr(c1), lr(c2))} ⇐ otherwise

ulcrd(c) :=

{
∅ ⇐ c = 0

{lr(c)} ⇐ otherwise

rdm(a, c) :=


0 ⇐ c = 0

quo(a+ quo(c, 2), c) ⇐ c > 0 ∧ a ≥ 0
−quo(−a+ quo(c− 1, 2), c) ⇐ c > 0 ∧ a < 0

−rdm(a,−c) ⇐ otherwise

cpm(c1, c2, i, j, a) := (rdm(a, c1), rdm(a, c2))

The sets returned by lcrd(c1, c2, i, j) and ulcrd(c) not only contain one repre-
sentative of each equivalence class of mntcrs and umntcrs, respectively, but they
actually contain all such elements: �, in Z, is a total order relation, hence mntcrs
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and umntcrs are unique. Thus, the equivalence relation ∼ is of no relevance at
all in this case.

The de�nition of rdm(a, c) is not the simplest one: in [Buc83a] it is just
de�ned as the sign of a c. Our de�nition, however, is more “e�cient” in the
sense that rdm(a, c) always returns the greatest reduction multiplier, i. e. a −
rdm(a, c) c cannot be further reduced modulo {c}.

3.4.3 Quotient Rings of Integers
The last “basic” reduction rings that are also part of our formalization are the
rings Zk for arbitrary k ∈ N. In the sequel, to simplify matters, we assume that
Zk is represented by {0, . . . , k − 1}. Following [Sti85], we set

a � b :⇔ a ≤ b

Ic := {1, 2}

M1
c := {m ∈ Zn|1 ≤ m < quo(k, gcd(k, c))}

M2
c := −M1

c

As can be seen easily, quo(k, gcd(k, c)) is the least element that, when multi-
plied with c, gives 0 (mod k). Therefore, M1

c (and hence also M2
c ) only contains

non-zero-divisors of c, as required by Axiom (R2). The proof that (Zn,+, ·, 0, 1,�
, I,M) constitutes a reduction ring is essentially the same as in [Sti85, Sti88]. The
fact that “not irrelative” has been replaced by “correlative” in Axiom (R6) does
not have any e�ect on the proof, since in the present setting these two notions
can easily be shown to be equivalent (note that we always either haveM1

c = M2
c

or M1
c ∩M2

c = ∅).
For proving that Zn can also be turned into an algorithmic reduction ring we

�rst de�ne the auxiliary function lr(c), as in Z, to give the least element that is
reducible modulo c provided that c 6= 0. A simple argument (spelled out in detail
in [Sti88]) shows that this element is precisely the greatest common divisor of k
and c, justifying the de�nition

lr(c) := gcd(k, c)

Knowing lr(c) it is obvious how lcrd(c1, c2, i, j) and ulcrd(c) have to be de-
�ned:

lcrd(c1, c2, i, j) :=


∅ ⇐ c1 = 0 ∨ c2 = 0
∅ ⇐ c1 = c2 ∧ i = j

{max�(lr(c1), lr(c2))} ⇐ otherwise
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ulcrd(c) :=

{
∅ ⇐ c = 0

lr(c) ⇐ otherwise
In the de�nition of lcrd(c1, c2, i, j) note that now there is a mntcr even if

c1 = c2, in contrast to the reduction rings discussed above. For the same reason
as in Z, also here the sets returned by lcrd(c1, c2, i, j) and ulcrd(c) contain all
mntcrs and umntcrs, respectively. Thus, ∼ is irrelevant also in Zn.

rdm(a, c) can be de�ned in various ways. However, in our formalization we
simply de�ned it to be some m ∈ M1

c such that a − mc ≺ a, if such an m
exists; otherwise it is 0. This de�nition is justi�ed by the fact that a →m,c, for
m ∈ M1

c , i� there exists some n ∈ M2
c with a →n,c, meaning that it su�ces to

consider only multipliers from M1
c . The actual computation of rdm(a, c) in the

Theorema-formalization is performed by iterating through the (�nite!) set M1
c

until a suitable multiplier is found, although there might be more e�cient ways.
Finally, cpm(c1, c2, i, j, a) is de�ned as

cpm(c1, c2, i, j, a) :={
(rdm(a, c1), rdm(a, c1)− quo(k, gcd(k, c1))) ⇐ c1 = c2

(rdm(a, c1), rdm(a, c2)) ⇐ otherwise

If c1 6= c2 we do not have to care about the subsets of Mc1 the multipliers
returned by cpm(c1, c2, i, j, a) are contained in, so we simply return rdm(a, c1)
and rdm(a, c2). Otherwise, if c1 = c2, we exploit the fact that by our de�ni-
tion of rdm we have m1 := rdm(a, c1) ∈ M1

c , meaning that m2 := m1 −
quo(k, gcd(k, c1)) ∈M2

c and a→m2,c2 , as can be seen by an easy argument.

3.4.4 Polynomial Rings
In this subsection assume that (R,+, ·, 0, 1,�, I,M) is a (plain) reduction ring,
and �x a �nite set X := {x1, . . . , xk} of indeterminates. Let [X], the multiplica-
tive commutative monoid generated by X , be ordered by the term order ≤, and
let in the sequel p, q always denote polynomials inR[X] and s, t elements of [X]
(“power products”).

De�ne C(p, t) as the coe�cient of p at t, H(p, t) as the “higher part” of pw. r. t.
t (i. e. pwhere the coe�cients of all s ≤ t are set to 0), lp(p) as the “leading power
product” of p for p 6= 0 (i. e. the greatest power product appearing in pwith non-
zero coe�cient), and lc(p) := C(p, lp(p)) (the “leading coe�cient” of p).

Following [Buc83a, Buc84, Sti85], the ring R[X] can be turned into a reduc-
tion ring by setting

p E q :⇔ p = q ∨
(
∃t∈[X]H(p, t) = H(q, t) ∧ C(p, t) ≺ C(q, t)

)
IPp := Ilc(p)
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MP i
p := {m · t |m ∈M i

lc(p), t ∈ [X]}

where the ordering onR[X] is denoted byE rather than� in order to distinguish
it from the ordering onR, and I andM are denoted by IP andMP , respectively,
for the same reason.

The proof that (R[X],+, ·, 0, 1,E, IP,MP ) is a reduction ring is essentially
contained in [Sti85]. The revised variant of Axiom (R6) does not cause any prob-
lems at all, and the crucial property of irrelativity (I2) that is used in the proof
in [Sti88] and which does not have an analogue for our new de�nition of irrela-
tivity (De�nition 3.2.12) fortunately turned out not be be needed, because in our
de�nition of ntcrs (De�nition 3.2.16) we make the indices i, j explicit.

More precisely: property (CR1) in whose original proof (I2) is made use of
has to be rephrased as

p1M
q
i,jp2 i�

1. p1 = p2 ⇒ i 6= j,

2. there do not exist s 6= t ∈ [X], m1,m2 ∈ R with

(a) lp(p1) p s (“lp(p1) divides s”),
(b) lp(p2) p t,
(c) C(q, s)→m1,lc(p1),
(d) C(q, t)→m2,lc(p2), and

(e) p1 = p2 ⇒ (m1 ∈M i
lc(p1)

∧m2 ∈M j
lc(p1)

), but

3. there does exist t ∈ [X] with

(a) lp(p1) p t,
(b) lp(p2) p t,

(c) (p1 = p2 ∨ lc(p1) 6= lc(p2))⇒ lc(p1)M
C(q,t)
i,j lc(p2), and

(d) (p1 6= p2 ∧ lc(p1) = lc(p2))⇒ lc(p1)MC(q,t).

(CR1)

which obviates the necessity of something like (I2).
However, not only the property of being a plain reduction ring is preserved in

polynomial rings, but also of being an algorithmic one. Hence, assume in the se-
quel that (R,+, ·, 0, 1,�, I,M, lcrd, ulcrd, rdm, cpm) is an algorithmic reduc-
tion ring. The four additional functions in R[X] (which are su�xed by “P” in
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order to distinguish them from the ones inR) are de�ned as

lcrdP (p1, p2, i, j) :=
∅ ⇐ p1 = 0 ∨ p2 = 0

lcrd(lc(p1), lc(p2), i, j) · lcm(lp(p1), lp(p2)) ⇐ p1 = p2 ∨ lc(p1) 6= lc(p2)
ulcrd(lc(p1)) · lcm(lp(p1), lp(p2)) ⇐ otherwise

ulcrdP (p) :=

{
∅ ⇐ p = 0

ulcrd(lc(p)) · lp(p) ⇐ otherwise

where the products in lcrdP (p1, p2, i, j) and ulcrdP (p) are element-wise.
rdmP (q, p) can be de�ned analogously to the original setting, by iterating

through the monomials of q until one reaches some c · t with c →{lc(p)} and
lp(p) p t. In that case, rdmP (q, p) = rdm(c, lc(p)) · (t/lp(p)).

cpmP (p1, p2, i, j, q), �nally, is de�ned as

cpmP (p1, p2, i, j, q) :={
(m1 · (lp(q)/lp(p1)),m2 · (lp(q)/lp(p2))) ⇐ p1 = p2 ∨ lc(p1) 6= lc(p2)

(r · (lp(q)/lp(p1)), r · (lp(q)/lp(p2))) ⇐ otherwise

for (m1,m2) = cpm(lc(p1), lc(p2), i, j, lc(q)) and r = rdm(lc(q), lc(p1)).
The validity of Axioms (R11) and (R12) can be seen rather easily, at least when

consulting [Buc83a, Sti85]. The proof that (R13) holds is a bit more involved but
can be directly carried over from [Buc83a] just as it is. The validity of axioms (R9)
and (R10), �nally, follows readily from the corresponding axioms in R and the
following lemma:

Lemma 3.4.2 (∼ in Polynomial Rings). For all a, b ∈ R with a ∼ b and t ∈ [X]
we also have a · t ∼ b · t (where the latter equivalence is inR[X], of course).

Proof. From our assumption we know that there is some unit m ∈ R with a ∼m
b. Let a := a · t, b := b · t and m := m · 1; we claim that a ∼m b. First of all, m
apparently is a unit inR[X], because m is one inR, meaning that we only have
to show

b = ma (G.1)

p C q ⇔ mp C mq (G.2)

n ∈MP i
p ⇔ mn ∈MP i

p (p 6= 0) (G.3)

p1O
a
i,jp2 ⇔ p1O

b
i,jp2 (G.4)

pOa ⇔ pOb (G.5)
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(G.1): From a ∼m b we know b = ma, hence b · t = (m · 1) (a · t).
(G.2): We only prove the direction from left to right, as the converse direction

is completely analogous. From p C q we obtain s ∈ [X] such that C(p, s) ≺
C(q, s) and H(p, s) = H(q, s). From a ∼m b we can thus infer C(mp, s) =
mC(p, s) ≺ mC(q, s) = C(mq, s), and since also H(mp, s) = mH(p, s) =
mH(q, s) = H(m , q, s) , we conclude mp C m, q.

(G.3): As before we only prove “⇒”. From n ∈ MP i
p we obtain n0 ∈ M i

lc(p)

and s ∈ [X] with n = n0 · s. From this, together with a ∼m b, we can infer
mn0 ∈M i

lc(p), and thus also mn = (mn0) · s ∈MP i
p.

(G.4): Again we only prove “⇒”. By a well-known fact proved in [Sti85]
(called “(CR2)” there) we know that p1Oai,jp2 is equivalent to

1. t = lcm(lp(p1), lp(p2)) and

2. lc(p1)Oai,jlc(p2) if p1 = p2 ∨ lc(p1) 6= lc(p2), and lc(p1)Oa otherwise.

Hence, we distinguish two cases based on whether or not p1 = p2 ∨ lc(p1) 6=
lc(p2); however, since the two cases are quite similar, we assume that the formula
holds and therefore also lc(p1)Oai,jlc(p2). Thus, together with a ∼m b, we can
infer lc(p1)Obi,jlc(p2), and by the same argument as before conclude p1Obi,jp2.

(G.5): Analogous.

Summarizing, (R[X],+, ·, 0, 1,E, IP,MP, lcrdP, ulcrdP, rdmP, cpmP ) is
an algorithmic reduction ring. Actually, this does not come “by chance” but was
one of the fundamental design goals when reduction rings were �rst introduced
in [Buc83a].

Comparison to the original setting. The case of reduction rings of the form
K[X] (K a �eld) coincides exactly with the original setting in terms of the or-
der relation on polynomials, the reduction relation and mntcrs. In the original
setting, two monomials di�ering only by a constant factor can be regarded as
“equivalent” (e. g. when forming mntcrs and S-polynomials), and in the reduc-
tion ring setting is equivalence is made explicit by ∼ and Lemma 3.4.2. The
di�erence of a critical pair in reduction rings corresponds to the S-polynomial
(again, up to a constant factor).

Furthermore, the well-known elimination property of Gröbner bases in the
original setting carries over to polynomial reduction rings as well, regardless of
whether the coe�cient domain is a �eld or not; see Section 3.5.3. �
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3.4.5 Other Reduction Rings

The reduction rings discussed so far are all part of our formalization in Theorema;
in this subsection we list other important (algorithmic) reduction rings. Our
presentation mainly follows [Sti91], where the interested reader may �nd much
more details and even further examples of reduction rings.

Remark 8. Our modi�cations and improvements of the original reduction ring
theory, namely co- and irrelativity and the equivalence relation, have not been
shown to be feasible for the reduction rings listed in this subsection yet. How-
ever, a rough overview of the rings in question gives con�dence that our re-
vised/new notions do not cause any problems there; at least we are not aware of
any.

The following rings can be turned into algorithmic reduction rings:

• The cyclic foldings Cp,k for prime p and k ∈ N, de�ned as Cp,k = Zk−1p

with component-wise addition and a b :=
(∑k−1

j=0 aj b(i−j) mod k

)k−1
i=0

.

• The Gaussian integers Z + iZ.

• The k-fold direct product of the algorithmic reduction ringR (i. e. Rk with
component-wise addition and multiplication).

It is important to note that the fact that Rk is a reduction ring not only en-
ables the computation of Gröbner bases of ideals inRk, but also of modules inR.
This, essentially, is achieved by restricting the sets of multipliers inRk to contain
only elements of the form (m, . . . ,m)T where all components are identical (and
where multiplication by such a multiplier thus resembles multiplication by a sin-
gle ring element); all this is exploited when proving that it is possible to compute
Gröbner bases of syzygies inR, see Section 3.5.4. In fact, treating modules inR is
easier than treating ideals inRk because of the smaller sets of multipliers. More
information on modules can be found in [Sti93].

3.5 Main Results
In this section we present the main results in reduction ring theory, as well as
some important di�erences to the original setting of polynomial rings over �elds.

Throughout the whole section let (R,+, ·, 0, 1,�, I,M) be a (not necessarily
algorithmic) reduction ring.
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3.5.1 Buchberger’s Criterion and Buchberger’s Algorithm
The �rst result we consider is the most important one. It corresponds to Buch-
berger’s criterion on S-polynomials in the original setting, i. e. it yields an algo-
rithmic criterion for deciding whether a given set is a Gröbner basis or not.

De�nition 3.5.1 (Connectible Critical Pairs). The two ring elements c1 and c2
are said to have connectible critical pairs moduloC ⊆ R, written as cpc(c1, c2, C),
i� for all i, j ∈ Ic1 and all a with c1Oai,jc2 there exist a, b1, b2 such that

1. a ∼ a,

2. b1 and b2 constitute a critical pair of c1 and c2 w. r. t. a and i, j, and

3. b1 ↔≺aC b2.

The Main Theorem is based on the following

Lemma 3.5.2. Fix c1, c2 ∈ C . If cpc(c1, c2, C), cpc(c1, c1, C) and cpc(c2, c2, C)
then, for all d, d1, d2 with d→{c1} d1 and d→{c2} d2, we have d1 ↔≺dC d2.

Proof. The proof is more or less the same as in [Sti85]. The crucial property of
irrelativity needed is not (I1) any more, but what is stated in Lemma 3.2.14.

The only aspect of the lemma that is not re�ected in the proof in [Sti85] is
the fact that one representative of each equivalence class (modulo ∼) of mntcrs
su�ces. More precisely: if b1, b2 is a critical pair of c1 and c2 w. r. t. a, i, j and C ,
a ∼ a and b1 ↔≺aC b2, then there also exists a critical pair b1, b2 of c1 and c2 w. r. t.
a, i, j and C with b1 ↔≺aC b2. Namely, if a ∼m a, then mb1 and mb2 is such a
critical pair; this is an immediate consequence of Lemmas 3.2.27 and 3.2.28.

Theorem 3.5.3 (Main Theorem; Buchberger’s Criterion). Let G ⊆ R. Then G is
a Gröbner basis i� for all g1, g2 ∈ G\{0} we have cpc(g1, g2, G).

Proof. The theorem follows readily from Lemma 3.5.2 and a “generalized New-
man lemma”, invented and proved by Buchberger in [WB83].

The criterion of Theorem 3.5.3 is not e�ective yet, even for �nite sets G,
because of the in general undecidable condition b1 ↔≺aG b2. However, we can
also prove the following

Corollary 3.5.4. LetG ⊆ R. ThenG is a Gröbner basis i� for all g1, g2 ∈ G\{0},
all i, j ∈ Ig1 and all a with g1Oai,jg2 there exist a, b1, b2 such that

1. a ∼ a,

2. g1Oai,jg2,



42 3. Reduction Rings and Gröbner Bases

3. b1 and b2 constitute a critical pair of g1 and g2 w. r. t. a and i, j, and

4. b1 and b2 have identical normal forms modulo G.

Proof. The direction from left to right is obvious: set a := a and choose any
critical pair b1 and b2. Since G is Gröbner basis and hence→G is Church-Rosser,
every element has a unique normal form modulo G. This uniqueness of normal
forms guarantees that the normal forms of b1 and b2 are identical, as they both
are also normal forms of a.

The converse direction follows from Theorem 3.5.3, because if the normal
forms (modulo G) of two elements b1 and b2 are identical, we in particular know
b1 ↓∗G b2 and hence b1 ↔≺aG b2 (because b1, b2 ≺ a!)

One might argue that the criterion from the corollary is still not e�ective, be-
cause of the requirement on the existence of some a, b1, b2. However, analogous
to the proof of Corollary 3.5.4 it is easy to see that given g1, g2, i, j and a it su�ces
to consider any a, b1 and b2 with the required properties (a ∼ a, g1Oai,jg2, b1 and
b2 critical pair) and reduce b1 and b2 to some normal forms: if the normal forms
thus obtained are not identical, G is de�nitely no Gröbner basis (even if b1 and
b2 have some other identical normal forms!), and if they are, we found suitable
witnesses (if not all normal forms are identical, though, other critical pairs will
violate the criterion of the corollary).

Comparison to the original setting. Theorem 3.5.3 di�ers from Buchberger’s
criterion in the original setting in quite a few respects. First and foremost, the
elements g1, g2 ∈ G do not need to be distinct, but even identical pairs have to
be considered. Second, even for �xed i, j a pair g1, g2 might have several mntcrs,
all of which have to be dealt with (or, at least, one representative of each equiva-
lence class modulo∼). Third, instead of reducing the di�erence of the critical pair
(corresponds to the S-polynomial) to some normal form and checking whether
this normal form is 0, one really has to reduce the constituents of the critical
pair separately and check whether they have identical normal forms: as a coun-
terexample take, as in [Sti85], the set G := {5x, 2y} in the reduction ring Z[x, y]
(according to Sections 3.4.2 and 3.4.4). All “S-polynomials” originating from G
can be reduced to 0, but both 0 and −xy are normal forms of 3xy modulo G. �

It is obvious that Theorem 3.5.3 and Corollary 3.5.4, respectively, not only
allow to check whether a given (�nite) set is a Gröbner basis or not, but also to
actually compute Gröbner bases (at least if R constitutes an algorithmic reduc-
tion ring with functions lcrd, ulcrd, rdm and cpm). The resulting Buchberger
algorithm (Algorithm 1) is the direct translation of the algorithm from the origi-
nal setting to reduction rings, with some adjustments due to the aforementioned
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di�erences between Theorem 3.5.3 and the corresponding theorem in the origi-
nal setting.

Algorithm 1 Buchberger’s algorithm in the algorithmic reduction ringR
Input: D = {d1, . . . , dk} ⊆ R
Output: G ⊆ R s. t. G is a Gröbner basis of D

1: function GB(D)
2: P ← {(di, dj)|1 ≤ i ≤ j ≤ k}
3: G← D
4: while P 6= ∅ do
5: (c1, c2)← some element from P
6: P ← P\{(c1, c2)}
7: for all i, j ∈ Ic1 do
8: L← lcrd(c1, c2, i, j)
9: for all a ∈ L do

10: (m1,m2)← cpm(c1, c2, i, j, a)
11: h1 ← trd(a−m1 c1, G)
12: h2 ← trd(a−m2 c2, G)
13: h← h1 − h2
14: if h 6= 0 then
15: P ← P ∪ {(h, h)} ∪ {(g, h)|g ∈ G}
16: G← G ∪ {h}
17: end if
18: end for
19: end for
20: end while
21: return G
22: end function

Function GB depends on the auxiliary function trd: this function is de�ned
in terms of rdm and totally reduces its �rst argument to some normal form mod-
ulo its second argument.

As noted already in Section 3.3.2 functions lcrd, ulcrd (which is not needed
in Algorithm 1, but only in the transition fromR toR[X]), rdm and cpm do not
have to be e�ectively computable. Algorithm 1 is an algorithm only relative to
the computability of these functions and to the computability of the basic ring
operations inR.

Completing the basis G by h1 − h2 in Line 16 ensures that h1 and h2 have a
common successor (and hence are connectible below a) modulo the new basis,
because from h1 − h2 →{h1−h2} 0 and Axiom (R5) we can infer h1 ↓∗{h1−h2} h2.
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Algorithm 1 is not yet the best possible one. As in the original setting, we can
employ the so-called chain criterion to get rid of useless reductions; see [Buc79]
for a thorough description of the chain criterion in the original setting. Indeed,
the chain criterion there is almost exactly the same in reduction rings:

De�nition 3.5.5 (Chain Criterion). Let C ⊆ R, c1, c2 ∈ C , a ∈ R and P ⊆
C ×C . Then the chain criterion holds for c1 and c2 w. r. t. a, C and P , written as
ccrit(c1, c2, a, C, P ), i� there exists c ∈ C such that

1. c1, c2 and c are pairwise distinct,

2. (ck, ck) /∈ P (k = 1, 2),

3. (c, c) /∈ P ,

4. (ck, c) /∈ P and (c, ck) /∈ P (k = 1, 2), and

5. a→{c}.

Lemma 3.5.6. After Line 9 of Algorithm 1: if ccrit(c1, c2, a, G, P ) holds, then all
critical pairs pair of c1 and c2 w. r. t. a and i, j can be connected below amoduloG.

Proof. The proof is mainly based on the fact that if a→{c} b for some c ∈ G, b ∈
R and cpc(c1, c1, G), cpc(c2, c2, G), cpc(c, c, G), cpc(c1, c, G) and cpc(c2, c, G),
then the critical pairs of c1 and c2 w. r. t. a and i, j can be connected below a
moduloG. This follows readily from Lemma 3.5.2: let b1 and b2 be any critical pair
of c1 and c2 w. r. t. a and i, j. In particular we know a→{c1} b1 and a→{c2} b2, so
from our assumptions and Lemma 3.5.2 we can infer both b1 ↔≺aG b and b↔≺aG b2.
Combining these two results yields the desired b1 ↔≺aG b2.

Note that cpc(c1, c1, G) holds because from assumption ccrit(c1, c2, a, G, P )
we can infer that the pairs (c1, c1) etc. are not included in P any more, meaning
that they have already been processed in the algorithm.

Lemma 3.5.6 suggests that in Algorithm 1, after choosing a it is better to �rst
check whether the chain criterion holds for the respective arguments: if it holds
we can be sure that the criterion of Theorem 3.5.3 is satis�ed for c1, c2 and a,
meaning that no (expensive) reductions have to be performed.

3.5.2 Ideal Congruence and the Reduction Relation
Knowing how to compute Gröbner bases in reduction rings is nice, but for ef-
fectively solving ideal-theoretic problems we need a connection between the re-
duction relation and ideal congruence. Thanks to Axiom (R3), there is one:
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Theorem 3.5.7. For every set C ,↔∗C coincides with ≡C .

Proof. The proof of this theorem can be found in [Buc83a, Sti85].

Now it is clear how various ideal-theoretic problems in reduction rings, like
deciding ideal membership, ideal congruence and ideal equality, can e�ectively
be solved if the ideals in question are given by �nite bases. All this proceeds
exactly as in the original setting of polynomials over �elds, so we spare the (ob-
vious) details here.

3.5.3 Elimination Property
One of the most important properties of Gröbner bases in the original setting is
the so-called elimination property: ifX = {x1, . . . , xk} is a set of indeterminates,
Y ⊆ X ,≤Y is an elimination order for Y onX (i. e. s <Y twhenever s ∈ [X\Y ]
and t ∈ [X]\[X\Y ]; see, e. g., [KR00], page 196), and G is a Gröbner basis w. r. t.
≤Y , then G ∩K[X\Y ] is a Gröbner basis of ideal(G) ∩K[X\Y ] in K[X\Y ].

Fortunately, the elimination property not only holds in polynomial rings over
�elds, but in polynomial rings over arbitrary reduction ringsR (which are them-
selves reduction rings, according to Section 3.4.4). This important fact is sum-
marized in the following

Theorem 3.5.8 (Elimination Property). Let X = {x1, . . . , xk} a set of indeter-
minates, Y ⊆ X , ≤Y an elimination term order for Y , G a Gröbner basis in the
reduction ringR[X], and set Z := X\Y . ThenGZ := G∩R[Z] is a Gröbner basis
of ideal(G) ∩R[Z] inR[Z].

Proof. The proof is basically the same as in the original setting: ifG is a Gröbner
basis, every element of ideal(G) can be reduced to 0 modulo G. This, in particu-
lar, also holds for the elements of ideal(G)∩R[Z], so let a be such an element. a
can only be reduced modulo some g ∈ Gwith lp(g) ∈ [Z], which further implies
g ∈ GZ because≤Y is an elimination order. Hence, the result of reducing a once
is still contained in R[Z], so applying this argument inductively we �nd that
in the whole reduction process of a to 0, only reductors from GZ can be used,
meaning that every element of ideal(G)∩R[Z] can be reduced to 0 modulo GZ .
This proves ideal(GZ) = ideal(G) ∩ R[Z], but it might not prove that GZ is a
Gröbner basis (see Section 3.6.3).

Nevertheless, GZ is a Gröbner basis thanks to Corollary 3.5.4: all mntcrs
originating fromGZ can easily be shown to be contained inR[Z], which implies
that also all critical pairs are contained in R[Z]. Now, since the critical pairs
have identical normal forms modulo G, they must have identical normal forms
modulo GZ as well, because in the reductions only reductors from GZ can be
used.
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Remark 9. Theorem 3.5.8 is not included in our formalization yet.

3.5.4 Gröbner Bases of Syzygies

The computation of a basis of the module of syzygies of a �nite set of ring ele-
ments {b1, . . . , bk} is another important application of Gröbner bases theory in
the original setting, see for instance [KR00], page 148. Fortunately, also this ap-
plication can be transferred to reduction rings thanks to the fact that Rk with
multipliers of the form (m, . . . ,m)T is an algorithmic reduction ring ifR is, see
Section 3.4.5.4

Theorem 3.5.9 (Gröbner Bases of Syzygies). Let R be a reduction ring, B =
{b1, . . . , bk} ⊆ R and set

B := (b1, . . . , bk)

D := {


1
0
...
0
b1

 , . . . ,


0
...
0
1
bk

} ⊆ Rk+1

Let H be a Gröbner basis of D in Rk+1 (where the multipliers are of the form
(m, . . . ,m)T ) according to [Sti93]. Write H as

H := {


c1,1
...
ck,1
g1

 , . . . ,


c1,α
...

ck,α
gα

 ,


s1,1
...
sk,1
0

 , . . . ,


s1,β
...

sk,β
0

}
where the gi are all non-zero. Then

1. G := {g1, . . . , gα} is a Gröbner basis of B inR,

2. ci := (c1,i, . . . , ck,i)
T is the cofactor tuple of gi w. r. t. B, i. e. gi = B ci, and

3. S := {(s1,i, . . . , sk,i)T | 1 ≤ i ≤ β} is a Gröbner basis of the module of
syzygies of B (or, more precisely, B) inRk.

4Actually, it is not quite a reduction ring because it obviously violates (R3); this, however,
does not matter in this case.
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Proof. The proof is almost identical to the one in the original setting. The crucial
property of reduction inRk+1 according to [Sti93] is x1

...
xk+1

→(m,...,m)T ,(z1,...,zi,0,...,0)T

 y1
...

yk+1

⇔
∧

m ∈Mzi

yj = xj −mzj (1 ≤ j ≤ k + 1)
yi ≺ xi

(1)

where zi 6= 0 and ≺ and M on the right-hand-side of the equivalence are in R,
of course.

1. We �rst prove that every a ∈ ideal(B) can be reduced to 0 modulo G. For
this, assume a ∈ ideal(B), i. e. a = q1 b1 + . . . + qk bk for some qi ∈ R. Then
apparently (0, . . . , 0, a)T ≡D (−q1, . . . ,−qk, 0)T , and sinceH is a Gröbner basis
and because of (1), we know (0, . . . , 0, a) →∗H (∗, . . . , ∗, 0) and thus a →∗G 0.
This proves ideal(G) = ideal(B), but as in Theorem 3.5.8 it might not prove that
G is a Gröbner basis. However, since the criterion of Corollary 3.5.4 is satis�ed for
H , it is also satis�ed for G, and G indeed is a Gröbner basis (note that all mntcrs
of (c1,i, . . . , ck,i, gi)

T and (c1,j, . . . , ck,j, gj)
T are of the form (0, . . . , 0, ∗)T , and so

are the constituents of all critical pairs).
2. First observe that (0, . . . , 0, a) ∈ module(D) implies a = 0. Therefore,

since (0, . . . , 0, gi − c1,i b1 − . . .− ck,i bk)T ∈ module(D) we can conclude gi =
c1,i b1 + . . .+ ck,i bk = B ci.

3. By a similar argument as in 1. we can prove that S is a Gröbner ba-
sis: the criterion of Corollary 3.5.4 holds for H , so it must hold for S as well
because of (1) and the shapes of the mntcrs. Furthermore, given any syzygy
(σ1, . . . , σk)

T of B, we can easily infer (σ1, . . . , σk, 0)T ∈ module(D) as well
and hence (σ1, . . . , σk, 0) can be reduced to 0 moduloH , meaning that the syzygy
itself can be reduced to 0 modulo S (again because of (1)).

Remark 10. Theorem 3.5.9 is not included in our formalization yet.

3.6 Di�erences to the Original Setting
We end this chapter by pointing out some striking di�erences between the orig-
inal setting of polynomial rings over �elds and the much more general reduction
ring setting. Actually, the last di�erence listed below is merely a conjecture and
not a known fact.
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3.6.1 Singletons
The �rst di�erence is related to singleton sets. In the original setting, a single-
ton is automatically a Gröbner basis, but in reduction rings this is not the case
any more.5 The main reason for this seemingly strange phenomenon lies in the
presence of zero divisors: reduction rings are not restricted to integral domains.
For example, in the reduction ring Z4[x] the singleton {2x + 1} is no Gröbner
basis. This is because 2 = 2 (2x + 1) ∈ ideal(2x + 1), but 2 cannot be reduced
modulo 2x+ 1 because the leading term of 2x+ 1 does not divide any term in 2
(see Section 3.4.4). Hence, {2x+ 1} cannot be a Gröbner basis.

3.6.2 Reducibility and Irreducibility
In contrast to the original setting, the following seemingly obvious statements
do not hold in reduction rings in general. In each case the reduction ring Z
according to Section 3.4.2 serves as a counterexample.

• a→C ⇒ −a→C

Counterexample: C = {2a} and a > 0 (w. r. t. the standard ordering on Z,
not the reduction ring ordering),

• a+ b→C ⇒ (a→C ∨ b→C)
Counterexample: C = {2a+ 2b} and a, b > 0,

• a− b→C ⇒ (a→C ∨ b→C)
Counterexample: C = {2a− 2b} and a > 0 > b,

• a→C ∧¬b→C ⇒ a+ b→C

Counterexample: C = {2a}, a > 1 and b = −1.

3.6.3 0-Reducibility of Ideal Elements
The last di�erence concerns a necessary condition for being a Gröbner basis,
which in the original setting is also su�cient: the reducibility of all ideal elements
to 0. In other words, property (Red 0)might not hold in reduction rings in general
(but the converse still holds, of course).(

∀a∈ideal(C) a→∗C 0
)
⇒ C is a Gröbner basis (Red 0)

5This situation parallels the one in non-commutative polynomial rings, where singletons are
not necessarily Gröbner bases either.
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The emphasis in the last sentence is on the word might: neither did we �nd
a concrete example of a reduction ring and a set C that violate (Red 0), nor did
we manage to prove it.

A su�cient condition for (Red 0) to hold is

(a− b→∗C 0 ∧ a 6= b) ⇒ (a→C ∨ b→C) (Red 0’)

which trivially holds in �elds and is preserved in the transition fromR toR[X].
Remark 11. One might argue that if the left-hand-side of (Red 0) held but its right-
hand-side failed for a C , then C could still be completed to a Gröbner basis by
Algorithm 1; an element h thus added to C is of course contained in ideal(C), so
h→∗C 0 by assumption. In the original setting, hwould hence be redundant, and
so C would already be a Gröbner basis, contradicting our assumption. However,
in reduction rings elements that can be reduced to 0 might not be redundant in
Gröbner bases—where as before the emphasis is on might.



Chapter 4

Formalization of Reduction Ring
Theory

The focus of this chapter is on the formalization of reduction ring theory, as pre-
sented in the previous chapter, in Theorema, which constitutes the main achieve-
ment in our study. First, we give a general overview of the formalization and
some design decisions we made. Then, we describe the individual components
(i. e. sub-theories) of our formalization in more detail, before having a close look
at the implementation, speci�cation and veri�cation of Buchberger’s algorithm
in Theorema. Afterward, the special prover developed for e�ciently proving
results in reduction ring theory is presented, followed by a comparison of the
Theorema-formalization to our formalization of Gröbner bases theory in the Is-
abelle proof assistant.

Some parts of this chapter have already been published in [Mal15a, Mal15b,
Mal15c, Mal16b].

4.1 Overview of the Formalization
The main objective of our PhD study was the formalization of the theory of re-
duction rings and Gröbner bases in the Theorema system. “Formalization”, in
that sense, has to be understood as the representation of all of the theory, i. e.
axioms, de�nitions, theorems and algorithms, in terms of higher-order predi-
cate logic formulas, together with the computer-supported and -checked formal
veri�cation of all results.

A substantial part of our formalization comprises elementary, general math-
ematical theories, such as sets, algebraic structures, integers and tuples, that are
themselves independent of reduction ring theory and merely serve as its logical
backbone. In this respect, our formalization can also be regarded a major con-

50
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tribution to a structured knowledge base of the foundations of mathematics in
Theorema 2.0 that can be reused in future theory explorations. Such a knowledge
base did not exist in Theorema 2.0 before, which justi�es, in our opinion, pre-
senting it just alongside the formal treatment of the “real” reduction ring theory
in this chapter, in Section 4.2.
Remark 12. In this chapter the word “theory” will not only be used to refer to
all of reduction ring theory, as presented in Chapter 3, but also to individual
components (i. e. Theorema notebooks) of our formalization.

4.1.1 Related Work
To the best or our knowledge, reduction rings have never been the subject of
computer-formalization in any mathematical assistant system before; Gröbner
bases theory in the original setting (or at least parts thereof), though, has already
been formalized in various systems, listed in chronological order:

• Théry and Persson [Thé01, Per01] formalized the basics of multivariate
polynomials and Gröbner bases in Coq [BC04], and based on this formal-
ization implemented and formally veri�ed Buchberger’s algorithm (also in
Coq), even incorporating Buchberger’s criteria to avoid useless reductions.
From the provenly correct algorithm in Coq, an OCaml program was then
extracted automatically.

• Medina-Bulo, Palomo-Lozano, Alonso-Jiménez and Ruiz-Reina [MPAR04,
MPR10] implemented Buchberger’s algorithm in ACL2 [KMM00] and also
proved it correct there. Just as in our case, the provenly correct algorithm
can directly be executed without any prior compilation or translation into
another system.

• Buchberger and Craciun [Buc04b, Cra08] managed to automatically syn-
thesize Buchberger’s algorithm from its speci�cation by the so-called lazy
thinking method. The system they chose for their work was Theorema 1,
the predecessor of our system.

• Schwarzweller [Sch06] formalized the theory of Gröbner bases in the Mizar
system [BBG+15], based on a range of auxiliary Mizar-theories on multi-
variate polynomials, term orders, polynomial reduction, etc. Algorithms
are not executable in Mizar directly.

• Jorge, Guilas and Freire [JGF09] implemented Buchberger’s algorithm in
OCaml and proved it correct using a formal representation of the underly-
ing theory in Coq. In contrast to [Thé01] the algorithm is not implemented



52 4. Formalization of Reduction Ring Theory

in Coq and then translated to OCaml, but rather directly implemented in
OCaml, leading to an increased e�ciency.

Furthermore, the purely algorithmic aspect of a variant of reduction ring the-
ory has been considered in Theorema 1 in [Buc03], where Buchberger’s algo-
rithm was implemented in a generic way that served as a model for our im-
plementation (see Section 4.4). However, said elaboration exclusively focuses
on computations and the investigation of domains, functors and categories in
Theorema; no single theorem, e. g. about the correctness or termination of the
algorithm, is proved nor even stated there formally.

4.1.2 Design Decisions
It is obvious that a mathematical theory cannot be directly translated from a
text-book representation into a fully formal one, without any minor (or even
major) adjustments of the syntax, notions or even theorems. In our formalization,
however, there are not that many di�erences compared to what is presented in
Chapter 3:

• The ordering in reduction rings is not �, but the strict, converse variant
� thereof. The reason for this lies in the fact that the reduction relation
also has its smaller argument to the right, i. e. →C ⊆�. Statements like
Noetherianity of a relation can hence be formulated generally and applied
to the ordering and to the reduction relation alike, without the having
to �rst form the converse of one of them (using a higher-order function
converse, for instance).

In fact, the preference of � over � in reduction rings had an e�ect on the
standard ordering on numbers, too. In the various number-theories (Num-
bers.nb, NatInt.nb and NatIntExtended.nb) the basic relation all others are
de�ned in terms of is ≥ and not ≤, as usually in mathematics. In Logic-
Sets.nb, however, the basic relations are ∈ and ⊆ rather than 3 and ⊇.

• The sets Ic are �xed to sets of the form {1, . . . , multN[c]}, where multN[c]
is a function that maps c to the number of sets of multipliers of c. The
reason for this is simply because sets of natural numbers can be handled
easier in computations. For instance, in Corollary 3.5.4 and hence also in
Buchberger’s algorithm it is apparent that for given c1 and c2 it su�ces to
consider either i, j ∈ Ic or j, i ∈ Ic, but not both. If Ic is a set of (natu-
ral) numbers, this observation can easily be implemented to increase the
e�ciency of the algorithm.
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• The conditions m ∈M i
c are replaced by ternary predicates mult[c,m,i],

meaning that the sets M i
c (and also Mc) are not explicitly included in the

formalization. This, of course, is only a minor di�erence and does not have
any deeper reason either.

• Functions lcrd and ulcrd in algorithmic reduction rings are both called
lcrd in the formalization, making use of the di�erent numbers of argu-
ments (four vs. one) to distinguish them from each other.

• Buchberger’s algorithm is implemented as a tail-recursive functional pro-
gram rather than the imperative one shown in Algorithm 1. Although writ-
ing imperative programs is possible in Theorema in principle, functional
programs typically facilitate correctness proofs. Buchberger’s algorithm
in our functional implementation, as well as its correctness proof, are the
topic of Section 4.4.

One major design decision concerns the systematic construction of hierar-
chies of mathematical domains, e. g. D → D[X] → D[X]2 → . . .. A natural
candidate for achieving this goal is the use of functors and domains, as described
in Section 2.2, and this is indeed the approach we pursue in our formalization.

There is, however, one subtle detail about domains in Theorema that we en-
countered during our work. Usually, the carrier of an algebraic structure, be it a
group, a ring, a topology, or whatever, has to be a set and not a proper class. In
some situations this requirement might be super�uous, but in other situations
it is of utmost importance. Consider, for instance, a domain D ordered by �
(the underscript is omitted here for better readability). Assume further that �
is Noetherian on D, meaning that every non-empty set of elements of D has
a ≺-minimal element. Thus, one might want to employ Noetherian induction
for proving universally quanti�ed formulas ranging over all elements of D . . .
but proving a corresponding induction rule is only possible if we know that the
carrier of D itself is a set rather than a proper class.

The situation sketched above was not invented for making our point, but
unfortunately really arose in our formalization and caused us to re-prove quite
some theorems that had already been proved (but under a wrong assumption).
The solution we employed to overcome the problem was to introduce a unary
predicate, isDomain, de�ned in LogicSets.nb as

∀
D

isDomain[D] :⇔ ∃
isSet[A]

∀
∈
D
[x]

x ∈ A (isDomain)

that speci�es whether its argument is a “real” domain in the sense of our formal-
ization, where we are adamant that the carriers of such structures are sets.
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Besides the issue with the carriers of domains being sets, we also came across
another minor drawback when working with domains and sets in parallel. If one
wishes to introduce a notion or prove a theorem that is relevant both for sets
and domains, one always has to do it twice: once for sets and once for domains.
To continue our example with Noetherianity, one might want to express that
a binary relation is Noetherian on a set (with the usual set membership pred-
icate x ∈ A), but one might also want to express that it is Noetherian on a
domain (with the domain membership predicate ∈

D
[x]). As before, such a situa-

tion really occurred in our formalization, where we instead introduced the pred-
icate isWellFounded to express that a relation is well-founded on a set, and
isNoetherian for asserting the Noetherianity of a relation on a domain. Note
that, according to widely-accepted mathematical standards, a binary relation �
is said to be Noetherian i� its converse is well-founded; in the formalization we
adhere to this convention, except that isWellFounded[ ≺, A] is de�ned for
sets A, whereas isNoetherian[ �,D] is de�ned for domains D.

4.1.3 Structure and Size of the Formalization

Figure 4.1 shows the dependencies of the individual sub-theories on each other.
Each node represents a sub-theory, contained in a separate Theorema notebook,
and a directed edge from theory T1 to theory T2 means that T2 logically depends
on T1 in the sense that formulas (i. e. axioms or theorems) contained in T1 are
used in the proof of a theorem in T2. The color of the frame of a node indi-
cates whether the corresponding theory belongs to the knowledge base of ele-
mentary theories (blue; Section 4.2) or is directly related to reduction rings (red;
Section 4.3). Note also that transitive edges are omitted for better readability,
e. g. theory Numbers.nb not only depends indirectly on theory LogicSets.nb (via
AlgebraicStructures.nb), but also directly; this fact is not re�ected in Figure 4.1.

Figure 4.2 displays the sizes of the individual sub-theories in terms of the
numbers of unproved axioms (including de�nitions) and proved theorems. Ta-
ble 4.1 contains the accumulated formula numbers, again both unproved and
proved, in the entire formalization. It reveals that the two main parts of the for-
malization (elementary theories and reduction ring theories) contain roughly the
same number of axioms, but that a bit more theorems are proved in the elemen-
tary theories.

Table 4.2, �nally, contains the average- and maximum sizes of the proofs in
each theory, in terms of the numbers of inference steps. As can be seen, proofs in
the elementary theories tend to be much shorter than proofs in the reduction ring
theories. This, actually, is no surprise: many theorems in the former category are
merely simple lemmas stating rather obvious and immediate properties of the
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LogicSets.nb

AlgebraicStructures.nb

Numbers.nb

NatInt.nb

NatIntExtended.nb

Tuples.nbSequences.nb Functors.nb

ReductionRings.nb

Integer�otientRings.nbIntegers.nb

Fields.nb

Polynomials.nb

PolyTuples.nb

GroebnerRings.nb

Figure 4.1: The theory dependency graph. Blue-framed nodes correspond to elementary
theories, red-framed nodes to theories directly related to reduction rings.

notions involved, whereas theorems in the latter category usually deal with the
rather complicated concepts related to reduction rings, as presented in Section 3.

At the moment, the formalization with all Theorema notebooks and proofs is
not yet publicly available (e. g. in an online repository), because the mechanism
for turning Theorema theories into so-called Theorema Knowledge Archives that
can easily be shared amongst the users of the system is still in the development
stages. As soon as it is completed, we will immediately put our formalization into
a public repository that will be linked on the o�cial Theorema web page.1 The
interested reader may nevertheless obtain the full formalization (or part thereof)

1h�p://www.risc.jku.at/research/theorema/so�ware/

http://www.risc.jku.at/research/theorema/software/
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LogicSets.nb
AlgebraicStructures.nb

Numbers.nb
NatInt.nb

NatIntExtended.nb
Tuples.nb

Sequences.nb

Functors.nb
ReductionRings.nb

Fields.nb
Integers.nb

Integer�otientRings.nb
Polynomials.nb

PolyTuples.nb
GroebnerRings.nb

59228
3960

25165
29300

22237
29271

0 748
0 936

60252
0 1636

0 1785
0 1778

48341
57161
50170

Figure 4.2: The sizes of the individual theories. The larger number in each row corre-
sponds to the number of proved theorems, the smaller one to the number of de�nitions
and axioms.

Axioms Theorems Total
Elementary theories 219 1344 1563
Reduction ring theories 265 1123 1388
Total 484 2467 2951

Table 4.1: The accumulated formula numbers in the formalization.

in its current form by contacting the author.

4.2 Elementary Theories

In this section we have a closer look at the elementary theories we formalized
in the course of the formal treatment of reduction ring theory. Please note that
these elementary theories so far only include mathematical content that was ex-
plicitly needed for reduction rings; although this is quite comprehensive and
covers many di�erent concepts and results, it is still fairly incomplete.
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Theory Average Maximum
LogicSets.nb 22.6 178
AlgebraicStructures.nb 32.6 91
Numbers.nb 18.4 135
NatInt.nb 17.2 137
NatIntExtended.nb 25.7 203
Tuples.nb 19.3 93
Sequences.nb 21.1 82
Functors.nb 23.5 106
ReductionRings.nb 38.3 183
Fields.nb 42.3 147
Integers.nb 52.9 214
Integer�otientRings.nb 52.4 203
Polynomials.nb 44.0 322
PolyTuples.nb 36.3 151
GroebnerRings.nb 36.1 149

Table 4.2: The average and maximum sizes of the proofs in the individual theories.
“Size”, in this sense, refers to the number of inference steps.

4.2.1 LogicSets.nb
The name of this theory is actually slightly misleading: it consists of roughly 99%
set theory and only 1% logic, namely a tiny little bit of λ-calculus (β-reduction,
function composition). All other aspects of the logic underlying our formaliza-
tion, including propositional and (higher-order) predicate logic (α-equivalence,
higher-order rewriting, etc.) is encoded on the meta level of Theorema, in Math-
ematica, and hence not part of our formalization at all.

The formalization of set theory, however, really starts from the very axioms
of Zermelo-Fraenkel set theory (without the axiom of choice; the logic of Theo-
rema contains a choice-binder ε, though, that is equivalent to it). The axioms are
almost exactly those that can be found in the literature on set theory, only that
we distinguish between—and allow quanti�cation over—sets and non-sets (“ur-
elements” and proper classes), whereas in traditional set theory quanti�cation is
restricted to sets. The predicate isSet is used to determine whether an object is
a set or not.

As an example consider the axiom of in�nity, which reads as

∃
isSet[N]

∧{ ∅ ∈ N
∀

n∈N
succ[n] ∈ N (Axiom of In�nity)
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where succ is the successor function on sets, de�ned as succ[A] := A ∪ {A}.
After the axioms, the usual basic set-theoretic functions and relations are

introduced: general and binary union, general and binary intersection (where the
intersection over the empty set is de�ned to be the empty set), the subset relation,
set abstractions, power sets, the aforementioned succ function, functions and
relations (surjectivity, injectivity, quotient sets), and �nally Kuratowski ordered
pairs and Cartesian products. For each of these notions some simple properties
are proved, e. g. that succ is injective, that Kuratowski ordered pairs possess
all characteristic properties of ordered pairs, that binary union and -intersection
satisfy some lattice properties, etc. We omit the details here, since all this follows
more or less exactly every standard introduction to set theory in a text-book on
the subject.

We do want to emphasize, however, that least �xpoints are formalized in Log-
icSets.nb as well. The least �xpoint of a function f on a set A is de�ned as the
intersection of all sets B ⊆ A with f[B] ⊆ B; if f has certain properties
(boundedness, monotonicity), the result really is a �xpoint of f , and this fact is
also proved in the theory, of course. The reason why we needed least �xpoints in
our formalization is twofold: once for de�ning �nite sets (also in LogicSets.nb),
and once for constructing the set of natural numbers as the smallest set that con-
tains ∅ and the successor of every element (see Numbers.nb). Finite sets, in turn,
are needed for instance in Polynomials.nb, because by de�nition the support of
a polynomial must be �nite.

LogicSets.nb is concluded by the de�nitions of isDomain, as discussed in
Section 4.1.2, and the DomainSets-functor that simply returns the domain of all
sets over its argument domain.

4.2.2 AlgebraicStructures.nb

As its name suggests, AlgebraicStructures.nb contains the de�nitions and some
basic properties of the algebraic structures used in reduction ring theory, namely
cancellative commutative monoids (this is what power-products in polynomial
rings are), groups, rings, commutative rings with identity, and �elds. These struc-
tures are de�ned as unary predicates on domains, e. g. commutative rings with
identity are de�ned as
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∀
D

isCommRing1[D] :⇔
∧

isRing[D]
isNeutral[∗

D
, 1
D
,D]

isComm[∗
D
,D]

(isCommRing1)

The auxiliary notions, like isNeutral and isComm, are also de�ned in this
theory in the obvious way, for instance

∀
D,◦

isComm[◦,D] :⇔ ∀
∈
D
[x,y]

x ◦ y = y ◦ x (isComm)

It is important to note that all notions in AlgebraicStructures.nb are de�ned
for domains, not for sets; in particular, the de�nition of isComm in (isComm)
refers to ∈

D
[x, y] rather than x, y ∈ D.

Apart from group- and ring-like structures and related concepts, the theory
provides the de�nitions of various properties of binary relations, too. These
include (partial/total/re�exive/strict) order relations, equivalence relations and
Noetherian relations. Recall that a binary relation� is Noetherian over a domain
D i� every non-empty setA of elements ofD (i. e. element of DomainSets[D])
has a minimal element w. r. t. the converse relation≺; in short,≺ is well-founded
on the carrier of D.

Finally, AlgebraicStructures.nb also introduces the concept of quotient do-
mains. To that end, a functor called QuoDom is de�ned that maps a domain D
and a binary relation ∼ to the quotient domain Q over D w. r. t. ∼, i. e. the ele-
ments of Q are precisely the equivalence classes of elements of D. In addition,
the four higher-order functions Fun1, Fun2, Rel1 and Rel2 are de�ned in Q,
mapping unary and binary functions in D, and unary and binary relations on
D, respectively, to the corresponding functions and relations inQ. For instance,
Fun2 is de�ned as

∀
f

Fun2
Q

[f] := λ
X,Y

⋃
x∈X
{f[x, y] |

y∈Y
} (Fun2)

It is important to note that Fun2[f] is always well-de�ned, regardless of
whether∼ is a congruence relation for f or not (because it does not even appear
in the de�nition). If ∼ is a congruence relation for f , though, then it is possible
to prove the crucial identity
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∀
f, ∈
D
[x,y]

Fun2
Q

[f][EC
Q
[x], EC

Q
[y]] = EC

Q
[f[x, y]] (Fun2 EC QuoDom)

that is usually taken as the de�nition of binary functions in quotient domains.
EC
Q
[x] denotes the equivalence class of x modulo ∼.
In our formalization, quotient domains are needed in Numbers.nb for con-

structing the domain of integers as the quotient of pairs of natural numbers
modulo some equivalence relation, see below.

4.2.3 Numbers.nb
This theory introduces the sets of natural numbers and integers, together with
the usual arithmetical functions and relations, in a systematic way. Indeed, the
principle employed here can easily be extended to construct the rationals, reals,
and even complex numbers in pretty much the same spirit on top of the integers
as well. The only reason why this has not happened yet is that we do not need
them in our formalization.

First, the set of set-theoretic natural numbers, called natSet, is de�ned by a
least �xpoint construction as the smallest inductive set containing ∅ and succ[n]
for every n in the set.2 Then, the usual operations on natural numbers, namely
addition, pseudo-subtraction, multiplication and the order relation are intro-
duced as functions of the functor Nat by interpreting the respective operator
symbols, and all their characteristic properties are proved; this, in particular,
also includes the usual induction rule as a higher-order formula. Hence, natSet
and Nat are not de�ned by means of axioms, but they are constructed in a purely
set-theoretic manner. However, they only serve as the basis for the further con-
struction of integers, as described in the subsequent paragraphs, and are never
used outside this theory.

Next, the PreInt functor is introduced. This functor returns the domain of
Kuratowski ordered pairs (m,n) of elements of Nat, with the intended mean-
ing that (m,n) represents the integer m − n. PreInt also de�nes the vari-
ous arithmetical operations on such pairs, as well as the equivalence relation
∼ that expresses that two pairs actually represent the same integer, namely
(m,n) ∼ (k, l) :⇔ m+ l = k + n.

On top of that, the set-theoretic integers are de�ned as the quotient domain
Int of PreInt modulo ∼; the QuoDom functor from AlgebraicStructures.nb
is made use of for that. Having constructed the set-theoretic integers, the set
of “real” integers Z is �nally obtained by wrapping each set-theoretic integer

2“Set-theoretic” here means that everything, in particular the elements of natSet, is a set.
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into the free “datatype” constructor INT in theory NatInt.nb, only to ensure
that integers are no sets. This has the advantage that functions can be over-
loaded for sets and integers without ambiguity or inconsistency; a similar ap-
proach is pursued when introducing tuples in Tuples.nb. Finally, the set of “real”
natural numbers, N0, is simply obtained from the set Z by separation, i. e. as
N0 := {n ∈ Z | n ≥ 0} ⊂ Z.

Summarizing, any integer in our formalization is internally represented by
something like INT[ EC

QuoDom[PreInt,∼]
[(m,n)]], although in NatInt.nb we intro-

duce the usual literal abbreviations 0, 1, −1 and 2 for the most frequently used
integers. After all, internal representations become immaterial anyway once
enough properties of the objects in question have been proved.

4.2.4 NatInt.nb

The contents of this theory can be described easily: NatInt.nb states and proves
hundreds of lemmas, some absolutely trivial, others a bit more involved, about
addition, subtraction, multiplication and the order relation on the set of integers.
This includes the proof that (Z,+, ·) constitutes an integral domain, that ≥ is
a discrete linear order relation, how it is related to addition and multiplication,
and many more. Also, a couple of results about interval arithmetic are provided,
for instance

∀
a∈N0

∀
i

i ∈ N1,...,a−1 ⇒ (a− i) ∈ N1,...,a−1 (N intervals 18)

Most of the results in this theory are needed in connection with tuples, since
tuples are of course indexed by natural numbers. Others are needed in the the-
ories Integers.nb and Integer�otientRings.nb, in the proofs that Z and Zk can
be turned into algorithmic reduction rings.

4.2.5 NatIntExtended.nb

NatIntExtended.nb, as its name suggests, extends the theory of natural numbers
and integers by further number-theoretic concepts, such as sign and absolute
value, quotient and remainder, the greatest common divisor, and �nite sums in
arbitrary domains.

First, however, the notion of primitive recursion on N0 is introduced by means
of the binary higher-order function natRec0, which is �rst de�ned by a least
�xpoint construction and then shown to satisfy the two characteristic identities
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∀
b,c

natRec0[b, c][0] = b (natRec0 base)
∀

n∈N0

natRec0[b, c][n+ 1] = c[n, natRec0[b, n]] (natRec0 step)

that allow for expressing primitive recursive functions on N0 by a single term.
Although primitive recursive functions, and even arbitrary recursive functions,
may simply be de�ned in Theorema by a collection of recurrence equations (each
in an individual formula) without caring about termination of the functions and
consistency of the de�nitions, there are also situations where natRec0 (and re-
lated functions for primitive recursion on tuples, for instance) is absolutely nec-
essary. In proofs, quanti�ed variables can only be instantiated by single terms,
so when the instance happens to be a primitive recursive function, natRec0 is
needed.

Afterward, sign and absolute value are introduced, and some simple lemmas
are proved (the triangle inequality, for instance). Both notions are restricted to
Z, as this is the only number domain included in our formalization; in the future,
though, the de�nitions might be extended to encompass also rationals, reals, and
complex numbers.

Next, division with quotient and remainder and divisibility are introduced
by means of the two functions quo and mod and the binary relation p. It must
be noted that both quo[a, b] and mod[a, b] are de�ned implicitly to be the in-
tegers q and r satisfying a = q b + r and 0 ≤ sign[b] r < |b| (the existence
of such integers had to be proved �rst, of course); no appeal to any algorithmic
treatment of division with remainder is made. Apart from some simple lemmas
about quo and mod, e. g. what they are for certain speci�c values of a and b,
various congruence properties of mod are proved as well, which are needed in
Integer�otientRings.nb.

Having division and divisibility in Z, now the greatest common divisor and
least common multiple of two integers are introduced. The former is de�ned
implicitly, requiring an existence proof �rst, whereas the latter is de�ned in terms
of the former as lcm[a, b] := quo[|a b|, gcd[a, b]]. The main results about
gcd proved in this theory are Bézout’s identity, that multiplication distributes
over gcd, and that gcd[a, b] divides mod[c b, a] provided that a 6= 0. The only
theories using gcd are Integers.nb and Integer�otientRings.nb.

Finally, the theory is concluded by the de�nition of �nite sums in arbitrary
domains D. Finite sums play an important role in reduction ring theory, see for
instance Axiom (R5) in Section 3.3. NatIntExtended.nb de�nes them inductively
in terms of 0

D
and +

D
using natRec0, and proves some useful identities, like
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∀
D,f

∀
a,b∈N0

isMonoid[D] ∧ ∀
i=1,...,a+b

∈
D
[f[i]]⇒∑

D
i=1,...,a+b

f[i] =
∑
D

i=1,...,a

f[i] +
D

∑
D

i=1,...,b

f[a+ i] (Σ splitting)

4.2.6 Tuples.nb
As its name suggests, this theory introduces tuples (i. e. lists of arbitrary �nite
length) and some well-known operations on them, and proves lots of helpful
lemmas. Although tuples could in principle be de�ned by analogy with natural
numbers by purely set-theoretic means as the smallest inductive set containing
the empty tuple Nil and Cons[a, t] for every t in the set, this approach unfor-
tunately turned out to be impossible in our case. The reason is quite simple: we
do not restrict the elements of tuples to belong to certain underlying sets, i. e. the
a in Cons[a, t] above could be pretty much anything, and this prevents us from
setting up a �xpoint construction (�xpoint constructions are always w. r. t. an
underlying set). Hence, we had to follow an axiomatic approach where we sim-
ply state the characteristic properties of Nil and Cons as axioms; in particular,
we require them to be free (i. e. injective and distinct) “data-type” constructors
not returning sets. The reason for the latter is the same as for wrapping INT
around set-theoretic integers in NatInt.nb: it shall be possible to de�ne func-
tions once for set-arguments and once for tuple-arguments without introducing
any inconsistencies. In fact, in our formalization we de�ne the reduction relation
in reduction rings (see De�nition 3.2.2) both for sets and for tuples, because even
though sets are more convenient to deal with in connection with the theoretical
aspects of the theory (Main Theorem etc.), tuples perform better when it comes
to algorithms and computations.

The operations on tuples that are included in Tuples.nb are the following, all
of them being de�ned in terms of the two “constructors” Nil and Cons: length,
concatenating tuples, appending an element after the last element of a tuple,
prepending an element before the �rst element of a tuple, dropping the �rst or
last element of a tuple, and reverting the order of elements. Moreover, analogous
to set abstractions we formally introduced tuple abstractions as well; they are
de�ned inductively making use of natRec0. Of course, the theory does not only
consist of the de�nitions of all these notions, but also of hundreds of lemmas,
most of them being more or less obvious for the experienced mathematician.

Besides the usual �rst-order properties of the operations on tuples, we also
proved some very useful higher-order lemmas. Apart from induction on tuples,
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this includes lemmas of the following kind:

∀
isTuple[T], a, P

let
S=Txa(

∀
i=1,...,|S|−1

P[Si, Si+1]

)
⇔
∧{ ∀

i=1,...,|T |−1
P[Ti, Ti+1]

T 6= 〈〉 ⇒ P[T|T |, a]
(append P binary)

The theory ends with the de�nition of the DomainTuples-functor that, anal-
ogous to DomainSets, simply returns the domain of all tuples over its argument
domain.

4.2.7 Sequences.nb
In contrast to integers and tuples, sequences are not de�ned as a separate entity
at all, neither axiomatically nor in a set-theoretic manner. Instead, basically every
object s may be regarded a sequence, simply by viewing it as a function whose
domain is N (0 excluded!) and forming expressions of the form s[1], s[2] etc.
where it does not matter whether s is “de�ned” for an n ∈ N or not—if not, the
corresponding sequence element is literally s[n].

However, in order to cut down this huge degree of freedom a bit, the very �rst
notion introduced in Sequences.nb is that of the DomainSequences-functor.
For a given argument D, this functor returns the domain containing precisely
those sequences whose elements are in D, analogous to DomainSets and
DomainTuples. Most of the main results about sequences contained in this
theory are actually stated only for such DomainSequences-elements.

Many of said results prove the existence or non-existence of certain sequences
or sub-sequences, illustrated by the following two examples:

∀
D, P

∀
∈

DomainSequences[D]
[f]

 ∀
a∈N
∃
i∈N
i≥a

∀
j∈N
j>i

P[f[i], f[j]]

⇒
∃
∈

DomainSequences[D]
[h]

h Cp f ∧ ∀
i,j∈N
j>i

P[h[i], h[j]] (subSeq DomainSequences 5)

(
¬ ∃

∈
DomainSequences[D]

[f]
∀
i∈N

P[f[i], f[i+ 1]]

)
⇒
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∀
∈

DomainSequences[D]
[f]
∃
i∈N
∀
j∈N
j>i

¬P[f[i], f[j]] (non-existence seq P binary)

where h Cp f means that h is a sub-sequence of f .
In addition, we also proved an alternative description of Noetherianity of

a relation � in terms of the non-existence of in�nite strictly ascending chains.
This, as well as basically all other results proved in Sequences.nb, is only needed
to deal with Axiom (R13) of reduction ring theory, which is concerned with the
non-existence of certain sequences of subsets (i. e. DomainSets) of the rings
in question. To that end, we also introduced the notion of accumulating set se-
quence of a given sequence f , called setSeq[f], whose n-th element is the set
consisting of the �rst n elements of f . When proving (R13) in concrete rings it
turned out that often it is better to �rst prove the non-existence of such accu-
mulating set sequences that would violate the axiom, and from this conclude the
non-existence of arbitrary violating sequences.

4.2.8 Functors.nb

The last elementary theory, Functors.nb, only contains a couple of generic func-
tors for constructing products of given domains (whose elements are then tuples).
In particular, the functor LexOrder takes two input domainsD1 andD2 together
with two symbolsB and� and returns a new domain L whose carrier is the di-
rect product of the carriers of D1 and D2 and which interprets the symbol � as
the lexicographic combination of B

D1

and �
D2

; the sample functor in Section 2.2
is nearly the same. Moreover, the theory also contains the functor LexOrder3
that combines three domains lexicographically, although this would not really
be necessary (the same e�ect can be achieved by iterating LexOrder). The cru-
cial results proved for these two functors are conservation theorems stating that
partial and/or Noetherian order relations in D1 and D2 make �

L
partial and/or

Noetherian as well.
Lexicographic orders are needed in GroebnerRings.nb for proving the ter-

mination of Buchberger’s algorithm. This proceeds by �nding a Noetherian or-
der relation on the arguments of the function that can be shown to decrease
in every recursive call. In our case of Buchberger’s algorithm, the desired re-
lation is the lexicographic combination of three basic relations, as can be seen
in Section 4.4.3. Furthermore, general direct products (not necessarily ordered)
are needed in PolyTuples.nb for proving Dickson’s lemma in power-product do-
mains.
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4.3 Reduction Ring Theories
The seven Theorema theories listed in this section are all directly related to re-
duction rings.

4.3.1 ReductionRings.nb
This theory is the core of our formalization. As its title suggests, it consists
of the de�nitions of plain and algorithmic reduction rings and the various no-
tions related to them (reduction, ideal congruence, etc.) together with the proofs
of the central theorems of all of reduction ring theory, in particular the Main
Theorem (Theorem 3.5.3) and the fact that ideal congruence coincides with the
symmetric-re�exive-transitive closure of the reduction relation. Please note that
ReductionRings.nb mainly considers the purely algebraic, non-algorithmic as-
pects of reduction rings, in the sense that no single algorithm is implemented
here. Instead, the algorithmic aspects can be found in GroebnerRings.nb.

Because of its signi�cance, we present this theory in more detail. The variable
D in each formula presented in this subsection is universally quanti�ed, although
this is not written out explicitly.

Notions related to reduction rings. ReductionRings.nb begins with the in-
troduction of the various notions related to reduction rings, or, more precisely,
those notions that can be de�ned in terms of the ring operations, the order re-
lation �, the sets Ic = {1, . . . , multN[c]} and the sets of multipliers M i

c (char-
acterized by the predicate mult[c,m, i]). Here it is important to note that all
these operations�, multN, mult, as well as the new notions de�ned in terms of
them, depend on the universally quanti�ed underlying domain D and hence are
domain operations of D, meaning that they actually carry the under-script D.

As has already been indicated, the reduction relation (and also some other
notions) is de�ned both for sets and for tuples of elements of D, i. e. as

∀
a, b

∀
∈

DomainSets[D]
[C]

a→C
D

b :⇔ ∃
c∈C

∃
∈
D
[m]

a→m,c
D

b (reduction modulo set)

∀
∈

DomainTuples[D]
[T]

a→T
D

b :⇔ ∃
i=1,...,|T |

∃
∈
D
[m]

a→m,Ti
D

b (reduction modulo tuple)

Stating and proving purely algebraic results is de�nitely easier when working
with sets, as there is no need to mess about with indices and the order of elements.
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Also, using sets is certainly more intuitive and closer to text-book mathematics.
However, as soon as algorithms and computations come into play, tuples turn out
to be more suitable; in particular, they allow to explicitly specify the order of their
elements, which in some situations is highly desirable, for instance when taking
issues of e�ciency into account. The obvious but nonetheless crucial relation
between reduction modulo sets and reduction modulo tuples is of course the
following:

∀
a, b

∀
∈

DomainTuples[D]
[T]

a→T
D

b ⇔ a→TupleToSet[T]
D

b (→ TupleToSet)

where TupleToSet simply returns the set of all elements of its argument. Note
that the various closures of the reduction relation are de�ned for arbitrary re-
ductor r, obviating duplicate work for sets and tuples.

Right after introducing all the auxiliary notions, many simple facts are proved
about them. About half of these facts does not put any constraints on the un-
derlying domain D at all, as for example (→ TupleToSet), whereas the other half
requires D to be a commutative ring with multiplicative identity. In any case,
no appeal to reduction rings or individual reduction ring axioms is made—this
would not even make sense, because they have not been introduced yet.

Reduction rings and algorithmic reduction rings. Next, the classes of re-
duction rings and algorithmic reduction rings are introduced. For this, �rst the
individual axioms are de�ned as unary predicates on domains, e. g. in the case
of (R4) as

R4[D] :⇔ ∀
∈
D
[a]

a 6= 0
D
⇒ a �

D
0
D

(R4)

Reduction rings and algorithmic reduction rings are then merely the con-
junction of all axioms, e. g.

isReductionRing[D] :⇔
∧


isCommRing1[D]
isNoetherian[ �

D
,D]

R0[D]
...

(reduction ring)
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Separating the de�nitions of the axioms from the de�nitions of (algorithmic)
reduction rings has the advantage that the axioms can easily be dealt with in-
dividually, both when proving them for concrete rings and when having them
as assumptions of lemmas. Indeed, right after introducing reduction rings, fur-
ther lemmas about the reduction ring notions introduced before are stated and
proved, but now assuming that D is not only a commutative ring with identity,
but also that it satis�es some reduction ring axioms (namely precisely those that
are really needed in the lemmas). The advantage of listing the required axioms
explicitly over making the sweeping assumption of D being a reduction ring is
quite obvious: when proving that a concrete ring is a reduction ring, after hav-
ing proved some of the axioms already, those general lemmas that depend only
on the proved axioms may be used to prove the remaining ones. And this tech-
nique, in fact, was employed extensively when showing that polynomial rings
over reduction rings are reduction rings themselves.

There is another lesson we have learned from de�nitions as the one of re-
duction rings, where the right-hand-side is a big conjunction (or, analogously, a
disjunction), like P :⇔ C1 ∧ . . . ∧Cn. In such cases it is good practice to imme-
diately prove, for each Ci, a destruction rule of the form P ⇒ Ci that allows to
infer Ci from P in proofs. Otherwise, without such destruction rules, the very
de�nition of P has to be unfolded, which is all but robust. Our own experience
with the formalization of reduction ring theory shows that quite often one of the
conjuncts Ci has to be slightly changed, even if the de�nition of P has already
been used in proofs to infer some of the other conjuncts. In such situations, all
proofs have to be re-done if Ci is changed—even though in fact Ci does not af-
fect the proofs at all. With destruction rules the unfolding of de�nitions can be
avoided in the vast majority of cases, making the exploration of theories more
robust.

Main results. Finally, the main results of reduction ring theory are stated and
proved: the Main Theorem (Theorem 3.5.3) and the fact that ideal congruence co-
incides with the symmetric-re�exive-transitive closure of the reduction relation
(Theorem 3.5.7). To that end, �rst the notions of Gröbner basis, Church-Rosser
property and “connectible critical pair” (De�nition 3.5.1) are introduced; the lat-
ter is called cpConnectible in the formalization.

Before turning to the Main Theorem, a couple of simple properties of
cpConnectible are proved, some of them even for arbitrary D. Furthermore,
since the Main Theorem depends on the generalized Newman lemma [WB83],
this lemma is stated and proved, too. Although it holds in a very general setting,
for arbitrary relations→ and�where→⊆� and� is Noetherian, we only prove
it for the special case of the reduction- and order relation in reduction rings.
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The Main Theorem, stating thatG is a Gröbner basis i� for all g1, g2 ∈ G\{0}
we have cpc(g1, g2, G), is proved by splitting it into several lemmas: one lemma
stating that pairs originating from trivial common reducibles c of g1 and g2 can
always be connected below c, one lemma stating that cpc(g1, g2, G) implies that
the pairs originating from non-trivial common reducibles a of g1 and g2 can be
connected below a if g1 6= g2, one lemma stating the same for g1 = g2, and
a couple of lemmas that combine these results. The overall structure resembles
that of the paper-and-pencil proof given in [Buc83a, Sti85], so we omit the details
here. The whole elaboration eventually culminates in

isReductionRing[D]⇒

∀
∈

DomainSets[D]
[G]

cpConnectible
D

[G]⇒ isGroebnerBasis
D

[G] (Main Theorem)

where cpConnectible[G]
D

is a shorthand for ∀
a,b∈G

cpConnectible
D

[a, b,G].
Although the theorem is apparently formulated for sets, it is rephrased for tuples
in a corollary, for being able to prove the correctness of Buchberger’s algorithm
as described in Section 4.4.5.3

Finally, the theory concludes with the proof that ≡B and↔∗B are identical,
for every set or tuple B; the formula whose proof is presented in Appendix A
is one of the lemmas needed for establishing said identity. To that end, also the
notion of ideal is introduced (again for both sets and tuples), and some general
ideal-theoretic results fully independent of reduction ring theory are proved, e. g.
that ideals are closed under addition and subtraction.

4.3.2 Fields.nb
This theory contains a functor, ReductionField, that takes an input domain
K and extends it by those operations that are required to turn K into an algo-
rithmic reduction ring, according to Section 3.4.1. Following common practice in
Theorema K is not required to possess any particular algebraic structure, but if
it is a �eld, then the extension really is an algorithmic reduction ring—otherwise
nothing can be said about it. The proof of this claim constitutes the core part of
Fields.nb, and actually is quite straight-forward, as can be seen from compara-
tively small number of proved formulas in this theory in Fig. 4.2.

In addition to the purely theoretical contents, the theory also includes a cou-
ple of sample computations of reduction multipliers, least common reducibles

3isGroebnerBasis and cpConnectible are de�ned for sets and tuples alike.
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and critical-pair multipliers in ReductionField[Q] for the Theorema-built-in
�eld of rational numbers Q.

4.3.3 Integers.nb
This theory contains a functor, ReductionIntegers, that does not take any
arguments but simply constructs a new domain whose carrier is Z and that pro-
vides the additional functions and relations for turning Z into an algorithmic
reduction ring, as described in Section 3.4.2. The proof of this claim, split across
several lemmas, is part of the theory as well, and it is de�nitely more involved
than the corresponding proof in the case of �elds. Part of its complexity stems
from the fact that often many cases based on the signs of some numbers have to
be distinguished. However, the overall structure of the proof closely resembles
the one in [Buc83a], so we omit the details here.

As in Fields.nb, a handful of sample computations of reduction multipliers
etc. in ReductionIntegers[] are included in the theory, too, building upon
the computational capabilities of the Theorema-built-in domain of integers Z.

4.3.4 Integer�otientRings.nb
This theory contains a functor, ReductionIQR, that takes a positive integer k
and constructs a new domain whose carrier is the set {0, . . . , k − 1} and that
provides the additional functions and relations for turning Zk, represented by
{0, . . . , k − 1}, into an algorithmic reduction ring, following Section 3.4.3. As
in Fields.nb and Integers.nb, the proof of this claim, split across several lemmas,
is of course included in the theory as well. Again, it proceeds in very much
the same way is the original proof in [Sti85]. It is interesting to observe that
although turning Zk into a reduction ring is conceptually more delicate than
Z because of the presence of zero divisors, fewer auxiliary results are needed
in Integer�otientRings.nb than in Integers.nb. This is due to the fact that the
reduction ring ordering is much simpler in Zk than in Z.

The theory is concluded by some sample computations in ReductionIQR[13]
and ReductionIQR[24].

4.3.5 Polynomials.nb
This theory de�nes the class of abstract reduction polynomial domains over a
coe�cient domain R and a power-product domain T . “Abstract”, in this sense,
means that no concrete representation of polynomials, e. g. as tuples of monomi-
als, is presumed, but polynomials are solely characterized by a coe�cient func-
tion C mapping power-products to coe�cients.
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First, the class of abstract commutative power-product domains, speci�ed by
the unary predicate isCommPPDomain, is introduced. A domain T belongs to
this class i� it is a multiplicative cancellative commutative monoid, the interpre-
tation of � in T is a total Noetherian ordering with 1

T
as its least element and

which is monotonic w. r. t. multiplication, T de�nes the notions of divisibility (p)
and division (/) in the usual way, and any two elements s, t have a least common
multiple (making T a join-semilattice). It is important to note that no appeal
to “indeterminates” or “dimension” is made. Only when proving that (R13) is
preserved in polynomial domains, T is further assumed to satisfy the “Dickson
property”, meaning that for every in�nite sequence S of power-products there
exist i < j with Si p

T
Sj .

Afterward, the class of abstract reduction polynomial domains, speci�ed by
the unary predicate isReductionPolynomialDomain, is introduced. A do-
mainP belongs to this class i� it interprets C,�, multN, mult and the usual ring
operations, and the resulting constants and operations satisfy certain properties,
as listed below. Although these properties naturally depend on the underlying
coe�cient- and power-product domain, isReductionPolynomialDomain is a
unary predicate depending only on P : throughout the whole theory, the coe�-
cient domain is �xed to R and the power-product domain is �xed to T , where
R and T are “arbitrary but �xed” constants. Moreover, all theorems are stated
and proved for the arbitrary but �xed reduction polynomial domain P rather
than for all such domains.4 This approach, which is somehow in the spirit of the
locale system of the Isabelle proof assistant [Bal10], simpli�es matters (no need
to instantiate universally quanti�ed variables in proofs) and eases notation.

The properties that must be satis�ed by C
P

etc. in order forP to be a reduction
polynomial domain are as follows:

• The carrier of P , speci�ed by ∈
P

, must be such that it contains 0
P

and 1
P

, that
it is closed under addition and subtraction in P , and that every p in it has
�nite support, i. e. C

P
[p, t] is di�erent from 0

P
only for �nitely many t with

∈
T
[t]. Furthermore, for every coe�cient c and power-product t it must

contain a monomial m with C
P
[m, t] = c and C

P
[m, s] = 0

R
for all s 6= t.

In the theory, such monomials play an important role and are denoted by
c ·
P
t.

• For �xed t, the coe�cient function C
P

must be a group homomorphism
w. r. t. addition, e. g. C

P
[p+
P
q, t] = C

P
[p, t] +

R
C
P
[p, t]. Moreover, the coe�-

4In the formalization, the constants are just calledR, T and P .
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cients of 0
P

and 1
P

must be as expected.

• Multiplication in P must be de�ned in the usual way, satisfying the recur-
sion p∗

P
q = lm

P
[p]⊗

P
q+
P
R
P
[p]∗

P
q if p is not zero, where⊗

P
is multiplication

with a monomial and lm
P
[p] and R

P
[p] refer to the leading monomial and

remainder (i. e. p−
P

lm
P
[p]) of p (w. r. t. the ordering on T ), respectively.

• P must be extensional in the sense that two of its elements are equal if they
have the same coe�cients.

• The order relation�
P

and the multiplier-related notions must be de�ned as
explained in Section 3.4.4.

All auxiliary functions, such as ·
P

, ⊗
P

, lm
P

, R
P

etc. are de�ned solely in terms of
the coe�cient function, zero, addition and subtraction (the latter three both in
P and inR).

After having introduced the class of reduction polynomial domains, the class
of algorithmic reduction polynomial domains, speci�ed by the unary predicate
isAlgoReductionPolynomialDomain, is introduced. A domain P belongs to
this class i� it belongs to the class of reduction polynomial domains and more-
over interprets lcrd (both the four-argument- and the one-argument version),
rdm and cpm according to Section 3.4.4.

In total, three main theorems are proved in Polynomials.nb: assuming that
P is a reduction polynomial domain, we show that it constitutes a commutative
ring with identity if R does and that it constitutes a (plain) reduction ring if R
does. Furthermore, we prove that ifP is even an algorithmic polynomial domain
andR an algorithmic reduction ring, then P is an algorithmic reduction ring as
well. In either case, T is assumed to be a commutative power-product domain.
Although we prove these theorems for the arbitrary but �xed constants R, T
and P , in the end we generalize them to all domains using a meta-argument,
eventually leading to

∀
F , R, T

∧ isAlgoReductionPolynomialDomain[F[R, T ]]
isAlgoReductionRing[R]

isCommPPDomain[T ]
⇒

isAlgoReductionRing[F[R, T ]] (Conservation Theorem Polynomials)
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where F is supposed to be a functor mapping a coe�cient domain and a power-
product domain to a polynomial domain. It is important to see that in the �rst
conjunct on the left-hand-side of the implication F is not applied to the uni-
versally quanti�ed R and T but to the arbitrary but �xed R and T , because
isAlgoReductionPolynomialDomain is de�ned in terms of these constants.

4.3.6 PolyTuples.nb
Theory PolyTuples.nb builds upon Polynomials.nb but deals with the concrete
representation of polynomials as ordered tuples of pairs of coe�cients and power-
products.

First, however, an intermediate layer of abstraction is inserted between the
class of very abstract domains of commutative power-products from Polynomi-
als.nb and any concrete representation of such domains (e. g. where power-
products are represented by their exponent vectors). This intermediate layer
is made up by yet another class of domains, speci�ed by the unary predicate
isExpPPDomain. A domain S belongs to this class i� its interpretation of dim
is a natural number (including 0; this is the dimension, i. e. the number of inde-
terminates of S), its interpretation of Exp is a function from {1, . . . , dim

S
} to N0

(the exponent function of S), and also interprets ∗, 1, lcm, p and /. Analogous to
isReductionPolynomialDomain, these constants and operations need to sat-
isfy certain compatibility conditions, e. g. Exp

S
[t ∗
S
s, i] = Exp

S
[t, i] + Exp

S
[s, i]

for all i ∈ {1, . . . , dim
S
}.

Then, a functor called OrderedPP is introduced. This functor maps a domain
S and a binary relation B to a new domain T extending S by interpreting � by
B, i. e. all constants and operations in T are the same as in S and �

T
:= B. The

crucial relation between all these notions is summarized in

∀
S, B

isExpPPDomain[S] ∧ isTermOrder[ B,S]⇒

isCommPPDomain[OrderedPP[S,B ]] (OrderedPP isCommPPDomain)

where isTermOrder[ B,S] simply expresses that B is a term order on S in
the usual sense. This means that for any given domain S that is known to
satisfy isExpPPDomain and any term order B, we can be sure that applying
OrderedPP to S and B yields a suitable power-product domain for (reduction)
polynomial domains. Please note that (OrderedPP isCommPPDomain) contains
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Dickson’s lemma about the non-existence of certain sequences of tuples of nat-
ural numbers as a sub-result.

The reason for the separation of the term order from isExpPPDomain is
that we might want to endow one and the same isExpPPDomain S with several
di�erent term orders, without having to prove again and again that the result
really satis�es isCommPPDomain.

Now, there are two layers of abstract power-product domains: on the one
hand there is isCommPPDomain, and on the other hand there is isExpPPDomain
together with OrderedPP. What is still missing are concrete power-product
domains and concrete term orders, and this is exactly what comes next in the
theory. First, three concrete term orders are introduced: lexicographic (Lex),
degree-lexicographic (DegLex) and degree-reverse-lexicographic (DegRevLex).
All of them are parametrized over an underlying domain S and de�ned in terms
of dim and Exp in S , and all of them are immediately shown to really constitute
term orders, e. g.

∀
isExpPPDomain[S]

isTermOrder[Lex[S],S] (Lex isTermOrder)

Next, concrete power-product domains are introduced by means of functor
PPTuples that maps n ∈ N0 to the domain of power-products represented by
tuples of natural numbers of length n (i. e. exponent vectors). These domains are
immediately shown to satisfy isExpPPDomain. Of course, other representations
of power-products are possible, but not included in our formalization yet.

Afterward, functor PolyTuples is introduced. This functor takes two do-
mains R and T and constructs the domain P over polynomials over coe�cient
domain R and power-product domain T , represented as ordered (w. r. t. the or-
dering on T ) tuples of pairs of non-zero coe�cients and power-products, as indi-
cated at the beginning of this subsection. P de�nes the various constants, func-
tions and relations required by isAlgoReductionPolynomialDomain, e. g.
the coe�cient function C in P is de�ned recursively as

∀
c, s, t, r...

C
P
[〈〉, s] := 0

R
(PolyTuples C base)

C
P
[〈〈c, t〉, r . . .〉, s] :=

{
c ⇐ t = s

C
P
[〈r . . .〉, s]⇐ otherwise (PolyTuples C rec)
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The fact that the tuples representing polynomials are ordered is crucial, be-
cause of the extensionality requirement in isReductionPolynomialDomain:
if the coe�cient function agrees for two polynomials p and q, then p must be
equal to q. This, however, would be violated in the case of unordered tuples:
given two di�erent unordered tuples p and q, the coe�cient function C

P
, as de-

�ned above, might still yield the same result for all power-products t.
The remaining part of theory PolyTuples.nb is all about proving that

PolyTuples[R, T ], for the two arbitrary but �xed constants R and T , is an
algorithmic reduction polynomial domain according to Polynomials.nb. As soon
as the correctness of this theorem has been established, we can conclude that
given any algorithmic reduction ring R and any commutative power-product
domain T , the domain PolyTuples[R, T ] is an algorithmic reduction ring as
well. This, for instance, holds in particular for Z24[x, y] ordered lexicographi-
cally:

PolyTuples[
ReductionIQR[24],
OrderedPP[PPTuples[2], Lex[PPTuples[2]]]

]

For the sake of completeness we point out that the theory provides function-
ality for formatted in- and output of tuple-polynomials, too. In computations,
polynomials may thus be written in the usual way as, say, x+ 2y, instead of the
far more cumbersome and confusing 〈〈1, 〈1, 0〉〉, 〈2, 〈0, 1〉〉〉.

4.3.7 GroebnerRings.nb
The last theory in our formalization is GroebnerRings.nb. It introduces the func-
tor GroebnerRing, that extends its argument domain D by functions for to-
tally reducing an element modulo a given tuple of elements (trd), for checking
whether the chain criterion holds in a certain situation (chainCrit; see Def-
inition 3.5.5), and, most importantly, for computing Gröbner bases from given
input-tuples (GB). All of these functions are de�ned in terms of the interpre-
tations of lcrd, rdm, cpm, + etc. in D in such a way that if D happens to
be an algorithmic reduction ring, then GB

GroebnerRing[D]
really computes Gröbner

bases. The proof of this claim constitutes the main part of the theory and is
not quite trivial, despite already knowing the Main Theorem (Theorem 3.5.3);
it is discussed in detail in the next section, where the implementation of GB as
a tail-recursive program is looked at thoroughly. Once more we point out that

GB
GroebnerRing[D]

is e�ectively computable only if the underlying operations in D
are e�ectively computable, which is not required in algorithmic reduction rings.
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Please also note that GroebnerRing[D] itself is still an algorithmic reduction
ring if D is; this (easy) fact is needed for applying the main results about plain
and algorithmic reduction rings to GroebnerRing[D].

Finally, GroebnerRings.nb contains a lot of sample computations of Gröbner
bases in various domains, including Q, Z, Z24, and bi- and trivariate polynomial
rings thereof (ordered degree-reverse-lexicographically). As expected, our im-
plementation cannot compete with the built-in Mathematica implementation of
Buchberger’s algorithm in terms of e�ciency by any means.

4.4 Buchberger’s Algorithm in Theorema
In Section 3.5.1, Buchberger’s critical-pair/completion algorithm for computing
Gröbner bases in reduction ring is presented in an imperative style. In our for-
malization, however, we implement the algorithm by means of a tail-recursive
function in theory GroebnerRings.nb, called GB. In this section, we present GB
and its speci�cation in detail and explain how its correctness is established within
the formalization.
Remark 13. Throughout this section all domain-underscripts, as in GB

GroebnerRing[D]
,

are omitted for the sake of better readability. It is should be clear, though, that
all constants, functions and programs appearing below are actually de�ned in
GroebnerRing[D] and thus implicitly depend on the underlying domainD. In
the correctness proof of function GB,D is assumed to be an algorithmic reduction
ring.

Everything we present in this section is contained in theory GroebnerRings.nb.

4.4.1 Implementation
Buchberger’s algorithm is implemented by function GB, which is de�ned as

∀
C,P,i,j,i0,j0,a,mi,mj,p...,r...

GB[C] := GBAux[C, allPairs[|C|], 1, 1, 〈〉] (GB)

GBAux[C, 〈〉, i, j, 〈〉] := C (GBAux 1)

GBAux[C, 〈〈i, j〉, p . . .〉, i0, j0, 〈〉] :={
GBAux[C, 〈p . . .〉, i, j, 〈〉] ⇐ Ci = 0 ∨ Cj = 0

GBAux[C, 〈p . . .〉, i, j, lmTuple[Ci, Cj]]⇐ otherwise
(GBAux 2)
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GBAux[C,P, i, j, 〈〈a, 〈mi,mj〉〉, r . . .〉] :=

let
h=trd[a−miCi,C]−trd[a−mj Cj ,C]

GBAux[C,P, i, j, 〈r . . .〉] ⇐ cc[i, j, a, C, P]
GBAux[C,P, i, j, 〈r . . .〉] ⇐ h = 0

GBAux[C x h, up[P, |C|], i, j, 〈r . . .〉]⇐ otherwise
(GBAux 3)

Before we can explain these formulas in detail, some preliminary remarks on
the typesetting of (GBAux 3) are in place:

• cc abbreviates chainCrit, for space reasons. In the sequel, we refer to it
again as chainCrit.

• up is called update in the formalization and in the sequel; it is abbreviated
for space reasons.

• h is actually computed after the chain criterion is checked, since the very
purpose of the chain criterion is to avoid computing h if not necessary. In
(GBAux 3), the order of computation is reversed due to the lack of space.

As can be seen in (GB), GB merely “calls” GBAux with suitable initial argu-
ments, and it is in fact GBAux that is de�ned recursively and “does all the com-
putation”. In the sequel, hence, we restrict the presentation and explanation to
GBAux.

The �ve arguments of GBAux have the following meaning:

• The �rst argument C is the basis constructed so far, i. e. it serves as the ac-
cumulator of the tail-recursive algorithm. As such, it is a tuple of elements
of the underlying domain that is initialized by the original input-tuple in
(GB) and returned as the �nal result in (GBAux 1). The only place where
it is modi�ed is in the third case of (GBAux 3), where a new element h is
added to it.

• The second argument is a tuple of pairs of indices of the accumulator C .
It contains precisely those indices corresponding to pairs of elements of C
that still have to be processed; hence, it is initialized by all possible pairs
of element-indices in (GB), using allPairs, and updated whenever a new
element is added to C in (GBAux 3) using update.

• The third and fourth arguments i and j are the indices of the pair of ele-
ments of C whose mntcrs and critical pairs are currently under consider-
ation.
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• The last argument is a tuple consisting of elements of the form 〈a, 〈mi,mj〉〉,
where a is a mntcr ofCi andCj andmi,mj are corresponding critical-pair
multipliers. It contains precisely those mntcrs of Ci and Cj that have not
been considered yet. Once initialized by function lmTuple in (GBAux 2),
it is simply traversed from beginning to end without being enlarged at any
point.

Before we show the speci�cations of GB and GBAux, we give a brief overview
of the auxiliary functions used in their de�nitions; most of them are quite self-
explanatory anyway, though:

allPairs. allPairs[n] returns the tuple of all pairs of the form 〈i, j〉with
1 ≤ i ≤ j ≤ n. For making GBAux more e�cient, in particular for increasing
the number of situations where chainCrit holds, all pairs of the form 〈i, i〉 are
put at the beginning of allPairs[n], because pairs of identical basis elements
cannot be discarded anyway by the chain criterion.

allPairs is no domain function of GroebnerRing[D], as it is only con-
cerned with tuples of pairs of natural numbers.

update. update[P, n] returns the tupleP with all pairs of the form 〈i, n+1〉
appended, for 1 ≤ i ≤ n+ 1. The pair 〈n+ 1, n+ 1〉 is appended �rst.

update is no domain function of GroebnerRing[D] either, as it is only
concerned with tuples of pairs of natural numbers (just as allPairs).

lmTuple. lmTuple[x, y] returns a tuple of pairs of the form 〈a, 〈mx,my〉〉,
where all the a are mntcrs of x and y w. r. t. any indices (see De�nition 3.2.17),
and mx, my are corresponding critical pair multipliers (see De�nition 3.2.20).
lmTuple is de�ned using functions lcrd and cpm of the underlying domain D,
ensuring that its output really contains all mntcrs (or, at least, one from each
equivalence class) if D is an algorithmic reduction ring.

chainCrit. chainCrit[i, j, a, C, P] indicates whether the chain criterion
holds for Ci and Cj w. r. t. a, C and P , according to De�nition 3.5.5 (only that
now C and P are tuples rather than sets).

trd. trd[x,C] repeatedly reduces x modulo the tuple C as long as possible,
employing function rdm of the underlying domain D. If D is an algorithmic
reduction ring, the result is known to be a normal form of x modulo C .
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4.4.2 Speci�cation
For the rest of this section assume that D is an algorithmic reduction ring.

Function GB has to meet the following requirements, for every tuple C of
elements of D (i. e. ∈

DomainTuples[D]
[C]):

1. GB[C] must again be a tuple of elements of D; in particular, the function
must terminate.

2. The ideal (overD) generated by GB[C] must be the same as the ideal gen-
erated by C .

3. GB[C] must be a Gröbner basis.

Note that termination of GB, or, more precisely, GBAux, is all but obvious:
the second argument P of GBAux eventually must become empty in order for
the function to terminate, but P is enlarged in the third case of (GBAux 3); Ax-
iom (R13) is needed to ensure termination, see below. If the function terminates,
however, it is easy to see that the result is again a tuple of elements of D—even
that it is of the form ConD for some tupleD. Moreover, every element in GB[C]
can apparently be expressed as a D-linear combination of the elements of D,
implying that the ideal is preserved. The proof that GB[C] is a Gröbner basis
makes use of Theorem 3.5.3, of course, but still is far from trivial.

4.4.3 Termination
Proving the termination of function GB amounts to proving the termination of
function GBAux. GBAux is de�ned recursively, and a common practice for es-
tablishing the termination of such functions proceeds by �nding a Noetherian
termination order � on the lits of arguments that decreases in each recursive
call. In our case of GBAux,� is the lexicographic combination of the three or-
ders�1,�2 and�3, de�ned as

∀
∈

DomainTuples[D]
[A,B]

A�1 B :⇔ Red[A] ( Red[B] (�1)

∀
∈

DomainTuples[ProdDomain[Z,Z]]
[S,T]

S �2 T :⇔ |S| > |T | (�2)

∀
∈

DomainTuples[ProdDomain[D,DomainTuples[D]]]
[S,T]

S �3 T :⇔ |S| > |T | (�3)
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where Red[A], similar as in Axiom (R13), denotes the set of all elements that
are reducible modulo the tupleA, and where ProdDomain[D1,D2], as its name
suggests, is simply the Cartesian product of the two domains D1 and D2. Al-
though both �2 and �3 simply compare the lengths of their arguments, they
cannot be replaced by a single order on tuples in general: the class of all tuples
does not constitute a set, but we need a set for proving�2 and�3 Noetherian;
DomainTuples and ProdDomain are known to map domains with set-carrier
(i. e. satisfying isDomain from LogicSets.nb) to domains with set-carrier. Thus,
both�2 and�3 are obviously partial Noetherian order relations, and�1 being
Noetherian is precisely what (R13) states (note the order of A and B on the two
sides of the equivalence in Formula (�1)!)
�, �nally, is de�ned for argument-lists of GBAux according to

∀
C1,C2,P1,P2,i1,i2,j1,j2,L1,L2

〈C1, P1, i1, j1, L1〉 � 〈C2, P2, i2, j2, L2〉 :⇔

〈C1, P1, L1〉 �
LexOrder3[�1,�2,�3]

〈C2, P2, L2〉 (�)

A general result on lexicographic orders ensures that �, restricted to the
Cartesian product of the respective domains of�1,�2 and�2, is again a partial,
and most importantly Noetherian, order relation. The crucial property of� is
that it decreases in each of the �ve recursive calls of GBAux, as can be veri�ed
rather easily. Note here that adding h to C in the third case of (GBAux 3) surely
enlarges the set of reducible elements, hence decreasing �1, although h itself
might already be reducible modulo C : h = h1 − h2 for two distinct irreducible
elements h1 and h2, so Axiom (R5) implies h1 ↓∗{h} h2, meaning that h1 or h2 is
reducible modulo C x h.

Apparently, the third and fourth arguments of GBAux do not have any in�u-
ence on the termination of the function, which is not surprising at all.

When proving properties of recursively de�ned functions whose termination
has already been established, it is convenient to have tailor-made induction rules
w. r. t. the respective termination order at one’s disposal. In our case, we proved
an induction rule that allows us to reduce goals of the form ∀

C,P,i,j,L
ϕ[C,P, i, j, L],

for an arbitrary formula (i. e. higher-order predicate) ϕ and where the quanti�ed
variables range over the respective domains (DomainTuples[D] etc.), to �ve
sub-goals, each corresponding to a recursive call of GBAux. In each sub-goal, the
induction hypothesis assumes that ϕ holds for the arguments of the respective
recursive call. As an example of such a sub-goal consider the one corresponding
to the second case of (GBAux 2):
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∀
C,p...,i,j,i0,j0

∈
DomainTuples[D]

[C]∧ ∈
DomainTuples[ProdDomain[Z,Z]]

[〈p . . .〉]∧i ≥ j∧i0 ≥ j0⇒

ϕ[C, 〈p . . .〉, i, j, lmTuple[Ci, Cj]] ∧ Ci 6= 0 ∧ Cj 6= 0⇒

ϕ[C, 〈〈i, j〉, p . . .〉, i0, j0, 〈〉] (GBAuxRec2)

In (GBAuxRec2) ϕ must be proved for the arguments of GBAux on the left-
hand-side of (GBAux 2), assuming Ci 6= 0 and Cj 6= 0 as the case conditions and
ϕ of the arguments of the recursive call of GBAux as induction hypothesis.

It is important to note that the induction rule never mentions function GBAux
explicitly.

4.4.4 Preservation of the Ideal
The proof that the ideal generated by the accumulator of GBAux is preserved
throughout the computation is absolutely straight-forward. The induction rule
described above is used to prove that the ideal is preserved in every recursive
call, which is completely trivial in all but the third case of (GBAux 3) where h
is added to C . However, h is clearly a D-linear combination of the elements
already contained in C , meaning that it is contained in the ideal generated by
C . A general result on ideals states that an ideal does not change when adding
an ideal element to its set of generators, so the proof is �nished. The �nal result
thus is

∀
C,P,i,j,L

ideal[GBAux[C,P, i, j, L]] = ideal[C] (ideal GBAux)

where, as usual,C ,P , i, j andL actually only range over the respective argument-
“types” of GBAux.

4.4.5 Completion to a Gröbner Basis
The proof that the result of GB is a Gröbner basis is far more involved, because
the analogous claim for GBAux simply does not hold unconditionally. Instead,
the following two inductive assertions are shown to be always satis�ed (by in-
duction, of course):
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∀
C,P,i,j,L

let
G=GBAux[C,P,i,j,L]

isTODOTuple[P,C, i, j] ∧ isCPTODOTuple[L, P, C, i, j]⇒

∀
k,l=1,...,|G|
〈k,l〉 EP

cpConnectible[G,Gk, Gl] (GBAuxCPConnectible2 GBAux)

isTODOTuple[P,C, i, j] ∧ isCPTODOTuple[L, P, C, i, j]⇒

∀
k,l=1,...,|G|
l≥k∧l>|C|

cpConnectible[G,Gk, Gl] (GBAuxCPConnectible3 GBAux)

The �rst inductive assertion states that under certain conditions (see below),
the critical pairs of elements Gk, Gl, where the pair 〈k, l〉 occurs in P , can be
connected below the corresponding mntcrs, whereas the second inductive asser-
tion states that the critical pairs of elements Gk, Gl, where l > |C| and hence
Gl is not contained in the original tuple C , can be connected. Together they en-
sure that all critical pairs of all elements of GB[C] can be connected below the
corresponding mntcrs, because GB initializes P by all index-pairs and the two
requirements isTODOTuple and isCPTODOTuple are trivially met by the ini-
tial arguments C , allPairs[|C|], 1, 1 and 〈〉 of GBAux. Thus, GB[C] really is
a Gröbner basis, thanks to Theorem 3.5.3.

The exact de�nitions of isTODOTuple and isCPTODOTuple are a bit lengthy,
so we only provide an informal description here. isTODOTuple[P,C, i, j] holds
i� cpConnectible[C,Ck, Cl] is satis�ed by all Ck, Cl, where neither of the
two pairs 〈k, l〉 and 〈l, k〉 occurs in P or equals 〈i, j〉. Intuitively speaking,
isTODOTuple[P,C, i, j] asserts that all pairs not occurring in P , except maybe
〈i, j〉, “have already been processed” by GBAux in the sense that they satisfy the
criterion of Theorem 3.5.3.

On the other hand, isCPTODOTuple[L, P, C, i, j] holds i� either 〈i, j〉 is
still contained in P or the critical pairs ofCi andCj w. r. t. those mntcrs a not oc-
curring inL can be connected below a. Intuitively, isCPTODOTuple[L, P, C, i, j]
asserts that the mntcrs of Ci and Cj not occurring in L “have already been pro-
cessed” by GBAux in the sense that the critical pairs they give rise to can be
connected below them.
Remark 14. The �rst inductive assertion alone is not su�cient, even though one
might think so: for GB it only implies that the critical pairs originating from the
original basis C can be connected modulo the resulting basis GB[C], but it does
not say anything about the critical pairs originating from new basis elements.
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4.4.6 Sample Computations
We conclude this section by presenting some sample computations contained in
GroebnerRings.nb. All of them were carried out directly within Theorema, using
function GB. Z denotes the algorithmic reduction ring Z, Z24 denotes Z24, and
Z24xy denotes Z24[x, y] with degree-reverse-lexicographic term order.

In Z, the computation of Gröbner bases amounts to the computation of great-
est common divisors:

in GB
Z
[〈2091, 2337, 2829〉]

out (0.7s) 〈2091, 2337, 2829, 1845, 1599, 1353, 1107, 861, 615, 369, 123〉

In Z24, new basis elements might be greater (w. r. t. the reduction ring order-
ing) than old ones:

in GB
Z24

[〈8, 6〉]

out (0.3s) 〈8, 6, 22〉

In Z24[x, y], singletons might not be Gröbner bases:

in GB
Z24xy

[〈16xy + 2〉]

out (0.6s) 〈16xy + 2, 18, 22xy + 2〉

in GB
Z24xy

[〈x+ 4y + 2, x2y + 4x+ 3〉]

out (8.2s) 〈x+ 4y + 2, x2y + 4x+ 3, 16y3 + 16y2 + 12y + 19, 12y + 15,
18y + 15, 18, 21, y3 + y2 + 1〉

4.5 ReductionRingProver
In order to formally prove the results of reduction ring theory in Theorema, we
designed and implemented a special prover consisting of a collection of special
inference rules (see Section 2.3), called ReductionRingProver. Actually, the name
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“ReductionRingProver” is a bit misleading: the prover does not incorporate any
knowledge about reduction rings or related concepts, but merely “lifts” de�ni-
tions and (rewrite-) properties of basic notions (integers, order relations, sets,
tuples, monoids, rings) to the inference level. In that sense, it is more closely
related to the elementary theories listed in Section 4.2 than to the reduction ring
theories listed in Section 4.3.

One important point has to be made explicit: as explained above, the special
inference rules of the ReductionRingProver implicitly depend on properties of
various notions. When proving these properties, which are included in our for-
malization of the elementary theories, it is clear that the special inference rules
must not be used, for otherwise one would end up with a circular argument
where the validity of a statement depends on the correctness of an inference
rule, which in turn depends on the validity of that statement. In the formal de-
velopment of our theories, we of course took all this into account.

In total, the ReductionRingProver consists of eleven special inference rules,
partitioned into the �ve categories discussed below. Recall that inference rules
have to be implemented in the underlying Mathematica programming language,
so we occasionally might use Mathematica terminology below. Since special
rules alone do not su�ce, the general-purpose predicate logic rules from the
RewriteInteractiveProver, discussed in Section 6.2, are integrated in the Reduc-
tionRingProver as well. A sample proof some the special rules of the prover are
used in can be found in Appendix A.

4.5.1 Intervals of Integers
One of the eleven special inference rules, called membershipIntegerInterval,
is concerned with goals making assertions about the membership of certain ob-
jects in intervals of integers. When applied to a proof situationK ` Γ, it behaves
as follows:

• If Γ is a conjunction, the conjuncts are split into the two sets C1 and C2,
where all elements of C1 are (possibly universally quanti�ed) formulas of
the form t ∈ Za,...,b, and C2 contains all remaining conjuncts. If neither
of the two sets is empty, the proof branches, where in the �rst branch the
new proof goal is

∧
C1 and in the second branch the goal is

∧
C2 and C1

is added to the list of assumptions. If C2 is empty, the conjunction
∧
C1 is

processed according to the method described below, and if C1 is empty the
rule is not applicable at all and returns a value indicating failure.

• If Γ is a (possibly universally quanti�ed) formula of the form t ∈ Za,...,b, it
is processed according to the method described below.



4.5. ReductionRingProver 85

• In all other cases, the rule is not applicable.

We may assume now that A is a list whose elements are propositions of the
form t ∈ Za,...,b, where the three terms t, a and b possibly contain free variables
originating from universal quanti�ers (that have been stripped away already) and
where no two elements are α-equivalent to each other; the interval endpoints a
and b may be ±∞, and Z−∞,...,∞ is abbreviated simply by Z. Now, the auxiliary
function simplifyIntegerConditions is called on A. This function tries to
reduce the elements of its argument or even eliminate them entirely, making
use of the current knowledge K . To that end, the following basic inferences
are repeatedly applied as long as possible for reducing or eliminating elements
F ≡ t ∈ Za,...,b of the list:

• If all of t, a and b are integer literals or±∞, membership is immediately de-
cided by computation and henceF is either removed or replaced by False.

• If F follows readily from known facts in K ,5 it is removed.

• If t ≡ b− (x− 1) and a ≡ 1, F is replaced by {x ∈ Z1,...,b, b ∈ Z}.

• If t ≡ a ≡ b, F is replaced by t ∈ Z.

• If t ≡ a and a is di�erent from −∞, F is replaced by a ∈ Z−∞,...,b.

• If t ≡ b and b is di�erent from∞, F is replaced by b ∈ Za,...,∞.

• If t ≡ |T |, b ≡ ∞ and a is either a non-positive literal or −∞, and T is
known to be a tuple (i. e. isTuple[T] or ∈

DomainTuples[D]
[T] appears in

K), F is dropped because the length of a tuple is always a natural number.

• If t is known to be contained in a sub-interval of Za,...,b, F is dropped. De-
ciding membership in sub-intervals is accomplished by recursively call-
ing simplifyIntegerConditions: if, say, t ∈ Zx,...,y is known and
A0 := {a ∈ Z−∞,...,x, b ∈ Zy,...,∞} can be reduced to the empty list by
simplifyIntegerConditions, then t is known to be a member ofZa,...,b
as well.

• If t ≡ x + y or t ≡ xy, a is either −∞ or a non-negative literal, and
b ≡ ∞, then F is replaced by {x ∈ Za,...,∞, y ∈ Za,...,∞}. This is justi�ed
by the fact that both addition and multiplication are closed in Z as well as
in Za,...,∞ with a non-negative.

5“ϕ follows readily from K” always means that ϕ can be reduced to True by successive
backward rewriting w. r. t. known (universally quanti�ed) implications in K .
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• If t ≡ x− y, a ≡ −∞ and b ≡ ∞, F is replaced by {x ∈ Z, y ∈ Z}.

• If t ≡ −x, a ≡ −∞ and b ≡ ∞, F is replaced by x ∈ Z.

At the end, if the resulting list B is empty the goal is proved and the branch
of the proof is �nished. Otherwise,

∧
B becomes the new goal.

4.5.2 Order Relations
Three inference rules deal with order relations: orderingGoal, orderingKB
and orderingEqualGoal. Each of them can handle the following three types of
order relations appearing in our formalization, de�ned in AlgebraicStructures.nb:

• isPartIrreflOrder[ ≺,D] means that ≺ is an irre�exive order rela-
tion on the domain D.

• isPartReflOrder[ �,D] means that � is a partial (re�exive) order re-
lation on D.

• isTotalIrreflOrder[ ≺,D] means that ≺ is a total irre�exive order
relation on D.

Furthermore, any binary function ◦might be an order embedding w. r. t. ≺ on D,
i. e. y ≺ z ⇔ x ◦ y ≺ x ◦ z for all x, y, z belonging to D; this is characterized by
isOrderEmbedding[◦,≺,D].

orderingGoal. This rule combines the following seven basic inferences:

K ` ∈
D
[x]

K ` ¬x ≺ x
(1)

K ` ∈
D
[x]

K ` x � x
(2)

where in (1) D is such that K contains isPartIrreflOrder[ ≺,D] or
isTotalIrreflOrder[ ≺,D], and in (2) it is such that K contains
isPartReflOrder[ �,D];

K ` ∈
D
[x, y, z1, . . . , zn]

K, y ≺ z1, z1 ≺ z2, . . . , zn ≺ x ` ¬x ≺ y
(3)

where D is such that K contains isPartIrreflOrder[ ≺,D] or
isTotalIrreflOrder[ ≺,D] (note that n may well be 0);

K ` ∈
D
[x, y, z1, . . . , zn] K ` x 6= y

K, y � z1, z1 � z2, . . . , zn � x ` ¬x � y
(4)
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where D is such that K contains isPartReflOrder[ �,D] (as before n may
be 0);

K ` ∈
D
[x, y, z1, . . . , zn]

K, x ≺ z1, z1 ≺ z2, . . . , zn ≺ y ` x ≺ y
(5)

where D is such that K contains any of the three order-predicates for ≺ and D;

K ` ∈
D
[x, y, z] K,∈

D
[x, y, z] ` y ≺ z

K ` x ◦ y ≺ x ◦ z
(6)

where D is such that K contains isOrderEmbedding[◦,≺,D];

K ` ∈
D
[x, y, z] K,∈

D
[x, y, z] ` ¬ y ≺ z

K ` ¬x ◦ y ≺ x ◦ z
(7)

where as before D is such that K contains isOrderEmbedding[◦,≺,D].

orderingKB. This rule combines the following two basic inferences:

K ` ∈
D
[x]

K,¬x � x ` Γ
(1)

K ` ∈
D
[x]

K, x ≺ x ` Γ
(2)

where in (1) D is such that K contains isPartReflOrder[ �,D],
and in (2) it is such that K contains isPartIrreflOrder[ �,D] or
isTotalIrreflOrder[ �,D].

orderingEqualGoal. This rule combines the following two basic infer-
ences:

K ` ∈
D
[x, y] K,∈

D
[x, y] ` x � y ∧ y � x

K ` x = y
(1)

where D is such that K contains isPartReflOrder[ �,D], as well as ∈
D
[x]

or ∈
D
[y];

K ` ∈
D
[x, y] K,∈

D
[x, y] ` ¬x ≺ y ∧ ¬ y ≺ x

K ` x = y
(2)

where D is such that K contains isTotalIrreflOrder[ ≺,D], as well as
∈
D
[x] or ∈

D
[y].
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4.5.3 Sets and Tuples
The following two rules handle goals that assert membership of certain objects
in certain domains. These domains typically are either DomainTuples[D] or
DomainSets[D].

membershipDomainTuples. This rule is a combination of the following
14 basic inferences:

∈
DomainTuples[D]

[T] ` isTuple[T]
(1)

K ` ∈
DomainTuples[D]

[T] K, ∈
DomainTuples[D]

[T] ` i ∈ Z1,...,|T |

K ` ∈
D
[Ti]

(2)

K ` ∈
DomainTuples[D]

[T]

K, x E T ` ∈
D
[x]

(3)
K ` ∈

DomainTuples[D]
[A,B]

K ` ∈
DomainTuples[D]

[AonB]
(4)

K ` ∈
D
[x] K,∈

D
[x] ` ∈

DomainTuples[D]
[T]

K ` ∈
DomainTuples[D]

[xy T]
(5)

K ` ∈
D
[x] K,∈

D
[x] ` ∈

DomainTuples[D]
[T]

K ` ∈
DomainTuples[D]

[T x x]
(6)

K ` ∈
D
[x1, . . . , xn]

K ` ∈
DomainTuples[D]

[〈x1, . . . , xn〉]
(7)

K ` ∈
DomainTuples[D]

[T]

K ` ∈
DomainTuples[D]

[Reverse[T]]
(8)

K ` ∈
DomainTuples[D]

[T] K ` T 6= 〈〉

K ` ∈
DomainTuples[D]

[Rest[T]]
(9)

K ` ∈
DomainTuples[D]

[T] K ` T 6= 〈〉

K ` ∈
DomainTuples[D]

[Most[T]]
(10)
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K ` ∈
DomainTuples[D]

[〈f[i] |
i=a,...,b

P[i]〉]

K ` ∈
DomainTuples[D]

[〈f[b− (i− a)] |
i=a,...,b

P[b− (i− a)]〉]
(11)

K ` ∈
DomainTuples[D]

[S]

K ` ∈
DomainTuples[D]

[〈Si |
i=1,...,|S|

P[i]〉]
(12)

K ` a ∈ Z ∧ a ∈ Z K, a ∈ Z, b ∈ Z ` ∀
i=a,...,b

P[i]

∈
DomainTuples[D]

[f[i]]

K ` ∈
DomainTuples[D]

[〈f[i] |
i=a,...,b

P[i]〉]
(13)

K ` isTuple[T] K, isTuple[T] ` ∀
i=1,...,|T |

∈
D
[Ti]

K ` ∈
DomainTuples[D]

[T]
(14)

The last basic inference is actually simply the de�nition of membership in
DomainTuples[D]. The true power of membershipDomainTuples stems from
the fact that it automatically reduces goals of the form ∈

DomainTuples[D]
[T] re-

peatedly, and moreover always immediately checks whether the current goal (of
whatever form) follows directly from the current knowledge base by backward
rewriting.

membershipDomainSets. This rule is analogous to the previous one, only
for (domain-)sets and set operations rather than tuples and tuple operations.

4.5.4 Cancellative Commutative Monoids
The ReductionRingProver contains two special rules dedicated to cancellative
commutative monoids M (w. r. t. the operation ◦ and neutral element n), de-
noted by isCCMonoid[M, ◦, n] in the formalization. One of these two rules
deals with domain-membership goals, the other one with proving equalities. For
the rest of this subsection assume that the formula isCCMonoid[M, ◦, n] is in-
cluded in the knowledge base of the current proof situation, for someM, ◦ and
n.
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membershipCCMonoid. This rule is applicable if the current goal is of the
form ∈

M
[t] (possibly universally quanti�ed), a conjunction thereof, or even a

conjunction involving also conjuncts of di�erent form. In the latter case, the
goal is split into two sub-goals, where the �rst one only consists of the afore-
mentioned domain-membership conjuncts and the second one of the rest; this is
totally analogous to membershipIntegerInterval. Hence, assume now that
we are given a listA consisting entirely of propositions of the form ∈

M
[t], where

the terms t may depend on free variables originating from universal quanti�ers.
The main idea behind membershipCCMonoids is simple enough: exploiting

closure of ◦ inM, i. e. ∈
M
[x, y] allows to infer ∈

M
[x◦y]. As in the corresponding

rule for integer intervals, the elements of the listA are repeatedly reduced or even
eliminated, according to the following two basic inferences:

K ` ∈
M

[n]

K ` ∈
M

[x] K, ∈
M

[x] ` ∈
M

[y]

K ` ∈
M

[x ◦ y]

As always, new formulas are immediately checked whether they follow read-
ily from the current knowledge base by backward rewriting w. r. t. (quanti�ed)
implications. Furthermore, they are also checked for α-equivalence with formu-
las that have already been processed.

CCMonoidEqual. This rule is applicable if the current goal is a chain of
equalities of the form a1 = a2 = . . . = an, where the outermost function- or
constant symbol of at least one of the ai is ◦ or n. In that case, the chain is
decomposed into the individual equalities a1 = a2, . . . , an−1 = an, each of them
being treated separately by the procedure described below.

Assume now we are given an equality a = b, where the outermost function
or constant symbol of a or b is ◦ or n.

1. a is traversed in breadth-�rst manner, as long as the head of the current
sub-expression is ◦.

2. Let x be one of the sub-expressions thus visited, and assume that x is dis-
tinct from n. Now, b is searched for a sub-expression x′ that is α-equivalent
to x, occurring at a position where all outer function symbols are ◦. If
such a x′ is found, both x in a and x′ in b are replaced by n, and all sub-
expressions appearing in an argument list of any of the outer function sym-
bols of x and x′, respectively, are collected in a separate list C ; this, in par-
ticular, includes x and x′ themselves. For instance, if a ≡ (x ◦ y) ◦ (u ◦ v)
and b ≡ (u◦(v◦y))◦x′ thenC would consist of x, y, u◦v, x′ and u◦(v◦y).
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3. Finally, occurrences of n in a and b are eliminated by exploiting that n is
the neutral element of ◦. However, if a sub-expression x ◦ n is simpli�ed
to x, x is added to the list C .

These three steps yields a new (ideally trivial) equality a′ = b′ together with
the list C , with the meaning that a = b follows from a′ = b′ given that all
elements of C belong toM. Hence, the original equality is reduced to a′ = b′

(unless this equality is already trivial), but in addition the new sub-goal asserting
membership of all of C’s elements inM has to be proved.
Remark 15. Repeatedly adding terms to list C might appear a bit cumbersome at
�rst sight, especially if one is aware that typically many expressions thus added
are in fact sub-expressions of other elements already contained in the list. So,
why not just immediately prove domain-membership of all atomic sub-terms of
a and b? The best way of answering this question is by means of an example:
Assume the equality one wishes to prove is (x ◦ y) ◦ (u ◦ v) = ((x ◦ y) ◦ u) ◦ v.
The equality can easily be proved, provided that x ◦ y, u and v belong toM—so,
x ◦ y does not have to be decomposed into x and y at all! It might well be that
the membership of x or y inM cannot be established, meaning that a strategy
that simply tries to prove domain-membership of all atoms would fail in such a
situation.

4.5.5 Commutative Rings with Identity
Similar as for cancellative commutative monoids there are three special rules
for working in the theory of commutative rings with identity: one for proving
domain-membership, one for proving equality of terms, and additionally one
for simplifying known equalities. The overall ideas behind the ring-rules are
precisely the same as for the monoid-rules, so we do not rephrase them here
(e. g. try to avoid proving domain-membership of terms that actually do not
have to belong to the ring, when proving equality of two terms; see Remark 15
above). Instead, we point out the main di�erences here, in particular what makes
matters much more complicated when dealing with commutative rings rather
than cancellative commutative monoids.

Essentially, there are three main di�erences between the ring-rules and the
monoid-rules:

• in rings there are additive inverses and subtraction,

• in rings, addition (and subtraction) and multiplication satisfy a distributiv-
ity law, and

• in rings we also have to deal with �nite sums, as they play an important
role in reduction ring theory.
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Let in the rest of this subsectionR be a domain such that isCommRing1[R]
is contained in the current knowledge base. Although R is a domain and the
ring-constants and -operations 0, +, ∗ etc. are thus under-scripted by R, we
omit these underscripts here for the sake of readability.

membershipCommRing1. This rule, analogous to membershipCCMonoids,
is applicable to (universally quanti�ed) goals of the form ∈

R
[t], conjunctions

thereof, and even conjunctions involving conjuncts of di�erent form; the latter
are treated precisely as in the corresponding rule for monoids. Hence, assume
once more that we are given a list A of domain-membership propositions of the
aforementioned form. The elements of A are repeatedly reduced exploiting clo-
sure properties of +, − (both unary and binary) and ∗ in R. With �nite sums,
though, matters are slightly more complicated; they are handled according to

K ` a ∈ Z ∧ b ∈ Z K, a ∈ Z, b ∈ Z, i ∈ Za,...,b ` ∈
R
[f[i]]

K ` ∈
R
[
∑

i=a,...,b

f[i]]

where i is an arbitrary but �xed constant. As can be seen, due to the presence
of �nite sums ring-membership goals may be reduced to sub-goals of a di�er-
ent kind, namely integer-interval conditions. Simple inferences try to eliminate
such sub-goals instantly (for instance, duplicate formulas are removed as soon
as possible), but ultimately many of them will be left as separate sub-goals to
be dealt with by their dedicated membershipIntegerInterval rule. More-
over, membershipCommRing1 also incorporates one of the basic inferences of
membershipDomainTuples for directly reducing goals of the form ∈

R
[Ti] to

the conjunction of ∈
DomainTuples[R]

[T] and i ∈ Z1,...,|T |.

CommRing1Equal. The main idea behind proving equalities a = b in com-
mutative rings with identity is absolutely is the same is in cancellative commu-
tative monoids, where + and 0 take the roles of ◦ and n. The procedure is as
follows:

1. First, common6 sub-expressions of a and b are replaced by 0, following
precisely the same method as in CCMonoidEqual; x − y is replaced by
x+(−y) and �nite sums are considered as atomic. Negative sub-terms, i. e.
terms with an odd number of outer unary “−” are moved to the respective
other side of the equality to get rid of the negations. Of course, all terms
that have to belong toR in order for a transformation to be applicable are
again collected in a list C .

6Taking into account associativity and commutativity of ∗.
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2. If the resulting equality a′ = b′ is not yet trivial, the two sides are fully
expanded using distributivity of ∗ for rewriting x(y + z) to xy + xz and
x
∑

i=a,...,b

f[i] to
∑

i=a,...,b

x f[i], and associativity/commutativity of + for re-

writing
∑

i=a,...,b

(f[i] + g[i]) to
∑

i=a,...,b

f[i] +
∑

i=a,...,b

g[i]. Summands are

expanded recursively, and once more all terms whose membership inR is
required for a transformation to be applicable are added to C ; now, this
may also include terms of the form f[i] for arbitrary but �xed constants
i, originating from �nite sums.

3. If the resulting equality a′′ = b′′ is di�erent from the original one, the
procedure resumes with Step 1. Otherwise, if no further simpli�cations
could be carried out, a′′ = b′′ and the list C are returned, with the meaning
that a = b follows from a′′ = b′′ if all terms in C belong toR.

CommRing1EqualKB. This rule does literally the same for known equalities
as what CommRing1Equal does for equalities to be proved.

4.6 Formalization in Isabelle/HOL
We conclude the chapter on the formalization of Gröbner bases and reduction
rings by reporting on a di�erent formalization of the same theory in another
proof assistant, namely Isabelle/HOL. Actually, it is not really the same theory,
since in Isabelle we only considered Gröbner bases in the original setting of poly-
nomial rings over �elds, without making any appeal to reduction rings or other
generalizations. Note that the theory of Gröbner bases has not been formalized
in Isabelle before, although a proof procedure for handling generic equalities in
commutative rings, which heavily relies on Gröbner bases techniques, is included
in the system already [CW07]. The resulting formalization is now included in
the Archive of Formal Proofs7, see [IM16]; it was created with the help of Fabian
Immler.

Before we give an overview of how the formalization is structured and what
exactly it consists of, some general remarks on Isabelle and Isabelle/HOL are in
place. Isabelle [Pau90, Pau94, Wen16] is a generic theorem prover in the tradition
of the LCF system [Mil79, GMW79], implemented in ML. The term generic refers
to the fact that Isabelle does not �x any particular object logic its users have to
get along with, but that in principle arbitrary object logics may form the basis of
formalizations in Isabelle. Examples of pre-de�ned environments distributed to-
gether with the system are �rst-order logic (Isabelle/FOL), Zermelo-Fraenkel set

7The Archive of Formal Proofs is an online collection of Isabelle theories, see h�p://afp.sf.net.

http://afp.sf.net
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theory (Isabelle/ZF), constructive type theory (Isabelle/CTT) and, �nally, higher-
order logic (Isabelle/HOL, see also [NPW02]). Isabelle/HOL is the most widely
used variant of Isabelle, equipped with the most extensive theory library and
collection of reasoning tools. It is based on simply-typed (classical) higher-order
logic with ML-style polymorphism.

In the rest of this section, familiarity with the syntax and semantics of Is-
abelle/HOL is assumed.

4.6.1 Overview of the Formalization
Power-products. Our formalization starts by introducing the Isabelle type-
class powerprod of cancellative, commutative, multiplicative monoids addition-
ally possessing a couple of further properties power-products are usually ex-
pected to have; in particular, they must be such that every in�nite sequence s
contains two elements si and sj with i < j and si p sj (where the divisibility
relation p is pre-de�ned in every monoid in terms of the monoid operation).

Afterward, the parametric type ’a pp is de�ned as the type of all functions
from type ’a to type nat, the type of natural numbers. Terms t of type ’a pp rep-
resent power-products in indeterminates in ’a in the obvious way, by mapping
each indeterminate to its exponent in t; no restrictions regarding the �niteness
and/or orderedness of the type variable ’a are imposed at this stage, although
later on most of the key results can only be proved assuming that ’a is �nite and
linearly ordered. One of these results states that ’a pp indeed constitutes a power-
product type in the sense that it belongs to class powerprod; Dickson’s lemma
ensures that the requirement on sequences mentioned above is met. Although a
variant of Dickson’s lemma has been part of the Archive of Formal Proofs, and
hence at our disposal, already [Ste12], we nevertheless proved it again in order
for our formalization to be self-contained.

Finally, before turning the focus to polynomials, the notion of term orders as
binary relations on types belonging to class powerprod is introduced. The only
concrete term orders included in the formalization are the purely lexicographic
and the degree-lexicographic ones, called lex and dlex, respectively; needless
to say that we also proved that they are indeed a term orders.

Summarizing, the whole treatment of power-products, �rst in a very abstract
setting, later in more concrete terms as functions from indeterminates to natu-
ral numbers, closely resembles the treatment of power-product domains in our
Theorema-formalization, in particular in theories Polynomials.nb and PolyTu-
ples.nb; this, of course, is not surprising at all.

Multivariate polynomials. The type of multivariate polynomials over power-
product type ’a and coe�cient type ’b, called (’a, ’b) mpoly, is de�ned as the
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type of all (coe�cient-)functions from ’a to ’b having only �nite support (mean-
ing that ’b must at least belong to class zero, for otherwise the support could
not even be de�ned properly).

In the sequel, the various “standard” operations on polynomials, like addi-
tion, subtraction and multiplication, are introduced. These operations are �rst
de�ned for functions from ’a to ’b and then “lifted” to type (’a, ’b) mpoly, using
the lift_definition command from the Lifting package [HK13]. Afterward,
dozens of more or less obvious properties of the operations thus introduced are
stated and proved, including the fact that (’a, ’b) mpoly constitutes a commuta-
tive ring with identity (i. e. belongs to class comm_ring_1) if ’a belongs to class
powerprod and ’b to comm_ring_1.

Similar to our Theorema-formalization, general multiplication of polynomi-
als is de�ned in terms of an auxiliary function monom_mult, which takes a
coe�cient c from ’b, a power-product t from ’a, and a polynomial p from
(’a, ’b) mpoly as input and returns the result of multiplying p by c and t as output
(thus resembling multiplication by a monomial). Interestingly, general multipli-
cation is in fact only needed to prove that (’a, ’b) mpoly forms a ring and for
establishing the connection between Gröbner bases- and ideal theory (which we
did), but not at all for de�ning the reduction relation, proving the Main Theorem,
and implementing Buchberger’s algorithm: there, only multiplication by mono-
mials is needed. In reduction ring theory, in contrast, multiplication of poly-
nomials is crucial, since �rst and foremost polynomial domains must constitute
reduction rings.

At the end, �xing an arbitrary term order � on ’a, the notions of leading
power-product (called lp), leading coe�cient (called lc) and tail (called tail)
of a polynomial w. r. t. � are introduced, and so is the order relation �p induced
by � on polynomials. Summarizing, the development of multivariate polyno-
mials in our Isabelle-formalization proceeds analogous to their development in
Theorema, in theory Polynomials.nb.

Please note that the Archive of Formal Proofs already contains an entry about
multivariate polynomials [ST10]. There, polynomials are represented in two
ways: either as tree-expressions built from constructors like PVar, PSum etc.,
or directly as association lists representing coe�cient functions. We, however,
wanted to work with the more abstract representation of polynomials as coe�-
cient functions (and no particular representation thereof) when stating and prov-
ing all the theoretical results, and this is the reason why we did not fall back to
[ST10] but really started from scratch again. Still, we eventually introduced the
concrete representations of power-products and multivariate polynomials as as-
sociation lists as well for executing the various algorithms we implemented, see
Section 4.6.2.
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Gröbner bases. We present this part of the formalization more thoroughly.
Clearly, the most basic concept needed for Gröbner bases theory is the reduc-
tion relation. In Isabelle it is called red, taking as input a set of polynomials
F and two polynomials p and q, and returning True i� p can be reduced to
q modulo F . Hence, because of currying, red F is a binary relation of type
(’a,’b)mpoly ⇒ (’a,’b)mpoly ⇒ bool.8

After proving a couple of properties of the reduction relation, e. g. Noetheri-
anity, Gröbner bases are de�ned to be sets G such that red G is Church-Rosser,
just like in Theorema. The notions Church-Rosser, con�uence and local con�u-
ence, as well as some further properties of arbitrary binary relations, are de�ned
in a separate theory, which itself is completely independent of polynomials and
Gröbner bases.

In Isabelle-syntax, the de�nition of Gröbner bases simply reads as

definition is_Groebner_basis::"(’a,b’) mpoly set ⇒ bool"
where "is_Groebner_basis F ≡ is_ChurchRosser (red F)"

The key result about Gröbner bases is of course Buchberger’s criterion for de-
ciding whether a given (�nite) set is a Gröbner basis or not, by checking whether
all S-polynomials can be reduced to 0. In Isabelle, the precise formulation of the
statement is

theorem Buchberger_criterion:
fixes F::"(’a::powerprod,’b::field) mpoly set"
assumes "

∧
p q. p∈F =⇒ q∈F =⇒ (red F)∗∗ (spoly p q) 0"

shows "is_Groebner_basis F"

where r∗∗ denotes the re�exive-transitive closure of a binary relation r and func-
tion spoly returns the S-polynomial of its arguments.

The proof of this theorem, albeit based on a multitude of auxiliary lemmas,
is still quite lengthy: in its current (quite verbose) version, it is made up of al-
most 100 lines of Isar code, although an experienced user knowing some short-
cuts could de�nitely shorten it drastically. Anyway, it is modeled after the proof
given in [Buc98] and proceeds by showing that red F is “locally connective”,
i. e. whenever a polynomial p can be reduced to both q1 and q2, then q1 and q2
can be connected below p (in the sense of De�nition 3.2.5). The following is a
small fragment of the proof, in order to illustrate how proofs in Isabelle, in the
Isar language, typically look like:

proof -
have "is_loc_connective (red F) (op ≺p)"

unfolding is_loc_connective_def

8Keep in mind that some arbitrary term order on ’a has been �xed already.
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proof (intro allI, intro impI)
fix p q1 q2
assume "red F p q1 ∧ red F p q2"
hence "red F p q1" and "red F p q2" by auto
from red_setE[OF ‹red F p q1›] obtain f1 and t1

where "f1∈F" and r1: "red_single p q1 f1 t1" .
from red_setE[OF ‹red F p q2›] obtain f2 and t2

where "f2∈F" and r2: "red_single p q2 f2 t2" .
...
show "cbelow (op ≺p) p (symcl (red F)) q1 q2"
proof (cases "t1 ∗ lp f1 = t2 ∗ lp f2")
case False
...

next
case True
...

qed
qed
thus ?thesis using loc_connectivity_equiv_CR

unfolding is_Groebner_basis_def by simp
qed

Finally, the formalization also contains the implementation of Buchberger’s
algorithm as a tail-recursive function, very similar to the one GroebnerRings.nb
(in particular, the function is de�ned for lists rather than sets of polynomials).
The only major di�erence between the two implementations in Isabelle and The-
orema, besides the fact that the latter is in the much more general setting of re-
duction rings, is that in Isabelle no criteria for avoiding useless reductions are
taken into account at the moment. The main function, called gb, is de�ned ex-
plicitly in terms of the auxiliary tail-recursive function gbaux; gbaux, in turn,
is de�ned using the Function package [Kra09]. Since the termination of Buch-
berger’s algorithm, and hence of gbaux, is non-trivial, the Function package is
not able to prove it automatically, meaning that a hand-crafted proof must be
provided by the user. In Isabelle-syntax, the de�nitions of gb and gbaux read as

function gbaux::"(’a::powerprod,’b::field) mpoly list ⇒
((’a,’b)mpoly × (’a,’b)mpoly) list ⇒ (’a,’b) mpoly list"

where
"gbaux B [] = B"|
"gbaux B ((p,q) # R) =

(let h = trd B (spoly p q) in
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(if h = 0 then
gbaux B R

else
gbaux (h # B) (update R B h)

)
)"

by pat_completeness auto
termination 〈proof〉

definition gb::"(’a::powerprod,’b::field) mpoly list ⇒
(’a,’b) mpoly list" where "gb B ≡ gbaux B (pairs B)"

Needless to say that the correctness of function gb is proved as well:

theorem gb_isGB:
shows "is_Groebner_basis (set (gb B))"

〈proof〉

theorem gb_ideal:
shows "ideal (set (gb B)) = ideal (set B)"

〈proof〉

theorem in_ideal_gb:
shows "p ∈ ideal (set B) ←→ trd (gb B) p = 0"

〈proof〉

4.6.2 Making Things Executable
After having implemented Buchberger’s algorithm and proved it correct, we of
course also wanted to make it executable on actual input. First, however, we
had to come up with concrete representations of power-products and multivari-
ate polynomials. To that end, we took the approach of so-called data re�nement
[HKKN13] for turning the abstract representations of power-products and multi-
variate polynomials as plain functions into something more concrete. Obviously,
the data structure of choice for representing (�nite) functions are association
lists, i. e. lists of explicit input-output pairs. Association lists are feasible for ex-
actly representing both power-products and polynomials, since the former must
be restricted to �nitely many indeterminates anyway and the latter have �nite
support by de�nition, meaning that it su�ces to only store the �nitely many
non-zero values in the representing list. In fact, the situation in Isabelle parallels
the one in Theorema, where power-products and polynomials are represented as
(something like) association tuples as well.



4.6. Formalization in Isabelle/HOL 99

More concretely, in order to represent power-products of type ’a pp as associ-
ation lists we introduced the new code data-type PP. PP is essentially a function
mapping an association list, i. e. a list of type (’a × nat)list, to a power-
product of type ’a pp. Having PP it is now possible to provide so-called code
equations specifying how the various operations on the abstract type ’a pp, like
multiplication, division, etc., can e�ectively (and e�ciently) be computed when
terms of “type” PP are given as input. For instance, in the case of multiplication
the corresponding code equation is
lemma compute_times_pp[code]:
"(PP xs) ∗ (PP ys) =
PP (map_ran (λkv. lookup xs k + lookup ys k) (merge xs ys))"
〈proof〉
where lookup is a simple lookup function for association lists and map_ran and
merge are two functions de�ned in the default Isabelle/HOL theory about asso-
ciation lists. As can be seen, the above code equation cannot simply be stated
as an axiom, but is a lemma that has to be proved. This guarantees that gener-
ated code always behaves according to the speci�cations and de�nitions of the
corresponding abstract functions.

Since ’a pp is parametrized over a type ’a of indeterminates, we provide such
a type, too: the algebraic data-type of three indeterminates, called var, with the
three constructors X, Y and Z representing the three indeterminates. Unfortu-
nately, it seems to be necessary to introduce a separate indeterminate-type for
each number of indeterminates, since it is not possible to parametrize types in
Isabelle/HOL over, say, natural numbers (indicating the number of indetermi-
nates).
Example 1. The power-product x2z is represented by PP as
PP [(X, 2), (Z, 1)]

when viewed as a power-product in the three indeterminates of type var, since
the exponent of all indeterminates not appearing in the list (like Y above) is au-
tomatically 0. The order of the elements in the list is immaterial. �

Multivariate polynomials are represented as association lists in pretty much
the same fashion as power-products; the code data-type is now called MP. Actu-
ally, there is really nothing special about MP compared to PP. Only note that in
contrast to the tuples representing polynomials in the Theorema-formalization,
in theory PolyTuples.nb, the association lists representing polynomials in Is-
abelle/HOL do not need to be ordered w. r. t. the chosen term order.
Example 2. The following two MP-terms both represent the polynomial x2z2−y,
when viewed as a polynomial of power-product type var pp and coe�cient type
int:
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MP [(PP [(X, 2), (Z, 2)], 1), (PP [(Y, 1)], -1)]
MP [(PP [(Y, 1)], -1), (PP [(X, 2), (Z, 2)], 1)]

Of course, the coe�cients of all power-products not appearing in the list are
meant to be 0. �

Finally, executing functions on concrete input is easily possible directly within
Isabelle, making use of the value command. For instance, computing a (not nec-
essarily reduced) Gröbner basis of the two trivariate polynomials x2z2 − y and
y2z − 1 w. r. t. the purely lexicographic term order with function gb amounts to
typing

value [code]
"gb_lex [

MP [(PP [(X, 2), (Z, 2)], 1), (PP [(Y, 1)], -1)],
MP [(PP [(Y, 2), (Z, 1)], 1), (PP [], -1)]

]"

After a couple of seconds, Isabelle outputs the Gröbner basis

[MP [(PP [(X, 2)], -1), (PP [(Y, 5)], 1)],
MP [(PP [(X, 2), (Z, 1)], 1), (PP [(Y, 3)], -1)],
MP [(PP [(X, 2), (Z, 2)], 1), (PP [(Y, 1)], -1)],
MP [(PP [(Y, 2), (Z, 1)], 1), (PP [], -1)]]

representing the set {x2z2 − y, y2z − 1,−x2 + y5, x2z − y3}.
The reason for renaming gb to gb_lex is related to the fact that gb is de�ned

inside a locale that �xes an arbitrary term order, meaning that the function itself
implicitly depends on that term order as well. Generating code for a function
de�ned inside a locale requires a bit more e�ort and is explained in detail on
pages 37–38 in [HB16].

4.6.3 Comparison of the Formalizations
Ignoring the fact that the formalization of Gröbner bases theory in Isabelle is
only concerned with polynomial rings over �elds, whereas the one in Theorema
is based on reduction rings, the overall structures of the two formalizations are
quite similar. In particular, power-products and multivariate polynomials are
�rst dealt with on a very abstract level, and only represented as concrete asso-
ciation lists (or tuples) when it comes to actual computations. Furthermore, the
various algorithms are implemented in pretty much the same way in Isabelle and
Theorema; for instance, Buchberger’s algorithm in both cases is implemented as
a tail-recursive function. The resulting functions can be executed directly with-
ing the respective systems, although one must note that Isabelle/HOL supports
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the automatic generation of executable SML-, Haskell-, OCaml- and Scala pro-
grams [HB16], too.

Although the two formalizations are similar on the object level, they di�er
considerably on the meta level, especially in the additional e�ort of developing
new tools and reasoning techniques for e�ciently exploring the theory: in The-
orema we had to develop the ReductionRingProver and the various tools pre-
sented in Chapter 6, whereas Isabelle/HOL by default provides a range of useful
packages serving exactly the purpose of automating frequently occurring tasks
in typical theory explorations, like the Lifting- and Transfer packages [HK13],
the Datatype package [BBD+16] and the Function package [Kra09]. Moreover,
Isabelle’s powerful simpli�cation mechanism in conjunction with an extensive
library of simpli�cation rules saved us from inventing special tactics or proof
procedures for handling, say, equalities in commutative rings with multiplicative
identity (as in the ReductionRingProver): calling the simpli�er with the default
rule set, and maybe adding a dedicated set of AC-rules, was su�cient for proving
all monoid-, group- and ring-equalities we encountered.

Theorema might still have some weaknesses compared to Isabelle in terms
of the degree of automation of theory exploration, but in our opinion it is Theo-
rema that gives rise to the more nicely-formatted, readable and “natural” docu-
ments, due to its close connection to Mathematica’s typesetting and formatting
facilities. Isabelle-theories, on the other hand, are just plain (Unicode, i. e. with
many special mathematical symbols) text; it is possible, though, to automatically
translate the text to LATEX code and compile it, yielding again nicely-readable PDF
documents. Anyway, not only the style of presenting theories, and in particular
proofs, di�ers signi�cantly, but also the language of presentation: in Theorema,
a big portion of the content of proof documents is informal English (or whatever
language) text, explaining in detail what is going on in the proof and making it
easy to follow the proof even for inexperienced users of the system. In Isabelle,
in contrast, one �rst needs to get acquainted to the Isar proof language, both for
constructing and for reading/understanding proofs.



Chapter 5

Complexity Analysis of
Buchberger’s Algorithm

Besides the formal treatment of the theory of reduction rings discussed in the
previous chapter, we also formalized the complexity analysis of Buchberger’s
algorithm in the original setting. Hence, from now on we leave reduction rings
again and restrict the domain of discourse to polynomial rings over �elds.

Most of this chapter is also contained in [Mal14], and parts of it have been
published in [MB14, BJK+16].

5.1 Underlying Theory
The complexity of Buchberger’s algorithm in the bivariate case was investigated
by Buchberger around 1980 in [Buc79, BW79, Buc83b, Buc83c]. Hence, it has to
be pointed out that, similar to Chapter 3, this section does not present any sig-
ni�cant new results obtained in the frame of our studies, but rather summarizes
known results our formalization of the complexity analysis in Theorema is based
upon. Still, it also must be mentioned that indeed some minor improvements,
namely generalizations and simpli�cations, compared to the original elaboration
could be achieved; they will be pointed at explicitly in the upcoming subsections.

Since we are back in the original setting, we �x now an arbitrary �eldK , a �-
nite set of indeterminatesX = {x1, . . . , xk} and a term order� onX . Although
the majority of results presented below is valid only in the bivariate case, i. e. for
k = 2, and only for graded term orders, we nevertheless state most de�nitions
and some intermediate lemmas for arbitrary k and arbitrary term orders.

The following (standard) notation is used throughout this chapter:

• lp(p) denotes the leading power-product (w. r. t. �) of p ∈ K[X]\{0}.
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• lcm(s, t) denotes the least common multiple of s, t ∈ [X] (where [X] is
again the set of power-products in indeterminates X).

• deg(s) denotes the degree of s ∈ [X].

• s p t asserts that s divides t, for s, t ∈ [X].

Convention 16. Here and henceforth we assume that every non-zero polynomial
ismonic, i. e. has leading coe�cient 1. Otherwise, a non-monic polynomial can of
course always be made monic by dividing through its leading coe�cient, without
a�ecting on the computation of Gröbner bases by Buchberger’s algorithm at all.

5.1.1 The Algorithm
The algorithm whose complexity we are interested in is Algorithm 2. The simi-
larities between this algorithm and Algorithm 1 in the reduction ring setting are
apparent, and the di�erences are sketched in Section 3.5.1. sPoly and trd are
auxiliary functions for computing the S-polynomial of two input polynomials
and for totally reducing a polynomial to normal form, respectively.

Algorithm 2 Buchberger’s algorithm in the original setting
Input: F = {f1, . . . , fn} ⊆ K[X]
Output: G ⊆ K[X] s. t. G is a Gröbner basis of F

1: function polyGB(F )
2: P ← {(fi, fj)|1 ≤ i < j ≤ n}
3: G← F
4: while P 6= ∅ do
5: (p, q)← some element from P
6: P ← P\{(p, q)}
7: if ¬ccritP(p, q,G) then
8: h← sPoly(p, q)
9: h← trd(h,G)

10: if h 6= 0 then
11: P ← P ∪ {(g, h)|g ∈ G}
12: G← G ∪ {h}
13: end if
14: end if
15: end while
16: return G
17: end function
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The use of the chain criterion in Line 7 of Algorithm 2 is crucial for analyzing
its complexity; without it, the results obtained simply would not hold. However,
the chain criterion must be slightly rephrased compared to De�nition 3.5.5 in
order to �t into our current setting; in this chapter, it is hence su�xed by “P”
(for “Polynomials”, because ccritP only makes sense for polynomials) for distin-
guishing the two variants.

De�nition 5.1.1 (Chain Criterion in Polynomial Rings). Let G ⊆ K[X], let
p, q ∈ K[X]\{0} and set r := lcm(lp(p), lp(q)). Then ccritP(p, q,G) holds i�
there exists g ∈ G such that

1. lp(g) p r,

2. deg(lcm(lp(p), lp(g))) < deg(r) and

3. deg(lcm(lp(q), lp(g))) < deg(r).

Please observe that the chain criterion used here is only one variant among
many. For instance, alternatively one could compare the three least common
multiples lcm(lp(p), lp(g)), lcm(lp(q), lp(g)) and r not w. r. t. their degrees, but
directly w. r. t. the term order �. The reason for de�ning ccritP as above is that
we will mainly restrict � to graded orders anyway. Moreover, the di�erences
between the di�erent variants are comparatively small.

5.1.2 Complexity of the Algorithm
It is well-known that the asymptotic complexity of Algorithm 2 is double ex-
ponential in the number of indeterminates k [MM82], and, for a �xed num-
ber of indeterminates, polynomial in the maximum degree of the input set F
[Giu84, MM84].

In order to obtain sharp bounds on the complexity of the algorithm in the case
of two indeterminates, k = 2, in terms of the number of elementary operations
that must be executed for given input F , it turns out to be su�cient to only know
bounds on the degrees of the polynomials in the resulting Gröbner basis G, as
shown in [Buc79]:

Theorem 5.1.2. For any non-empty �nite F ⊂ K[x, y] let

DF := max{deg(lp(g)) | g ∈ polyGB(F )}

i. e. the maximum degree of all leading terms in the Gröbner basis computed by
Algorithm 2. Furthermore, let CF := (DF+2)(DF+1)

2
. Then at most(

|F |+ CF
2

)
·
(
CF (|F |+ CF ) +

(
CF
2

))
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additions, multiplications and comparisons of polynomials are needed to compute
polyGB(F ).

Because of Theorem 5.1.2 the remaining part of this section is all about ob-
taining tight bounds for DF in terms of the degrees of the polynomials in F .
Moreover, this is precisely what our formalization in Theorema is exclusively
about; no connection to the actual algorithm is made there.

In order to derive bounds for DF , at the very beginning the case of arbitrary
term orders is reduced to the case of graded orders, i. e. orders where the �rst
criterion to determine which of two power-products is greater is their degree.
Knowing a bound for such orders one can easily derive a bound that holds for
any term order, if the ideal in question is 0-dimensional. For more details on
this we refer to [Buc83c]. Summarizing, from now on we assume that � is a
graded term order, which, furthermore, is the only case that is dealt with in our
formalization.

The �nal result about DF is summarized in the following

Theorem 5.1.3. For all non-empty �nite F ⊂ K[x, y] and all graded term orders
�: the Gröbner basis G computed by Algorithm 2 on input F w. r. t. � satis�es

maxdeg(G) ≤ 2 maxdeg(F ) (5.1)

where maxdeg(G) and maxdeg(F ) denote the maximum degrees of the leading
terms of the polynomials in G and F , respectively.

5.1.3 Proof Outline
We now describe the general strategy for proving Theorem 5.1.3 according to
Buchberger’s original papers. In our Theorema-formalization, we follow more
or less the same strategy (up to some minor deviations).

1. Exponent vectors. First of all, the problem of bounding the degrees of
polynomials is reduced from a commutative-algebra- to a combinatorial problem,
by mapping each non-zero polynomial to the exponent vector of its leading term
(w. r. t. the graded ordering �). This is justi�ed by the fact that in Algorithm 2
it is only the leading terms of polynomials that in�uence the behavior of the
algorithm and the contents of resulting Gröbner basis (e. g. when forming S-
polynomials). Exponent vectors are pairs of natural numbers, meaning that from
now on we work solely in the space N2, and no appeal to polynomials is made
any longer. This, in fact, is now precisely where the formalization in Theorema
starts: there, everything is concerned with exponent vectors (and sets thereof)
rather than polynomials. Since functions and predicates like lcm, deg, divisibility
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and ccritP, originally de�ned for power-products and polynomials, in fact only
depend on their arguments’ exponent vectors, the same functions and predicates,
by abuse of notation, will also be used for exponent vectors. For instance, if p
and q are two exponent vectors, then p p q holds i� pi ≤ qi for i = 1, 2, where pi
and qi refer to the i-th component of p and q, respectively.1

2. Loop invariant. For each non-empty �nite G ⊆ N2 (corresponding to the
current basis in Algorithm 2) the quantityMG+WG is shown to be some kind of
“loop invariant” of the main loop in the algorithm, in the sense that it does not
increase but might only decrease. MG and WG are de�ned as

MG := max{deg(lcm(a, b)) | a, b ∈ G ∧ ¬ccritP(a, b,G)} (5.2)
WG := min{e1 | e ∈ G}+ min{e2 | e ∈ G} (5.3)

and the goal of this second step is to show

MG′ +WG′ ≤MG +WG (5.4)

where G′ is obtained from G by adding a new exponent vector h, correspond-
ing to line 12 of Algorithm 2 where a new polynomial is added to the current
basis. Of course, h is not completely arbitrary but has some speci�c proper-
ties, like the very important deg(h) ≤ MG since � is graded and h corresponds
to a polynomial obtained by reducing the S-polynomial of two polynomials p
and q violating the chain criterion, meaning that by de�nition of MG we know
deg(sPoly(p, q)) ≤MG.

3. Maximum degree. For each non-empty �nite F ⊆ N2, maxdeg(F ) is
shown to be bounded from above by MF , i. e.

maxdeg(F ) ≤MF (5.5)

maxdeg(F ) is de�ned for sets of exponent vectors analogous to sets of polyno-
mials according to Theorem 5.1.3.

4. Degree bound. The quantity MF + WF that was shown not to increase in
the course of the algorithm in step 2 is now shown to be bounded from above by
2 maxdeg(F ), for all non-empty �nite F ⊆ N2, i. e.

MF +WF ≤ 2 maxdeg(F ) (5.6)
1Exponent vectors are tuples, hence the subscript-notation.
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As soon as all this is established, the whole elaboration is �nished, as we can
now conclude

maxdeg(G) ≤(5.5) MG ≤MG +WG ≤(∗) MF +WF ≤(5.6) 2 maxdeg(F )

where F is the set of exponent vectors corresponding to the input of Algorithm 2
and G to its output. (∗) is justi�ed by an inductive argument making use of
formula (5.4).

5.1.4 Improvements in the Formalization
As indicated already above, we were able to achieve some improvements in the
formalization in Theorema compared to the original elaboration of the theory
by Buchberger in the referenced literature. Before having a closer look at the
formalization in Section 5.2, we list and discuss the improvements below.

Grounddomain. By de�nition, exponents of power-products are non-negative
integers. Hence, it is only natural to carry out steps 2–4 of the general proof strat-
egy in the space N2, just as described in the previous subsection; this is exactly
how it is done in [BW79, Buc83c].

However, since absolutely no appeal to polynomials is made in these steps
and really everything happens in the “space of exponent vectors” N2, there is
nothing that hinders us from trying to generalize the ground domain from N to
wider classes of mathematical structures (even though this might not make sense
when going back to polynomials in the end). And indeed, a detailed analysis of
the proofs of the various formulas revealed that only quite a few properties of N
are actually needed, therefore allowing us to replace N by the much wider class
of so-called totally-ordered commutative monoids, de�ned as follows:

De�nition 5.1.4. (M,+,≤) is a totally-ordered commutative monoid i�

1. (M,+) is a cancellative commutative monoid,

2. (M,≤) is a total ordering, and

3. + is an order embedding (or monotonic) w. r. t. ≤ onM, in the sense

x ≤ y ⇒ x+ z ≤ y + z

for all x, y, z ∈M.

As can easily be seen, apart from N there are many other well-known math-
ematical structures that are totally-ordered commutative monoids, including Z,



108 5. Complexity Analysis of Buchberger’s Algorithm

Q, R, and C with any order relation that corresponds to a term order (e. g. lexi-
cographic). So, replacing N by totally-ordered commutative monoids really is a
massive generalization.

There is one important thing to note, though: apparently, totally-ordered
commutative monoids are not required to have a least element, or even to be
well-ordered by ≤. This might appear strange at �rst sight, since domains that
are not well-ordered make it impossible to draw any conclusions about the com-
plexity of Buchberger’s algorithm, even when knowing bounds on the degrees
of the polynomials in the �nal Gröbner basis. But keep in mind that steps 2–4
of Section 5.1.3 are only concerned with �nding exactly such degree bounds, but
not with the actual complexity of the algorithm. The degree bound 2 maxdeg(F )
is valid for all non-empty �nite F ⊂ M2 (ifM is a totally-ordered commuta-
tive monoid and a graded order onM2 is used), but deriving actual complexity
results, as it is done in Theorem 5.1.2, is indeed only possible if much stronger
constraints onM are imposed.

We �x now a totally-ordered commutative monoid (M,+,≤) that serves as
the ground domain in the remainder of this chapter. Also recall that k denotes
the number of indeterminates, i. e. the dimension of the exponent spaceMk.

Number of indeterminates. Although the main result, Theorem 5.1.3, is only
proved for the case of two indeterminates k = 2, or, in exponent vector parlance,
in the spaceM2, many intermediate results are stated and proved for arbitrary
k. This will certainly prove a huge bene�t if the complexity of Buchberger’s
algorithm in a higher number of indeterminates (e. g. in three indeterminates,
following [Win84]), or even arbitrarily many indeterminates, is investigated by
similar means in the future.

Cover of exponent space. The next improvement is a bit technical: in the
proof of Formula (5.4) various cases are distinguished depending on the relative
position of the new vector h in M2 w. r. t. the current set G. To this end, the
exponent spaceM2 (where the dimension k really must be 2 now) is partitioned
into several sets: in the original elaboration in [BW79] these sets are “above G”,
“below G”, “interior of G”, and “exterior of G”.2

In our formalization in Theorema, we consider a di�erent splitting of the
exponent space: “above G” (same as before), “rectangular region of G”, and “far
exterior of G” (again divided into two symmetric sets). This splitting only covers
the exponent space but does not partition it, since the set “above G” and the
rectangular region of G are not disjoint in general.

2Strictly speaking, the exterior is again divided into two sets that can be dealt with by sym-
metric arguments, though.
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Before we can give the exact de�nitions of the three cover-sets, we need some
auxiliary notions; therefore, let here and henceforth G be a non-empty �nite set
of exponent vectors:

• ccritP as de�ned above, with the slight modi�cation that it is now de�ned
for exponent vectors rather than polynomials.

• Function ·− : {1, 2} → {1, 2}, de�ned as 1− := 2, 2− := 1.

• Exponent vector L(G) denotes the least common multiple of all exponent
vectors in G.

• Exponent vector K(G) denotes the greatest common divisor of all expo-
nent vectors in G (such that WA = deg(K(G))).

With these auxiliary notions, the three sets (or, more precisely, predicates) cov-
ering the exponent spaceM2 are de�ned according to

De�nition 5.1.5 (Cover of Exponent Space). Let G be a non-empty �nite set of
exponent vectors inM2. Then

isAboveG(x) :⇔ ∃
g∈G

g p x

inRectangleG(x) :⇔ x p L(G)

inFarExteriorG,i(x) :⇔ xi < K(G)i ∧ xi− > L(G)i−

As can easily be veri�ed, every x ∈ M2 satis�es at least one of isAboveG,
inRectangleG or inFarExteriorG,i for i = 1 or i = 2, justifying our claim that
the predicates really cover the whole exponent space. Figure 5.1 illustrates the
newly introduced notions in N2 (isAboveG is not explicitly shown, but it is just
the whole region “above” the staircase).

The reason for this deviation from the literature is the following: the new
rectangular region of G comprises the whole set “below G”, the interior of G
and parts of the exterior of G from the original partition. Hence, what have
previously been three cases is now only one single case that, furthermore, can
be dealt with by an elegant argument that in fact proves the much stronger claim
MG′ ≤MG for h lying in the rectangular region of G; see below.

Simpli�cation of proof of (5.4). The proof ofMG′+WG′ ≤MG+WG, where
G′ = G ∪ {h} for the h computed in Line 9 of Algorithm 2 (or, more, precisely,
its corresponding exponent vector), proceeds by distinguishing two cases based
on whether h lies in the rectangular region of G or in the far exterior of G; the
third possibility, isAboveG(h), cannot happen for otherwise h would be further
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MGWG

K(G)

L(G)

inRectangleG
inFarExteriorG,·

Elements of G
lcms of elements of G
violating ccritP

Figure 5.1: Cover of the exponent space N2 w. r. t. some set G.

reducible modulo G. Moreover, from the construction of h we can immediately
infer deg(h) ≤MG, too.

Let us consider the case inRectangleG(h) now: in that case it turns out that
not only MG′ + WG′ ≤ MG + WG, but even MG′ ≤ MG; WG′ ≤ WG is obvious
anyway. This claim is nowhere stated explicitly in the literature, hence we state
and prove it here.

Theorem 5.1.6. Let G ⊆ M2 be non-empty and �nite, and let h ∈ M2 be such
that inRectangleG(h) and deg(h) ≤ MG hold. Then MG′ ≤ MG, where G′ =
G ∪ {h}.

Proof. Let G ⊆ M2 be an arbitrary but �xed non-empty �nite set of exponent
vectors, and let h ∈M2 be an arbitrary but �xed exponent vector satisfying

deg(h) ≤MG (A.1)

inRectangleG(h) (A.2)
We have to show MG′ ≤MG, which is accomplished by showing

deg(lcm(a, h)) ≤MG
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for every element a ∈ G such that ccritP(a, h,G) does not hold (follows readily
from the de�nition of M in (5.2)). Hence, we choose some a. b. f. a ∈ G, assume

¬ccritP(a, h,G) (A.3)

and show
deg(lcm(a, h)) ≤MG (G.1)

Now we distinguish four cases, based on the relative positions of a and h inM2.
Case I: h1 ≤ a1 and h2 ≤ a2.

In this case we obviously have lcm(a, h) = a and hence also deg(lcm(a, h)) =
deg(a) ≤ maxdeg(G). Together with (5.5) we get the desired result.

Case II: a1 ≤ h1 and a2 ≤ h2.
In this case we obviously have lcm(a, h) = h and hence also deg(lcm(a, h)) =
deg(h). Together with assumption (A.1) we get the desired result.

Case III: a1 < h1 and h2 < a2.
In order to prove (G.1) it su�ces to �nd an element b with

deg(lcm(a, h)) ≤ deg(lcm(a, b)) (G.2)

¬ccritP(a, b,G) (G.3)

Let C := {c |
c∈G

h1 ≤ c1}. C is �nite, and because of assumption (A.2) it is also

non-empty, meaning that it contains an element b such that b1 is minimal among
all c1 for c ∈ C (c. f. Figure 5.2). Of course, in general such a b might not be
unique, but this does not matter.

a

h

b

Figure 5.2: The relative positions of a, b and h. No element of G lies in the shaded
region.
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We claim that b witnesses (G.2) and (G.3). (G.2) is trivially witnessed by b,
since

deg(lcm(a, h)) =
case assumption

h1 + a2 ≤

≤
h1≤b1

b1 + a2 ≤

≤ deg(lcm(a, b))

For proving (G.3) we again distinguish two cases.
Case III.A: a2 ≤ b2.

In this case we have a p b, and therefore ccritP(a, b,G) certainly does not hold
(as always if one vector divides the other, as can easily be veri�ed).

Case III.B: b2 < a2.
According to the de�nition of ccritP in De�nition 5.1.1, we have to prove that
there does not exist g ∈ G with

g p 〈b1, a2〉 (G.4)

deg(lcm(a, g)) < b1 + a2 (G.5)

deg(lcm(b, g)) < b1 + a2 (G.6)

We assume the opposite, i. e. we assume that there exists some g with all these
properties. In fact, as one can easily prove, (G.4), (G.5) and (G.6) can only be
satis�ed if g ful�lls

g1 < b1 (A.4)

g2 < a2 (A.5)

(A.4) together with the minimality of b1 now implies

g1 < h1 (A.6)

Figure 5.3 illustrates the possible positions of g.
However, the existence of g satisfying both (A.5) and (A.6) contradicts (A.3),

as can be seen easily.
Case IV: h1 < a1 and a2 < h2. Analogous to Case III.

Simpli�cation of proof of (5.6). Originally, [Buc83c] proves Formula (5.6)
by �rst reducing the case of arbitrary sets F to the case of so-called contours
and then proving the formula only for contours. The latter part is easy, but the
reduction of arbitrary sets to contours is very cumbersome and involves many
tedious case distinctions, making up in total eleven pages of the paper. However,
a close investigation revealed that all this cumbersome reduction to contours is
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a

h

b

a

h

b

Figure 5.3: The blue-shaded region is where g might lie, before (left) and after (right)
taking into account the minimality of b1.

not needed at all, since the proof of the second part given for the case of contours
works more or less in exactly the same way for any set of exponent vectors. Since
it is really short, we spell out the proof in full detail:

Proof of (5.6). Choose non-empty �nite F ⊆M2 arbitrary but �xed, whereM is
a totally-ordered commutative monoid. Recall the de�nitions of L(F ) andK(F )
as the least common multiple and greatest common divisor of all elements in F ,
respectively. Hence,

L(F )i := max{ei | e ∈ F}
K(F )i := min{ei | e ∈ F}

for i = 1, 2. We apparently have WF = deg(K(F )); moreover, since MF is the
maximum degree of the least common multiples of some exponent vectors in F ,
it can certainly be bounded from above by deg(L(F )). Thus:

MF +WF = MF + deg(K(F )) ≤ deg(L(F )) + deg(K(F )) =

= (L(F )1 +K(F )2) + (L(F )2 +K(F )1)

We show that both summands on the right-hand-side of the last equality can
be bounded from above by maxdeg(F ), which �nishes the proof. W. l. o. g. we
only consider the �rst summand L(F )1 + K(F )2; the other one can be treated
analogously. Since L(F )1 is the maximum �rst component of all vectors in F ,
there must be some vector e ∈ F with e1 = L(F )1. By de�nition of K(F ),
the second component of e, e2, must be at least as big as K(F )2, allowing us to
conclude

L(F )1 +K(F )2 = e1 +K(F )2 ≤ e1 + e2 = deg(e) ≤ maxdeg(F )
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5.2 Formalization in Theorema
We now discuss the formalization of the complexity analysis of Buchberger’s
algorithm in Theorema. Of course, this formalization parallels the one of re-
duction ring theory in many respects, but there are still some di�erences that
must be pointed at explicitly; note, in particular, that the complexity analysis
was dealt with before reduction ring theory. In fact, the most apparent di�erence
between the two formalizations concerns their overall structure: whereas reduc-
tion ring theory is split across 15 sub-theories in total, the complexity analysis
is altogether contained in a single Theorema theory, i. e. Theorema notebook,
called Complexity.nb. The reason for this is quite simple: because of the rela-
tively small size of the formalization (see below), there was no need to split it
into sub-theories.

The Theorema-formalization of the complexity analysis consists in total of
292 formulas, 230 of which have been proved semi-automatically in Theorema
using the special prover described in Section 5.3. The remaining 62 formulas are
axioms and de�nitions that do not require any kind of proofs (including well-
de�nedness proofs) at all. Table 5.1 lists the numbers of axioms/de�nitions and
theorems in more detail. The average size of proofs in terms of the number of
inference steps is 40.3, and the largest proof in the formalization requires 285
steps.

Axioms Theorems Total
Basic notions 37 70 107
Speci�c notions 25 160 185
Total 62 230 292

Table 5.1: Size of the formalization in terms of the numbers of formulas.

When comparing the sizes of the two formalizations of reduction ring theory
and the complexity analysis one must be careful, though: the proofs of the former
were carried out mostly fully interactively, whereas the proofs of the latter were
carried out (semi-) automatically, with much less user interaction. This, however,
does not mean that more sophisticated and powerful automatic proving facilities
were at our disposal for the complexity analysis, but only that we had to divide
complicated theorems into lots of simple lemmas that could be proved automat-
ically; moreover, proofs of course tend to be longer when created automatically,
because an experienced human operator guiding the proof search usually has
some intuition about how to construct the proof in the best, i. e. shortest way.
See also Section 7.1 for a discussion of automatic- versus interactive proof devel-
opment.



5.2. Formalization in Theorema 115

Before we �nally have a closer look at the individual parts of the formaliza-
tion, we list some design decisions and deviations from what is presented in the
previous section:

• Similar as in theory Polynomials.nb, the whole formalization is only con-
cerned with an arbitrary but �xed totally-ordered commutative monoid
D as the underlying domain of discourse.3 Furthermore, the dimension is
�xed to the arbitrary but �xed constant k as well; results holding only in
the two-dimensional case are proved with k = 2 among the assumptions.

• Tuples are used instead of sets throughout the whole formalization; sets
do not appear at all. Note that all sets mentioned in the previous section
have to be �nite anyway (e. g. sets of exponent vectors), justifying their
replacement by (�nite!) tuples.

• The negated version of the chain criterion, as given in De�nition 5.1.1, is
used. This does not have any deeper reason, except that in most of the
lemmas and theorems one has to assume that a pair of basis elements can-
not be ruled out by the chain criterion, i. e. that it does not hold, and hence
negating it in the �rst place slightly simpli�es such assumptions.

Moreover, it is important to note that in contrast to the formal treatment
of reduction ring theory, Z and intervals thereof are not interpreted as sets but
rather as domains in the present formalization, meaning that ∈

Z
[x] replaces x ∈

Z, x+
Z
y replaces x+ y and x ≤

Z
y replaces x ≤ y.

We now describe the coarse structure of our formalization in Theorema.

5.2.1 Basic Notions
Complexity.nb begins with the de�nitions of various basic notions the complex-
ity analysis builds upon. These include tuples, + and ≤ on Z (needed because
tuples are indexed by natural numbers), and of course the class of totally-ordered
commutative monoids (called isTOM), according to De�nition 5.1.4. Note that in
total only twelve basic properties of tuples and integers are required, e. g. what
it means for two tuples to be equal, how the append-function is de�ned, that Z
itself constitutes a totally-ordered commutative monoid, and that ≤ is a discrete
order relation on Z. These properties are not proved, though, but just stated as
axioms.

3In the formalization this domain is actually just called D, but following our convention of
denoting domains by calligraphic characters and adding over-bars to a. b. f. constants we write
D here.
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In addition, the crucial notions of minimum (min) and maximum (max) of a
tuple of elements in an ordered domain are introduced. They are de�ned as do-
main functions of an underlying domain D in terms of the argmin and argmax
binders, respectively; for given D, ≤

D
is taken as the order relation min

D
and max

D
depend upon. Please note that the semantics of argmin and argmax is not de-
�ned by means of formulas, but solely on the inference level by two rules of
the special prover described in Section 5.3.5. argmin and argmax are variable
binders, necessitating the availability of higher-order rewriting if they are to be
de�ned as mere object-level formulas; higher-order rewriting as described in Sec-
tion 6.1, however, has not been implemented in Theorema at that time yet.

Afterward, a couple of more or less obvious lemmas about the previously
introduced notions are proved. Most of them are concerned with properties of
the order relation in totally-ordered commutative monoids (e. g. monotonicity
properties) and properties of min and max, also in totally-ordered commutative
monoids. Although the domain of exponents is �xed to D, all these results are
stated and proved for all totally-ordered commutative monoids, because in ad-
dition to D, Z forms such a structure as well and the results can be thus be used
for D and Z alike.

Two of the crucial properties of min (and max) that are proved in Complex-
ity.nb are the following:

∀
isTOM[M]

∀
∈
M
[x]

∀
∈

DomainTuples[M]
[A]

1 ≤
Z
|A| ⇒

min
M

[Ax x] = min
M

[〈min
M

[A], x〉] (minx)

min
M

[A] +
M
x = min

M
[〈Ai +

M
x |
i=1,...,|A|

〉] (min+)

Remark 17. Clearly, most of the basic notions and proved properties thereof are
contained in the elementary theories compiled in the frame of our formalization
of reduction ring theory. The only reason why Complexity.nb starts from scratch
and does not make use of these elementary theories is that the complexity anal-
ysis was formalized before reduction ring theory, at a time when they have not
been available yet. In fact, the two formalizations are completely independent of
each other.
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5.2.2 Speci�c Notions
After having introduced general-purpose notions the complexity analysis builds
upon, now speci�c notions directly related to it are introduced, all of them being
de�ned in terms of the arbitrary but �xed constants D and k. For instance, the
unary predicate isExponentVector expressing that its argument is an expo-
nent vector, i. e. an element of Dk, is simply de�ned as

∀
x

isExponentVector[x] :⇔
∧{ ∈

DomainTuples[D]
[x]

|x| = k
(isExponentVector)

Apart from exponent vectors and tuples thereof (characterized by the unary
predicate isExpVectorTuple), also divisibility, degrees and least common mul-
tiples of exponent vectors are de�ned in a straight-forward manner. Then, the
chain criterion (or, more precisely, its negation) is introduced for two exponent
vectors w. r. t. a tuple thereof; it is called chainCrit in the formalization but
referred to as chainCritP here in order not to confuse it with the analogous
predicate in theory GroebnerRings.nb of reduction ring theory.

Finally, maxdeg, M, W, L and the three predicates isAbove, inRectangle
and inFarExterior are introduced. Their de�nitions are exactly as in Sec-
tion 5.1, except that the tuple of exponent vectors these notions depend upon
is not denoted by a subscript, but just passed as an additional argument: M[A]
instead of MA and inFarExterior[x,A, i] instead of inFarExteriorA,i[x].
For instance, the de�nition of M in Complexity.nb is

∀
A, x

M[A] := max
D

[〈M[Ai, A] |
i=1,...,|A|

〉] (M)

M[x,A] :=
max
D

[〈deg[lcm[x,Ai]] |
i=1,...,|A|

chainCritP[x,Ai, A]〉] (M 2)

where once again one must recall that chainCritP[x, y, A] holds i� the reduc-
tion of the S-polynomial corresponding to the pair x and y cannot be avoided. As
can be seen, M also takes the degrees of the least common multiples of pairs of
identical elements, i. e. deg[lcm[Ai, Ai]], into account (because chainCritP
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always trivially holds for such pairs). This might appear a bit strange at �rst
sight, because Algorithm 2 never considers pairs of identical elements, as their
S-polynomial is known to be 0 anyway. However, the de�nition of M as given
above is justi�ed by the fact that identical pairs do not matter at all—the resulting
value is always the same regardless of whether identical pairs are considered or
not. The proof of this claim is part of our formalization.

5.2.3 Main Results
At the end, Complexity.nb states and proves all the main results needed in the
derivation and proof of the degree bound presented in Theorem 5.1.3, closely
following the overall proof outline according to Section 5.1.3 and incorporating
the improvements listed in Section 5.1.4. Some results are proved in arbitrary
dimension, without any conditions imposed on k (apart from being a natural
number, of course), others are constrained by k = 2.

We now list some interesting auxiliary lemmas that are stated and proved
in our formalization but have not been mentioned yet. In each of the formulas
below, the universally quanti�ed variableA ranges over all non-empty exponent
vectors. This fact is not made explicit in the formulas for the sake of brevity.

General bound of M[A x x]. The following formula is essential for our
formal proof of Theorem 5.1.6. It is valid in all dimensions:

∀
isExponentVector[x]

M[Ax x] ≤
D

max
D

[〈M[A], M[x,A], deg[x]〉] (Mx)

Bounding M[A x x] + xk if x is in far exterior. The following formula is
needed for proving (5.4). Apparently, it only holds in the two-dimensional case:

k = 2 ⇒
∀

i=1,...,2
∀

ixExpVector[x]

deg[x] ≤
D

M[A] ∧ inFarExterior[x,A, i] ⇒

M[Ax x] +
D
xi ≤
D

M[A] +
D

K[A]i (Mx far exterior)
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Final result. The �nal result of our formalization is

k = 2 ⇒
∀

isExpVectorTuple[F,G]

1 ≤
Z
|F | ∧ 1 ≤

Z
|G| ∧ 0

D
≤
D

W[G] ∧ M[G] +
D

W[G] ≤
D

M[F] +
D

W[F] ⇒

maxdeg[G] ≤
D

maxdeg[F] +
D

maxdeg[F] (main theorem)

Apparently, Formula (main theorem) is not exactly what Theorem 5.1.3 states;
in particular, no appeal to Algorithm 2 is made. It should be clear, however, that
the outputG of Algorithm 2 on non-empty input F satis�es all the requirements
of (main theorem), at least if D is restricted to N0: it is non-empty, W[G] is an
element of D = N0 and hence non-negative, and M[G] +

D
W[G] being bounded

from above by M[F] +
D

W[F] can be inferred by an inductive argument: when-
ever the current basis G is updated in Line 12 of Algorithm 2 by adding a new
element, the quantity M[G] +

D
W[G] does not increase thanks to the inductive

assertion (5.4).

5.3 ComplexityProver
Just as in the formal development of reduction ring theory, we also designed and
implemented a special Theorema prover, called ComplexityProver, for the veri�-
cation of the complexity analysis described in the previous sections. Clearly, the
main intentions and ideas behind the ComplexityProver are absolutely the same
as for the ReductionRingProver: knowledge about basic mathematical concepts
is “lifted” to the inference level in order to e�ectively and e�ciently reason about
them; no appeal to notions directly related to the complexity analysis, like the
chain criterion, is made.

Nonetheless, there are some di�erences between the two special provers, too.
For one thing, the ComplexityProver does not employ any of the general predi-
cate logic rules from the RewriteInteractiveProver but instead implements such
rules itself, the reason for this being the same as the reason for not making use
of the elementary theories: the ComplexityProver was implemented long before
the RewriteInteractiveProver. However, since the rules themselves are almost
identical anyway, and in fact quite some ideas originally developed for the Com-
plexityProver were later transferred to the RewriteInteractiveProver and are thus
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discussed in Section 6.2, we only sketch the special rules in this section.
A second aspect the two provers di�er in is the number of special rules: in

total, the ComplexityProver consists of 29 special rules, compared to only eleven
of the ReductionRingProver. The reason for this is twofold: �rst, using an au-
tomatic rather than an interactive proving strategy necessitated inference rules
applicable only in quite speci�c proof situations, in order not to needlessly blow
up the search space, and second, each identity involving binders (like logical
quanti�ers and tuple abstractions) had to be phrased as a separate special infer-
ence rule, because the higher-order rewriting mechanism (see Section 6.1) that
would have enabled stating it as an object-level formula and then applying it by
general-purpose rewriting techniques has not been available at that time yet. In
contrast, the formal veri�cation of reduction ring theory heavily relies on higher-
order rewriting, keeping the number of special rules of the ReductionRingProver
comparatively small.

We now brie�y sketch the �ve categories of special rules of the Complexi-
tyProver.

5.3.1 Integers
Two rules take care of unfolding the de�nition of integer intervals, one for for-
mulas in the knowledge base of a proof situation and one for its goal. In more
concrete terms, propositions of the form ∈

Za,...,b

[x], where a 6= −∞ or b 6=∞, are

simply rewritten into the conjunction ∈
Z
[x]∧a ≤

Z
x∧x ≤

Z
b. Although the same

e�ect could also easily be achieved by stating the de�nition of integer intervals
as an ordinary (�rst-order) formula and applying it as an equational rewrite-rule
by the standard �rst-order rewriting-mechanism of Theorema, we decided to
include the two special rules for the following reason: usually, unfolding de�-
nitions in a proof should somehow be the last resort, when nothing else can be
done. In our setting, though, we quickly realized that integer intervals deviate
from this rule of thumb, in that for an e�cient automatic proof generation the
de�nition of integer intervals shall ideally be unfolded instantly, hence requiring
separate rules independent of the default ones for unfolding de�nitions.

5.3.2 Tuples
This category consists of eleven rules incorporating knowledge about tuples and
operations on tuples. As for the two integer rules, some of the tuple rules could
in principle be simulated by object-level formulas in conjunction with �rst-order
rewriting as well; others, however, deal with tuple abstractions (“TupleOf”) and
hence would require higher-order rewriting when stated as mere formulas. Ex-
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amples of the latter are listed below. To that end, letT abbreviate 〈t(i) |
i=a,...,b

ϕ(i)〉,

where t(i) and ϕ(i) indicate that the term t and the formula ϕ both may depend
on the bound variable i.

K ` isTuple[T] K ` ∃
i=a,...,b

ϕ(i)

K ` 1 ≤
Z
|T |

(nonemptyTupleOf)

K ` ∈
Z
[a] K ` ∈

Z
[b]

K ` isTuple[T]
(isTupleTupleOf)

K ` isTuple[T] K ` ∃
i=a,...,b

ϕ(i) ∧ ψ(t(i))

K ` ∃
j=1,...,|T |

ψ(Tj)
(existsTupleOfGoal)

K ` isTuple[A] K, isTuple[A], ∀
i=1,...,|A|

ψ(Ai), ψ(x) ` Γ

K, ∀
j=1,...,|Axx|

ψ((Ax x)j) ` Γ
(forallKBAppend)

Remark 18. Note that below the line of the inference in (existsTupleOfGoal) and
(forallKBAppend) it is of utmost importance that the bound variable j must only
occur as the subscript of T and Ax x, respectively, in the formula ψ.

5.3.3 Addition
Two special inference rules take care of the various algebraic properties (asso-
ciativity, cancellativity, etc.) of the monoid operation + in totally-ordered com-
mutative monoids, one for formulas in the knowledge base of a proof situation
and one for its goal. More precisely: if isTOM[M] is known for some domain
M and a proposition of the form x1 +

M
x2 +
M
. . .+
M
xm ∼ y1 +

M
y2 +
M
. . .+
M
yn appears

in the current proof situation, where ∼ is one of =, ≤
M

or <
M

and the two sides of
the relation might be grouped arbitrarily, all common terms appearing on either
of the two sides are canceled. Of course, �rst the membership of all the xi and yi
in the domainM has to be checked.

5.3.4 Order Relations
This category consists of seven rules handling the order relations ≤

M
and <

M
in

totally-ordered commutative monoidsM, exploiting re�exivity, totality and tran-
sitivity, as well as monotonicity of +

M
. All this happens in the same spirit as in
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the ordering rules of the ReductionRingProver, so we omit the details here; only
note that in order for the rules to be applicable it su�ces if isTOM[M] is known
instead of isTotalIrreflOrder[ <,M] etc.

5.3.5 Minimum and Maximum
The seven remaining rules are concerned with the minimum and maximum of
tuples of elements in some totally-ordered commutative monoid M. Two of
them, however, in fact give semantics to the argmin and argmax quanti�ers: for
instance, every occurrence of argminM

x=a,...,b

ϕ(x)

t(x) in a proof situation is replaced by a

fresh arbitrary but �xed constant x satisfying ∀
y=a,...,b

(
ϕ(y)⇒ t(x) ≤

M
t(y)

)
, at

least provided that the range of the argmin-binder is non-empty and �nite, and
all the t(x) are elements ofM.

The other rules are all derived from simple equalities and equivalences in-
volving min

M
, max
M

and the order relations ≤
M

and <
M

, for instance

K ` ∈
DomainTuples[M]

[S] K ` ∃
i=1,...,|S|

Si ≺ x

K ` min
M

[S] ≺ x
(minGoalLeft)

and
K ` ∈

DomainTuples[M]
[S] K, ∀

i=1,...,|S|
Si ≺ x ` Γ

K, max
M

[S] ≺ x ` Γ
(maxKBLeft)

where ≺ is one of ≤
M

or <
M

and K contains isTOM[M].



Chapter 6

Contributions to Theorema

This chapter contains the descriptions of four Theorema tools developed in the
frame of our formalization of reduction ring theory. Still, all of them are com-
pletely independent of both the formalization and the ReductionRingProver, and
hence bear the prospect of aiding explorations of all kinds of mathematical the-
ories in Theorema in the future. In fact, the four tools are essentially inde-
pendent of each other as well, although the higher-order rewriting mechanism,
the RewriteInteractiveProver and the interactive proof strategy were designed in
such a way that they �t together perfectly.

Each of the four tools is implemented in the Mathematica programming lan-
guage and distributed as a Mathematica package, meaning that it can easily be
loaded into a Theorema session when needed. Since the tools were, of course,
heavily made use of in the formal treatment of reduction ring theory and proved
extremely helpful in many situations, they are intended to be integrated into the
o�cial version of Theorema in the future—at present, they are still stand-alone
packages.

Parts of this chapter are also contained in [Mal16a].

6.1 Higher-Order Rewriting
The driving engine behind computations in Mathematica and Theorema alike
is rewriting: expressions are transformed (ideally to “simpler” expressions) by
repeatedly replacing sub-expressions according to a set of rewrite rules. For in-
stance, Theorema itself is basically implemented as a large collection of Mathe-
matica rewrite rules.

Within Theorema, rewriting plays an essential role not only in computations,
but also in proofs [BDJ+00]. To that end, formulas appearing among the as-
sumptions of a proof situation are translated into one or more rewrite rules, rep-

123
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Theorema formula

Rewrite-rules

Mathematica transformation rules

Theorema formulas

Extract

Generate

Rewrite

Figure 6.1: Overview of rewriting in Theorema.

resented as plain Mathematica transformation rules (RuleDelayed, :>), which
may then be employed for equational-, forward- and backward rewriting of other
formulas, see Figure 6.1 for an overview of this process and [Win13] for de-
tails. This approach, pursued also in other proof assistants, enables e�cient and
“natural-style” proving and as such constitutes an integral component of the The-
orema system.

Although the whole mechanism of translating assumptions into rewrite rules
and then applying these rules already works quite well, it is constrained by
one major limitation: Mathematica only supports syntactic pattern matching
and hence �rst-order rewriting; variables are not automatically instantiated by
functions, e. g. λ-abstractions, or, in Mathematica parlance, by Function[ . . . ]-
expressions during the matching phase, just in order to match the given expres-
sion modulo αβη-equivalence. To illustrate this, consider the following illumi-
nating example of an equivalence in set theory:

∀
P, A, a

a ∈ {x |
x∈A

P[x]} ⇔ (a ∈ A ∧ P[a]) (membership abstraction term II )

where P is apparently a higher-order variable, since it is applied to arguments.
Formula (membership abstraction term II), if used as a rewrite rule from left to
right, can be applied to, say, {x |

x∈Z
x2 < 90} if higher-order rewriting is em-
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ployed (with P instantiated by λ
y
y2 < 90), but not in connection with �rst-order

rewriting and hence purely syntactic matching.
The limitations of �rst-order rewriting, unfortunately, turned out to be quite

inconvenient for computer-assisted theory exploration, as lots of formulas one
typically encounters in mathematics are actually higher-order: the most well-
known examples are perhaps induction rules (natural induction, well-founded
induction, etc.), but also the two higher-order formulas subsuming the axiom
schemas of replacement and separation in Zermelo-Fraenkel set theory are worth
being mentioned. Since all of these examples, together with many other higher-
order formulas, feature a prominent role in our formalization of reduction ring
theory, we decided to enhance the default �rst-order rewriting mechanism of
Theorema and also implement a higher-order rewriting mechanism for e�ciently
handling higher-order formulas in proofs. This mechanism, basically consisting
of a compiler for translating (�rst- or higher-order) rewrite-rules into Mathe-
matica transformation rules (corresponding to the second step in Figure 6.1), is
described in detail in the remainder of this section.

Before, however, we address some questions of theoretical nature arising in
higher-order logic, in particular in higher-order matching (as this is the most
di�cult and thus interesting aspect of our rewriting mechanism). Already back
in 1982, Goldfarb [Gol82] proved that higher-order uni�cation, and even only
second-order uni�cation, is undecidable in general. Higher-order matching in
a simply-typed environment is known to be decidable for orders two [Hue76],
three [Dow93] and four [Pad96], and under certain conditions on the types in-
volved was shown to be decidable a couple of years ago for arbitrary order
[Sti09]—in the most general setting, however, no de�nite decidability results are
known. The complexity of second-, third- and fourth-order matching is discussed
in [Wie99]; in any case, it is at least NP-hard in general.

All this indicates that we had to make concessions when implementing the
rewrite-rule compiler, i. e. especially the part responsible for matching. As can
be seen below, the resulting algorithm is highly incomplete in the precise sense
that the Mathematica transformation rules generated do not fully re�ect the
higher-order nature of the rewrite-rules they originate from, meaning that in
practice they might not be applicable to expressions the corresponding rewrite-
rules would in fact be applicable to in theory. Furthermore, one must note that
the current implementation of our mechanism is still quite preliminary: although
it has already been extensively tested, no formal or informal proofs of its correct-
ness (or completeness) have been carried out yet. A detailed analysis of the theo-
retical foundations of, and ideas behind, our higher-order rewriting mechanism
in the future would certainly put the implementation on more solid grounds.

However, one might also argue that establishing the correctness of the imple-
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mentation is strictly speaking not necessary: whenever an automatically gener-
ated Mathematica transformation rule r is used to rewrite a concrete expression
e into e′, it is easily possible to check whether the rewrite is justi�ed by the
formula ϕ the rule r originates from: simply instantiate ϕ by the substitution
that matches the left-hand-side of r with e and then check whether e is indeed
identical to the part of ϕ corresponding to the left-hand-side of r and e′ to the
part corresponding to its right-hand-side. In that sense, applying transformation
rules only yields candidate rewrites that still have to pass (automatic) “security
checks”. Such checks can easily be implemented, are very cheap from the e�-
ciency point of view, and are in fact work in progress.

Remark 19. Although Theorema does not support higher-order rewriting by de-
fault, this does not mean that higher-order formulas cannot be dealt with at all,
but it only means that purely syntactic pattern matching, without any kind of
αβη-equivalence, is employed, signi�cantly restricting the set of rewritable ex-
pressions.

6.1.1 Notation and Terminology
In the sequel we assume that we are given a rewrite rule originating from a
Theorema formula; we are not interested in how the rule was extracted from
the formula and whether it corresponds to an equality, and equivalence or an
implication.

Throughout this section, rewrite rules are denoted as r : L 7→ R, where
r serves as an (optional) identi�er, L is the left-hand-side of the rule, and R is
its right-hand-side. Both L and R may contain free variables, originally bound
by universal quanti�ers in the corresponding formula that have already been
stripped away; of course, as always in this context, a general constraint imposed
on rewrite rules is that every free variable occurring in R must also occur in L.

Remark 20. In practice, the applicability of a rewrite rule r may be constrained
by an additional condition ϕ. In this section, however, we ignore this fact en-
tirely, as such side-conditions do not cause any speci�c di�culties when turning
higher-order rules into Mathematica transformation rules at all. How to e�-
ciently handle side-conditions when applying rewrite rules, and whether the re-
sulting rewrite-systems are terminating and/or con�uent, are interesting ques-
tions in their own right, but not discussed here.

An important question concerns the distinction between �rst- and higher-
order variables in a rule r: recall that Theorema is untyped, meaning that ex-
pressions, and in particular variables, do not have any type information attached
to them that would allow characterizing higher-order variables as variables of



6.1. Higher-Order Rewriting 127

some function type. Instead, in the present framework we simply regard a vari-
able F higher-order i� at least one of its occurrences in the given rule, no mat-
ter whether in L or R, is the head of a sub-expression, i. e. an expression of the
form F[x1, . . . , xn]; all other variables are regarded �rst-order. In the context of
rewriting, however, it is important to note that for bound variables it is absolutely
irrelevant whether they are �rst- or higher-order: the matching algorithm treats
bound variables always in exactly the same way, as they can only be renamed to
other bound variables anyway, for α-equivalence. Furthermore, it must be noted
that in an untyped language β-reduction is not strictly normalizing; how this
problem is dealt with in our setting is explained a bit later, in Section 6.1.4.

In the sequel we adhere to the following naming conventions of variables in
rewrite rules: free higher-order variables have upper-case names and are printed
in italics, free �rst-order variables, as well as all bound variables, have lower-case
names and are printed in italics, too, and constants are printed in typewriter-font,
as usual.

Example 3. In the rule a ∈ {x |
x∈b
P[x]} 7→ a ∈ b∧P[a], a and b are free �rst-

order variables, P is a free higher-order variable, and x is a bound (�rst-order)
variable. �

We assume familiarity with the main concepts of λ-calculus, in particular
with αη-equivalence, denoted by ', and β-reduction, denoted by→β . Two ex-
pressions e1 and e2 are said to be αβη-equivalent to each other i� there exist
expressions e′1 and e′2 such that e1 →∗β e′1, e2 →∗β e′2 and e′1 ' e′2.

The rewrite-rule compiler, described in the next subsection, partitions the
free higher-order variables of a rewrite-rule r into two sets. Variables belonging
to the �rst set, although being higher-order, are nevertheless treated just like
ordinary �rst-order variables: they have to be matched syntactically (or, more
precisely, only modulo α- but not β-equivalence) by the concrete expressions to
be rewritten; these variables are called rigid. On the other hand, free higher-order
variables belonging to the second set are really treated as higher-order variables
when applying a rule r, i. e. they are automatically tried to be instantiated by
suitable λ-terms that �nally give rise to a match modulo αβ-equivalence; these
variables are referred to as �exible. Whether a variable is rigid or �exible in r is
no intrinsic property of r but solely determined and taken into account by the
compiler, for reasons explained below.

6.1.2 The Rewrite-Rule Compiler: Overview
The rewrite-rule compiler constitutes the core component of the higher-order
rewriting mechanism. It takes a (not necessarily higher-order) rewrite-rule r
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as input and translates it into an ordinary Mathematica transformation rule, i. e.
RuleDelayed-expression, that can then be applied to expressions by the stan-
dard Mathematica rule application functions, e. g. Replace, ReplaceList, etc.,
relying on the standard Mathematica pattern-matching and instantiation facili-
ties. Since Mathematica by default only supports �rst-order, syntactic pattern-
matching, all the functionality needed for higher-order matching, like αβη-equi-
valence, explicitly has to be “attached” to the generated transformation rules,
thus simulating higher-order- by �rst-order rewriting.
Example 4. Consider the higher-order rewrite-rule( ∑

i=1,...,n+1

F[i]

)
−

( ∑
i=1,...,n

F[i]

)
7→ F[n+ 1]

Ignoring syntactical details of the internal representation of Theorema expres-
sions and subtleties related to capture-avoiding substitutions, and not taking into
account any code optimizations performed by default either, the Mathematica
transformation rule returned by the compiler reads as something like

Sum[{i1_, 1, n_+1}, F1_] - Sum[{i2_, 1, n_}, F2_] :>
substFree[ F1, {i1 -> n + 1}] /;

alphaEquiv[ substFree[ F1, {i1 -> i2}], F2]

As can be seen, F is actually never instantiated by a λ-term, but rather the in-
stance of the right-hand-side of the rule is constructed by directly substituting
for the bound variable i in the instance of the �rst sum-term. �

One of the main design goals in the development of the whole rewriting
mechanism was to pre-compute as much as possible already when generating
the Mathematica transformation rules at compile-time, in order to increase the
e�ciency of applying them at run-time. This lead to quite a lot of performance
optimizations, e. g. in connection with the names of bound variables and substi-
tutions, that are presented in Section 6.1.5. The price of a slightly more involved,
and hence less e�cient, compiler is de�nitely worth the reward of being able to
apply the resulting rules e�ciently later on.

6.1.3 Pre-Processing
Consider a rewrite-rule r : L 7→ R. In a very �rst pre-processing step, the
compiler somehow “normalizes” the rule by introducing a unique name for each
bound variable and by ensuring that every occurrence of any free higher-order
variable in r is applied to the same number of arguments. If this is not the case, it
can always be achieved by �rst determining the maximum number of arguments
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for each free higher-order variable and then adding further variables bound by
new λ-abstractions at the end of all argument-lists with fewer elements. Here
it is important to note that curried expressions whose head is a free variable are
un-curried �rst.
Example 5. Pre-processing the (nonsense) rule F[1, 2] + F[a] 7→ F yields
the η-equivalent rule F[1, 2] + λ

x
F[a, x] 7→ λ

x,y
F[x, y]. The same result is

obtained when pre-processing F[1][2]+F[a] 7→ F , because the curried term
F[1][2] is un-curried to F[1, 2]. �

The pre-processing described above has two important exceptions:

• No new λ-abstractions are added for free higher-order variables never ap-
plied to arguments in L (but only in R). Such variables are furthermore
rendered rigid instantly (recall the de�nition of a rigid higher-order vari-
able as a variable that is treated just like a �rst-order variable by the com-
piler). Actually, treating such variables like �rst-order variables does not
do any harm: F , say, matches any expression, whereasλ

x
F[x] only matches

λ-expressions, limiting the applicability of the corresponding rule, because
usually expressions are not η-expanded before they are rewritten.

• No new λ-abstractions are added for free higher-order variables applied to
free sequence variables somewhere in r either, because the “arity” of such
variables cannot be determined at compile-time; they are rendered rigid,
too.

Example 6. Pre-processing the rule

〈A[1], B, C[a], b...〉 7→ {A[a, C[0, b...]], B[a]}

yields
〈λ
x
A[1, x], B, C[a], b...〉 7→ {A[a, C[0, b...], B[a]]}

whereA is still �exible, butB (never applied to arguments on the left-hand-side)
and C (applied to the free sequence variable b...) are rigid. �

6.1.4 GeneratingMathematica Transformation Rules
We now have a closer look at the act of transforming a given, pre-processed
rewrite rule r : L 7→ R into a Mathematica transformation rule m : p:>b,
where p stands for “pattern” and b for “body”, satisfying the correctness property

e′ ∈ ReplaceList[e,m] ⇒ e�r e
′ (6.1)
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for all well-formed Mathematica expressions e and e′ (where e�r e
′ means that

e can be rewritten to e′ by r modulo αβη-equivalence). The other direction of
(6.1), though desirable in principle, is out of reach because of the decidability-
issues related to higher-order matching mentioned above.

The pattern p in m is an ordinary Mathematica pattern expression, built
from constants and syntactic variables. The higher-order aspect of matching,
including testing α-equivalence of expressions and performing substitutions of
free variables, is actually entirely incorporated in the body b by means of the
Condition construct (in�x notation /;) from Mathematica, as can be seen also
in Example 4.

The same example in fact reveals one of the crucial design principles of our
rewrite-rule compiler: it does not implement only one single, general higher-
order matching algorithm that is called whenever a rule, likem, shall be applied,
but rather it equips each rule with its speci�c, tailor-made, highly optimized
matching algorithm. This speci�c matching algorithm is constructed automat-
ically by the compiler while generating a transformation rule, say, m from r,
and the aforementioned optimizations are achieved by thoroughly analyzing the
structure of r and then hard-coding knowledge thus obtained in the algorithm,
eliminating the necessity of computing auxiliary results again and again and try-
ing possible alternatives during the matching phase that are already known to
lead to failure. In short: many results typically computed by a general higher-
order matching algorithm are instead pre-computed at compile-time if they are
really needed in the concrete case; otherwise the speci�c algorithm is modi�ed
in such a way that it does not compute them at all. In Example 4, for instance, it
su�ces to check whether the instances of two syntactically matched variables F1
and F2 are α-equivalent to each other, up to a substitution of bound variables—
and this fact is detected fully automatically by the compiler.

It is well-known that higher-order matching is in general not unitary, i. e.
more than one (most general) matchers might exist for two given expressions
(one of them being closed, of course). The rewrite-rule compiler, however, can
basically only deal with rules giving rise to a (essentially) unitary matching prob-
lem, for a couple of subtle reasons related to implementation technicalities (for
instance, a backtracking strategy would have to be employed otherwise). Al-
though this is a severe limitation in theory, the experience we gained from the
formal treatment of reduction ring theory revealed that our rewriting mecha-
nism is still su�ciently powerful in practice, as the vast majority of higher-order
formulas contained in the formalization yield rewrite-rules with unitary match-
ing problems associated to them. The claim that considering unitary match-
ing su�ces is also supported by the fact that automatic simpli�cation modulo
higher-order rules in the widely-used Isabelle proof assistant is only possible if
the left-hand-sides of these rules are so-called higher-order patterns (see [Nip93]
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and [Wen16], pp. 205–206), which is even more restrictive than our approach.
However, not only must the matching problem associated to rewrite-rule r

be unitary, but the compiler must even be able to detect this fact such that it can
be exploited when constructing the transformation rule m. To that end, bound
variables (�rst- or higher-order) occurring in the formal arguments of free, �ex-
ible higher-order variables in L are used to uniquely determine the instances of
these higher-order variables when matched against a concrete expression. How
this proceeds in practice is best illustrated in a couple of examples.
Example 7. Consider the rewrite-rule∑

i=0,...,n−1

F[n− i] 7→
∑

i=1,...,n

F[i]

The matching problem associated to the rule is evidently unitary because of the
occurrence of the bound variable i in the argument of F on the left-hand-side:

•
∑

i=0,...,4−1
(4− i)2 matches the left-hand-side of the rule, instantiating F by

λ
x
x2.

•
∑

i=0,...,4−1
((4− i)2 + i) does not match, as the second occurrence of i in the

sum-term is not in a sub-expression of the form 4− i.

•
∑

i=0,...,4−1
((4−2)2+1) matches again, instantiating F by the constant func-

tion λ
x

((4− 2)2 + 1).

�

Clearly, the bound variables used to determine the instances of free, �exi-
ble higher-order variables must be bound outside their argument-lists: the x in
F[{x2 |

x∈a
}] 7→ F[∅] cannot be used to determine the instance of F . Moreover,

these bound variables must not only occur in the formal arguments of the re-
spective higher-order variables, but there also outside the argument-list of any
other higher-order variable:
Example 8. The matching-problem associated to the left-hand-side of∑

i=1,...,n

F[G[i]] 7→ F[0]

is not unitary, since the bound variable i, although appearing in the formal ar-
guments of F , is somehow “consumed” by G already. The simple expression
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∑
i=1,...,10

i2 can be matched in (at least) two ways, namely if one of F and G is

instantiated by the identity function and the other by λ
x
x2.

A minor modi�cation of the left-hand-side of the rule renders the matching
problem unitary, though:∑

i=1,...,n

(F[G[i]] + F[i]) 7→ F[0]

Here, the sub-expression F[i] can be used to uniquely determine the instance
of F , and once knowing this, F[G[i]] uniquely determines the instance of G
unless F is instantiated by a constant function. �

The second rewrite-rule in the previous example exhibits an interesting phe-
nomenon: although in principle the instances of both F and G can be uniquely
determined, in the special case where F has to be instantiated by a constant
function determining the instance of G is not possible any more; in fact, G may
well be instantiated by anything. Since all this clearly depends on the concrete
expression the left-hand-side of the rule is matched against and hence cannot
be foreseen by the compiler, the following general strategy is pursued in such
situations:

1. When generating theMathematica transformation rule, simply assume that
F is not instantiated by a constant function, meaning that the instance of
G can be determined.

2. If, however, F does happen to be instantiated by a constant function when
matching a concrete expression e and hence the instance of G cannot be
determined, distinguish two cases:

(a) If the instance of G must be known for constructing the instance of
the right-hand-side of the rule, return failure, i. e. the rule cannot be
applied.

(b) If the instance of G does not need to be known for constructing the
instance of the right-hand-side, simply proceed; after all, it is de�-
nitely possible to instantiate G somehow in order to match e. Note
that this case may even occur in situations where G appears on the
right-hand-side of the rewrite-rule.

Example 9. Consider the following three rewrite-rules, all having identical left-
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hand-sides: ∑
i=1,...,n

(F[G[i]] + F[i]) 7→ G[0]∑
i=1,...,n

(F[G[i]] + F[i]) 7→ F[0]∑
i=1,...,n

(F[G[i]] + F[i]) 7→ F[G[0]]

If F is instantiated by a constant function when trying to apply the �rst rule,
the application fails: the precise instance of G would have to be known for con-
structing G[0]. In the second and third rule, however, F being instantiated by
a constant function does not do any harm: in the second rule, G does not appear
on the right-hand-side at all, and in the third rule, the instance of G must only
be known for constructing F[G[0]] if F is non-constant. �

Summarizing: the applicability of the transformation rule m resulting from a
rewrite-rule r : L 7→ R to a concrete expression e not only depends on L, but
also on R.

In the examples above, all higher-order variables are unary; unary variables
can be dealt with quite easily. General n-ary higher-order variables complicate
matters considerably, since in such a situation the potential uni�ability of their
formal arguments must be taken into account.
Example 10. The matching problem associated to the (nonsense) rewrite-rule

∀
x
P[x2, x] 7→ P[1, 2]

is not unitary, because the expression ∀
x
x2 < 1 is matched by instantiating P

either by λ
x,y
x < 1 or by λ

x,y
y2 < 1. The reason for this lies in the uni�ability of

the second formal argument of P on the left-hand-side, x, with a sub-expression
of its �rst argument, x2. �

Example 11. The matching problem associated to

∀
x
(P[x2, a] ∧ P[x2, x]) 7→ P[a, 2]

is unitary, because given a concrete expression e,

1. x2 may be used to uniquely determine the list p1 of positions of the �rst
formal argument of P in the sub-expression e1 of e being matched against
P[x2, a].



134 6. Contributions to Theorema

2. Let e2 be the sub-expression of ematched againstP[x2, x]. Since the posi-
tions of the �rst formal argument of P in both e1 and e2 must be identical,
and these positions are known already, one must now

(a) ensure that the sub-expressions of e2 at these positions are all x2, and
(b) determine the list p2 of positions of the second formal argument of P

in e2, making use of x; occurrences of x in e2 at a sub-position of an
element in p1 are known to actually belong to the �rst argument of
P and hence must be discarded.

3. Finally, knowing p2, the sub-expressions of e1 at these positions must be
checked to be α-equivalent to each other; if they are, they constitute the
instance of a (unless the list p2 is empty, which is possible in principle,
leading to a similar situation as in Example 8).

The compiler detects and exploits these non-trivial dependencies and relations
between the two occurrences ofP on the left-hand-side of the rule fully automat-
ically and generates e�cient code that exactly follows the three steps sketched
above. �

We already pointed out that higher-order uni�cation is an extremely hard
problem in general, meaning that the uni�cation algorithm we use to �nd out
whether two formal arguments are uni�able or not cannot be complete. The al-
gorithm, hence, was designed to “stay on the safe side”, i. e. to rather return false-
positive results (two non-uni�able expressions are claimed to be uni�able) than
false-negative ones (two uni�able expressions are claimed to be non-uni�able):
in the worst case, a free higher-order variable is wrongly made rigid (see below),
but at least the resulting transformation rule is correct in the sense that it satis�es
(6.1).

The various examples presented above demonstrate that automatically de-
tecting as many unitary matching problems as possible and generating e�cient
Mathematica code for matching the left-hand-side and instantiating the right-
hand-side of a given rewrite-rule can be a di�cult, time-consuming task where
lots of subtle details have to be taken into account, e. g. that even problems de-
tected as unitary may actually give rise to in�nitely many instantiations of free
variables (Examples 8 and 11). Still, the compiler shall also be able to deal with
rules whose associated matching problems are evidently non-unitary: in such
a situation, those free, �exible higher-order variables causing the problems are
simply made rigid. Rigid variables are treated just like �rst-order variables, thus
eliminating any problems with non-unitarity.
Remark 21. In some cases it might not be clear which of the free higher-order
variables cause problems, as in the �rst rule in Example 8. Then, the compiler
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randomly chooses any of the possible candidates for making them rigid; users of
the compiler should not rely on a particular choice.

Due to the all-important role of bound variables on the left-hand-sides of
rewrite-rules, there is a subtle issue related to the extraction of rewrite-rules from
Theorema formulas even before these rules are then translated in Mathematica
transformation rules by the compiler. Typically, rewrite-rules are extracted by
stripping away universal quanti�ers and then interpreting the remaining equali-
ties/equivalences/implications as (conditional) rewrite rules; however, stripping
away universal quanti�ers entails the danger of stripping away “too many” of
them. Consider, for instance, the ordinary induction principle on N:

∀
P

P[0] ∧ ∀
n∈N

(P[n]⇒ P[n+ 1]) ⇒ ∀
n∈N

P[n] (induction)

Induction rules are usually used for backward rewriting, i. e. the resulting rewrite-
rule would read as

P[n] 7→ P[0] ∧ ∀
n∈N

(P[n]⇒ P[n+ 1]) (6.2)

where the n on the left-hand-side is free—and this is precisely the problem, as
P has to be rendered rigid now (no bound variable appears in its arguments).
Hence, it would be better to keep the universal quanti�er binding the n on the
left-hand-side, leading to

∀
n∈N

P[n] 7→ P[0] ∧ ∀
n∈N

(P[n]⇒ P[n+ 1]) (6.3)

where P can apparently be kept �exible. For induction rules it is quite obvious
that the latter alternative is more desirable, but in general it is hard to decide how
many quanti�ers shall be stripped away. The strategy pursued in our mechanism
is as follows:

1. Strip away as many universal quanti�ers as possible, such that every free
higher-order variable can be kept �exible (except those that have to be
made rigid anyway in the pre-processing step).

2. If this is not possible because always at least one additional variable must
be made rigid, strip away all universal quanti�ers.
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This strategy is certainly not optimal yet, but at least it allows to accommodate
the class of induction rules in an elegant way.

It is important to note that the matching algorithms generated by the com-
piler actually do not explicitly compute the instances of free, �exible higher-
order variables, but instead only compute the positions of the sub-expressions
corresponding to their formal arguments in the matched expression (see also
Example 11). This approach entails the advantage that, when constructing the
instance of the right-hand-side of a rule, higher-order variables are not instanti-
ated by λ-terms leading to redexes that still have to be β-reduced afterward, but
the new arguments of higher-order variables on the right-hand-side can directly
be substituted at the respective, already-known positions without the need for
any explicit β-reductions any more; this makes rewriting a lot faster. Further-
more, avoiding β-reductions apparently also circumvents possible problems re-
lated to the non-termination of β-reduction in untyped environments, as in the
well-known term (λ

x
x[x])[λ

x
x[x]]. 1

Example 12. Consider the rewrite-rule (6.3). The resulting Mathematica trans-
formation rule generated automatically by the compiler reads as (up to some
syntactical details)

Forall[{n_, N}, P_] :>
Module[{pos, n0, P0, P1, P2}

pos = allOccurrences[P, n];
n0 = freshVar[n];
P0 = subst[P, pos, 0];
P1 = subst[P, pos, n0];
P2 = subst[P, pos, n0 + 1];
And[P0, Forall[{n0, N}, Implies[P1, P2]]]

]

First of all, the positions of the sub-expressions of the instance of P correspond-
ing to the formal argument n of P in the rewrite-rule are computed and stored
in the local program variable pos; this, in fact, is part of the higher-order match-
ing algorithm, which in the present case specializes to a trivial one that, apart
from �lling pos, does not need to do anything else. Then, a fresh name for the
bound variable in the instantiated right-hand-side is computed by freshVar and
stored in the local program variable n0, before subst �nally performs the actual
substitutions of the new arguments in the instance of P, namely 0, n0 and n0+1,
making use of the known positions stored in pos. It basically callsMathematica’s
ReplacePart function, but additionally takes care of avoiding variable-capture.

1Substituting new arguments directly somehow corresponds to a single β-reduction.
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Note that in Example 4 matters are actually very similar; there, the presenta-
tion of the resulting Mathematica transformation rule is simpli�ed for the sake
of simplicity, as it is meant to be only an introductory example. �

Before we conclude this subsection and turn to some optimizations of the
compiler, we want to point out three important details:

• Occurrences of free variables appearing in the scope of a binder on the left-
hand-side are checked to be free of bound variables not appearing among
their arguments. Any instance of a in Example 11 must be free of the bound
variable x, of course, which is checked during the matching process.

• Bound variables may only be instantiated by bound variables of the same
“kind”: individual variables may only be instantiated by individual vari-
ables, and sequence variables may only be instantiated by sequence vari-
ables.

• Substitutions performed during the matching process and when construct-
ing the instance of the right-hand-side of a rule ensure that no free vari-
able gets bound by an enclosing binder, i. e. substitutions avoid variable
capture by renaming bound variables if necessary. This is the very reason
why in Example 12 the new function subst is used instead of the built-in
ReplacePart.

6.1.5 Optimizations
The rewrite-rule compiler incorporates two optimizations for making the appli-
cation of the resulting Mathematica transformation rules more e�cient.

The �rst of these optimizations concerns the names of bound variables when
instantiating the right-hand-side of a rule. In general, names of bound variables
are chosen in such a way that

1. as few substitutions as possible have to be carried out at run-time (i. e.
when the transformation rule is applied), and

2. as few fresh names have to be generated as possible at run-time.
Both tasks may be time-consuming, so detecting situations where they can be
avoided and generating code that takes this information into account is certainly
a bene�t.
Example 13. Consider the rewrite-rule

a ∈ {F[x] |
x∈b
P[x]} 7→ ∃

x∈b
(P[x] ∧ a = F[x])

The resulting Mathematica transformation rule is something like
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Element[a_, SetOf[{x_, b_}, P_, F_]] :>
Exists[{x, b}, And[P, a = F]]

As can be seen, the name of the bound variable x in the expression to be rewrit-
ten, stored in the program variable x, is literally taken over when the instance
of the right-hand-side of the rule is generated. This avoids generating a fresh
name using freshName and performing any substitutions using subst, as the
instances of P[x] and F[x], stored in P and F, respectively, can be literally
taken over as well. �

Of course, taking names of bound variables in the expression to be rewritten
and re-using them in the new expression to be constructed must be done with
care: in some situations, fresh namesmust be generated in order to avoid variable
capture. In any case, the compiler generates code that re-uses as many names
as possible; sometimes, however, the ultimate decision whether a name may be
re-used or has to be postponed to run-time, when the concrete expression to be
rewritten is known.
Remark 22. The preceding discussion implies that the name of a bound variable
in the instance of the right-hand-side of a rewrite-rule might not agree with its
name in the rule itself; it may even be completely di�erent (e. g. not just the
original name su�xed by a number to avoid name clashes).

The second optimization is achieved by automatically detecting clones in the
code generated by the compiler and eliminating them still at compile-time. In
particular, if the time-critical functions alphaEquivalent, freshName, subst,
etc., are called several times with identical arguments, these calls are replaced by
a single one storing the result in an auxiliary program variable. In connection
with alphaEquivalent, the compiler even takes into account that the respec-
tive arguments do not even have to be identical: if the α-equivalence of two
expressions e1 and e2 is already known, and e′1 and e′2 are two sub-expressions
of e1 and e2, respectively, both originating from the same positions, and further-
more all free variables in e′1 and e′2 are also free in e1 and e2, then e′1 and e′2 are
apparently α-equivalent as well; no further call to alphaEquivalent is neces-
sary. Clearly, clone detection could further be improved by considering the use
of anti-uni�cation, as described for instance in [BKLV15].

6.1.6 Issues
In this subsection we address two issues arising in connection with our higher-
order rewriting mechanism, in particular with the matching algorithms.

The �rst issue is related to free sequence variables appearing in the formal
arguments of free, �exible higher-order variables on the left-hand-side of rewrite
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rules. Recall that sequence variables may never be the arguments of a �exible
higher-order variable F , because F would be immediately made rigid then, but
it is well possible that they are sub-expressions of formal arguments. The problem
with such sequence variables in the current implementation is as follows: each
of the speci�c higher-order matching algorithms basically proceeds by solving
smaller sub-problems one after the other and collecting the respective matchers;
in the end, however, the individual matchers must satisfy some compatibility
conditions, as the sub-problems are typically not independent of each other, and
if these constraints are not met, the whole matching process fails. Now, if one
individual sub-problem gives rise to more than one matcher (e. g. if it involves
sequence variables), still only one is propagated further—but if that particular
one does not meet the compatibility conditions in the end, matching fails, even
though another of the possible matchers would have met the conditions.

A solution to overcome said problem is near at hand: employ a backtrack-
ing strategy that automatically tries all of the (�nitely many) possible matchers
of a sub-problem in order, until either one succeeds or all fail. Unfortunately,
our compiler does not fall back to such a strategy yet, except for the very out-
ermost level of rewrite-rules, i. e. outside the argument-lists of any free, �exible
higher-order variables. There, the default backtracking strategy employed by
Mathematica for syntactic matching with sequence variables is relied on.
Example 14. Consider the matching problems associated to the following (non-
sense) rewrite-rules:

∀
x
(a... ∧ P[x] ∧ b...) 7→ True

(∀
x
P[x]) ∧ P[a...+ b...] ∧ P[b...+ a...] 7→ True

(∀
x
P[x]) ∧ P[a...+ c] ∧ P[c+ a...] 7→ True

In the �rst rule, everything is �ne: the two sequence variables a... and b... appear
at the outermost level, outside the argument-list of P , meaning that Mathemat-
ica’s default backtracking strategy will �nd suitable instances for a... and b... if
they exist. In the second rule, the situation is di�erent: there, the two sequence
variables only appear in the arguments of P , meaning that existing matchers
might not be found. In the third rule, the situation is again di�erent: although
there the sequence variable a... only appears in the arguments of P , too, the sub-
problems of matchingP[a...+c] andP[c+a...] against concrete terms are both
unitary (knowing the instance of P , of course), meaning that no backtracking is
necessary. �

The second issue is related to the names of bound variables in the expressions
to be rewritten. It is best illustrated in an example:
Example 15. Consider the rewrite-rule ∀

x
∀
y
P[x+ y] 7→ True and the concrete
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expression ∀
z
∀
z
z + z = 0. This expression does not match the left-hand-side of

the rule, because the variable bound by the outermost universal quanti�er does
not appear in the quanti�ed expression. The matching algorithm generated by
our compiler might not detect this fact, though, and claim λ

x
x = 0 to be a suitable

instance of P . �

The approach we pursue in order to overcome the problem is fairly straight-
forward: before an expression is rewritten, the names of its bound variables are
simply made unique in a pre-processing step, by replacing single names x by
pairs (n, x) (where n is a unique number), and reverted back to single (not nec-
essarily unique) names in a post-processing step. Fortunately, pre- and post-
processing expressions in this way has to be done only once, even if they are
rewritten several times by several rules in one stroke: applying a Mathemat-
ica transformation rule generated by our compiler preserves the uniqueness-
property of the names of bound variables.

6.1.7 More Features
Finally, we list two additional features of our higher-order rewriting mechanism
that have not been mentioned so far.

The �rst of them concerns again sequence variables, but this time sequence
variables that are themselves free, �exible higher-order variables, i. e. that ap-
pear in sub-expressions of the form F...[x] etc. The rewrite-rule compiler can
handle such constructs as well, interpreting, say, F...[x], as a sequence of the
form F1[x], F2[x], . . . of arbitrary length, where the Fi are ordinary individ-
ual higher-order variables that are furthermore completely independent of each
other. In other words: F...[x] may be instantiated by an arbitrary sequence of
expressions, each possibly depending on x. This situation parallels the ones in
[BF93] and in [Kut07], where vectors of functions and sequence functions, respec-
tively, abbreviate arbitrary sequences of functions, too.

The second feature is speci�c to the language of Theorema, in particular to
variable-ranges of binders. Recall from Section 2.1 that there are four di�erent
kinds of variable-ranges: simple ranges, predicate ranges, set ranges and step
ranges. If one wishes to introduce a rewrite-rule with a binder on its left-hand-
side that shall be applicable to expressions with any of the four variable-ranges
under the respective binder, one can do so: whenever the variable-range of a
binder B on the left-hand-side of a rule r : L 7→ R is a simple range and an
additional condition is imposed on the variables bound by B, where the condi-
tion is a conjunction containing a free higher-order variable P applied to (some
of) the variables bound by B, and moreover P only appears in such a form in L
and the arguments of P are always distinct bound variables, then this somehow
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“encodes” a random range for those variables bound by B that appear as argu-
ments of P . The rationale behind this approach is quite simple: a range (other
than a simple range) is nothing else than a condition on the bound variables; so,
if a variable bound in a simple range in r is constrained by other, arbitrary con-
ditions, this justi�es instantiating it with variables that are themselves bound in
any of the four kinds of ranges.
Example 16. Consider the rewrite-rule

∃
x

P[x]

(A[x] ∨B[x]) 7→

 ∃
x

P[x]

A[x]

 ∨
 ∃

x
P[x]

B[x]


Because of the additional condition P[x] under the quanti�er on the left-hand-
side, the transformation rule generated by the compiler is applicable to all exis-
tentially quanti�ed disjunctions, where the range of the bound variable may be
completely arbitrary; this includes, for instance,

∃
a∈R

a2 < 2 ∨
√
a > 3 and ∃

i=2,...,23

i!>2i

isPrime[i] ∨ 3 p i

�

Example 17. The (nonsense) rewrite-rule

∀
x

P[x]

F[x] ≥ Log[x] 7→ P[F[π]]

rewrites ∀
x∈R
x<3

√
x ≥ Log[x] into

√
π ∈ R ∧

√
π < 3. As can be seen, the higher-

order variable justifying random ranges under the universal quanti�er, P , com-
prises both the condition corresponding to the variable-range (x ∈ R) and the
additional condition on the bound variable (x < 3). �

6.2 RewriteInteractiveProver
The RewriteInteractiveProver is a Theorema prover we developed in the course
of the formal treatment of reduction ring theory. It consists of a collection of
inference rules for general predicate logic with equality; no appeal to any kind
of speci�c notions, such as sets, tuples, numbers etc. is made (in contrast to the
ReductionRingProver and the ComplexityProver), meaning that it can easily be
used in the future for explorations of other mathematical theories in Theorema,
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regardless of what they are about. This, in fact, is the reason why we present it
here, in the chapter on contributions to Theorema, instead of Chapter 4.

As the name “RewriteInteractiveProver” suggests, many inference rules put
the focus on rewriting (modulo �rst- and higher-order rewrite-rules extracted
from formulas in the set of assumptions) and user interactions; this is what dis-
tinguishes it from the default predicate-logic prover of Theorema, called Basic-
TheoremaLanguage, which only supports �rst-order rewriting and provides only
very limited possibilities for user interaction. The RewriteInteractiveProver was
heavily used in the formal veri�cation of reduction ring theory alongside the
ReductionRingProver; it was not used, however, in the formal veri�cation of the
complexity analysis, simply because it has been developed only afterward.

In total the prover consists of 40 inference rules, implemented in almost 3000
lines of Mathematica code (not counting the code for automatically turning ab-
stract proof objects into readable proof documents). In the following subsections,
we describe some of the more interesting inference rules in more detail.

6.2.1 Predicate-Logic Rules
The �rst class of rules consists of 23 natural-deduction rules for predicate logic,
including introduction- and elimination rules for conjunctions, disjunctions and
equivalences, the usual introduction rules for implications and universal quan-
ti�ers, the usual elimination rule for existential quanti�ers, and also a rule for
classical contradiction. In addition, four rules are responsible for detecting ter-
minal proof situations, i. e. proof situations that apparently hold true (e. g. if
the set of assumptions is evidently inconsistent, or it contains the proof goal).
Still, there are two inference rules whose operational semantics deserves closer
attention.

Modus ponens and modus tollens. Modus ponens and modus tollens are
two simple inferences from the natural-deduction proof calculus. In the RewriteIn-
teractiveProver they are subsumed into the single rule modusPonensTollens
that, applied to a proof situation K,ϕ⇒ ψ ` Γ, behaves as follows:

1. First, it tries to prove the premise ϕ of the implication solely by repeated
backward rewriting modulo formulas in K , up to a certain (small) bound
on the search depth. If it succeeds, the proof situation is transformed into
K,ϕ, ψ ` Γ.

2. Ifϕ cannot be proved by backward rewriting as a whole, but it is a conjunc-
tion and some of the individual conjuncts can be proved, the proof situation
is transformed into a new proof situation where these conjunctions do not
appear in the premise of the implication any longer.
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3. If the second step cannot be carried out either, modusPonensTollens
tries to prove ¬ψ, again by backward rewriting. If it succeeds, the proof
situation is transformed into K,¬ϕ,¬ψ ` Γ.

If the knowledge base of the current proof situation contains more than one im-
plications, modusPonensTollens iterates through all of them (or, more pre-
cisely, the activated ones; see Section 6.3) until it �nds one it can simplify.
Remark 23. modusPonensTollens is a generalization of both modus ponens
and modus tollens, in the sense that the premise of an implication or the nega-
tion of its conclusion, respectively, does not need to appear literally among the
assumptions, as long as it “follows readily” from them by repeated backward
rewriting. Note here that any assumption ϕ gives rise to the trivial backward-
rule ϕ 7→ True.

Piecewise expressions. In Theorema as well as Mathematica, Piecewise
expressions are terms or formulas of the form

e1 ⇐ ϕ1

e2 ⇐ ϕ2
...

en ⇐ ϕn

that are equal/equivalent to ei i� ¬ϕ1 ∧ ¬ϕ2 ∧ . . . ∧ ¬ϕi−1 ∧ ϕi holds true, for
1 ≤ i ≤ n. Rule expandPiecewise of the RewriteInteractiveProver can handle
such expressions whenever they appear in a proof situation and are closed (i. e.
do not depend on free variables). It proceeds in the following way:

1. First, the given Piecewise expression is tried to be simpli�ed by proving
and disproving the conditions ϕi in order, again by backward rewriting.
Every case ei ⇐ ϕi whose condition ϕi can be disproved is immediately
eliminated, and if ϕj is the �rst condition that can be proved, all cases
coming after ej ⇐ ϕj are eliminated as well and ϕj is replaced by True.

2. If the resulting expression contains only one single case ej ⇐ True, it is
simply replaced by ej . If it is empty, i. e. all cases were eliminated in the
previous step, the expression is not de�ned and nothing else can be done
(usually, the last condition ϕn is just the Boolean constant True, though).

3. Otherwise, if m cases remain in the simpli�ed Piecewise expression,
expandPiecewise distinguishesm cases in the proof search, in each case
replacing the Piecewise expression by the respective ei and assuming the
validity of the corresponding condition ϕi, as well as the negations of all
previous conditions.
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Similar to modusPonensTollens, expandPiecewise simply treats the �rst
Piecewise expression it encounters in the current proof situation (in an ac-
tivated formula; see Section 6.3).

6.2.2 Rules for Rewriting
Six inference rules are responsible for rewriting proof situations, either in a
backward-manner or modulo equations and equivalences. Rewrite-rules are gen-
erated as soon as a formula enters the knowledge base of assumptions, be it at
the very beginning of a proof in the initial proof situation, or at some point dur-
ing the proof search; of course, rewrite-rules extracted from a formula ϕ are
only available to the rewriting mechanism in branches of the proof where ϕ is
known. Needless to say that the higher-order rewriting mechanism discussed in
the previous section is employed for extracting rewrite-rules from formulas and
translating them into Mathematica transformation rules.2

Backward rewriting proceeds by applying each available backward-rule to
the current goal once; if several rules are applicable, an alternative branch in
the proof search is initiated for each of the possible rewrites. In contrast to the
BasicTheoremaLanguage prover, no forward rewriting is employed by default for
inferring new facts from known ones.

Equational rewrite-rules are partitioned into four categories:

1. rules stemming from universally quanti�ed equalities or equivalences, mean-
ing that they involve free variables,

2. rules stemming from ground equalities or equivalences, meaning that they
do not involve free variables,

3. rules stemming from explicit de�nitions, and

4. rules stemming from implicit de�nitions; an implicit de�nition is a de�ni-
tion whose right-hand-side is in the scope of one of the two choice-binders
ε (“such a”) or the.

There is a separate inference rule for dealing with each for these four categories,
allowing one to apply, say, only rewrite-rules stemming from explicit de�ni-
tions for unfolding de�nitions, without having to try the whole arsenal of all
available rewrite-rules, which would be highly ine�cient. In any case, note that
the RewriteInteractiveProver turns equalities, equivalences and de�nitions into

2Keep in mind that the higher-order rewriting mechanism can deal with ordinary �rst-order
rules, too.
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rewrite-rules from left to right only, in contrast to the BasicTheoremaLanguage
prover.

The control guiding the application of rewrite-rules distinguishes two cases
based on whether the overall proof development happens automatically or inter-
actively. In the �rst case, each (activated) formula is traversed in a breadth-�rst
manner, and all rewrite-rules from the current rule-category are tried one after
the other to the sub-expressions thus visited. As soon as the �rst rule is appli-
cable, the respective sub-expression is rewritten once, and then the control im-
mediately turns to the next formula; hence, at most one sub-expression of every
formula is rewritten once. In the second case, when developing the proof inter-
actively, the procedure is similar, only that all sub-expression of the activated
formulas are rewritten once by all applicable rules, each of these rewrites lead-
ing to a separate alternative in the proof search (where this and only this rewrite
is performed); hence, the eventual decision which of the possible alternatives to
pursue further is left to the human user (see Section 6.3.1).

The applicability of an equational rewrite-rule r to an expression e not only
depends on whether e matches the left-hand-side of r, but may additionally be
constrained by conditions (stemming from implications in the formula r orig-
inates from). Whenever such conditions pop up, they are immediately proved
by repeated backward rewriting, just as in the modusPonensTollens and the
expandPiecewise inference rules. All remaining conditions that cannot be
proved in this way are left as additional sub-goals; if they cannot be proved at
all, maybe because they simply are not satis�ed, the proof gets stuck. Therefore,
the inference rule for rewriting proof situations interactively, discussed in the
next subsection, might be advantageous whenever conditional rewrite-rules are
included in the category of rules currently considered.

Remark 24. The inference rules for rewriting do not care at all whether the un-
derlying set of equational rewrite-rules is con�uent, terminating, etc., but simply
apply the given rules once. This approach circumvents possible issues related to
non-terminating rule sets—at least in one single application of the respective in-
ference rules.

6.2.3 Interactive Rules
The RewriteInteractiveProver contains eleven inference rules that require some
sort of user interaction when they are about to be applied to a proof situation.
The four most interesting of them are listed below.

Note that at the moment all user interaction during the proof search, be it
in connection with interactive inference rules or in connection with the interac-
tive proof strategy described in Section 6.3, happens exclusively through dialog
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Figure 6.2: The dialog window for introducing a formula. The formula above the black
line in the proof situation is the current goal, the one below the line is the current knowl-
edge.

windows displaying the current proof situation and providing input �elds, check-
boxes, buttons, etc. for the user to communicate with the system.

instantiateInteractive. A typical—and very simple—example of an
interactive inference rule is instantiateInteractive, for interactively in-
stantiating logical quanti�ers (existential quanti�ers in the goal, universal quan-
ti�ers in the knowledge base), where the user is asked to provide suitable in-
stances for the bound variables. In fact, a similar rule is part of the default Basic-
TheoremaLanguage prover as well, di�ering from instantiateInteractive
only in that the latter allows to instantiate several quanti�ers with identical
variable-ranges at once, which turned out to be quite useful in many situations.

introduceFormula. This rule provides the human user with the possibil-
ity of initiating sub-proofs at any point in the main proof. In more concrete terms,
it enables stating an arbitrary formula in the current proof context (i. e. possi-
bly depending on arbitrary-but-�xed constants) and proving it from the current
knowledge base of assumptions in a sub-proof; afterward, the proved formula is
added to the assumptions in the “main branch” of the proof, of course. Alterna-
tively, it is also possible not to prove the given formula, but rather to distinguish
two cases based on whether the formula holds or not.

Figure 6.2 shows the dialog window of introduceFormula as appearing in
the proof of the so-called drinker paradox [Smu78], where two cases based on
whether “everybody in the pub drinks” are distinguished.
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rewritePS. The name of this interactive rule stands for “rewrite the proof
situation”, which is exactly what it does: similar to the rules for rewriting dis-
cussed in the previous subsection, it applies available equational rewrite-rules to
formulas in the current proof situation. However, it allows the user to �ne-tune
the rewriting process in the sense that she may explicitly specify

• the individual rewrite-rules to be used, or, more precisely, the formulas
they originate from (not only the categories they belong to!),

• the formulas to be rewritten,

• how conditional rewrite-rules are to be treated, i. e. whether rules con-
strained by conditions whose validity cannot be established instantly by
backward rewriting shall still be applied, and

• one of four available controls guiding the application of the rewrite-rules.

The four controls being available at the moment include the two that have al-
ready been mentioned in the previous subsection, together with two additional
controls, resembling Mathematica’s ReplaceAll and ReplaceRepeated func-
tions, respectively: in the �rst case, every activated formula is traversed in a
breadth-�rst manner, and for each sub-expression thus visited the speci�ed re-
write-rules are tried one after the other until an applicable rule is found, in
which case the rule is applied to the respective sub-expression once; the resulting
new expressions are not rewritten further, but it may well be that several sub-
expressions of a single formula are rewritten in this way. In the second case the
process is basically the same, only that, as it name suggests, the activated formu-
las are rewritten repeatedly until no more rewrites are possible; this, of course,
bears the danger of non-termination.

addKnowledge. In Theorema, the knowledge from the background theory
to be used in a proof must in principle be speci�ed when the proof attempt is
initiated and is then �xed throughout the whole proof search. In practice, how-
ever, this approach turned out not to be feasible, because very often the knowl-
edge thus speci�ed happens to be insu�cient for �nishing the proof (either be-
cause one simply forgot to include some formulas, or because further lemmas
are needed in the theory before one can proceed). Inference rule addKnowledge
�nds a remedy for such scenarios: it enables the user to add arbitrary knowledge
from the background theory in the midst of the proof search, by selecting the
respective formulas in a graphical “knowledge browser” that resembles the de-
fault one from the Theorema commander. Whenever new knowledge is added,
the abstract proof object representing the proof constructed so far, including all
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pending proof situations, is updated in such a way that afterward it looks as if the
newly added knowledge had been there the whole time. Moreover, the resulting
proof document neither distinguishes between “new” and “old” formulas when
summarizing the knowledge used in the proof, nor mentions the application of
addKnowledge at all.
Remark 25. Although the interactive inference rules from the RewriteInterac-
tiveProver can in principle be used together with any underlying proof strategy,
it must nevertheless be noted that they were designed to work particularly well
together with the interactive proof strategy discussed in the next section.

6.3 Interactive Proof Strategy
Traditionally, the Theorema system has always put the emphasis on automatic
rather than interactive proof development, meaning that users are usually sup-
posed to only set up the proof attempt (specify the proof goal, select the knowl-
edge base, adjust some prover settings) and then wait for the system to either �nd
a proof automatically or fail. After �nishing the formalization of the complexity
analysis of Buchberger’s algorithm presented in Section 5, though, we realized
that automatic proving quickly becomes unfeasible if theories grow big and for-
mulas become lengthy and technical, so we decided to implement an interactive
proof strategy for e�ciently handling the formalization of reduction ring theory
presented in Section 4.

The result is a dialog-oriented user interface, giving the user full control over
the development of proofs (e. g. which inference rule to apply in a certain situ-
ation, how to apply it, etc.; see below). A text-based interface, where the user
simply writes down the individual inference steps one after the other and has
them checked and carried out by the underlying system, as in basically all other
well-known proof assistants, is planned to be added to Theorema in the mid-term
future.

Actually, there has already been an environment for interactive proof gen-
eration in the old version of Theorema our interactive proof strategy has many
features in common with (e. g. both are dialog-oriented), see [PK05]. Still, we
did not just migrate the existing environment to Theorema 2.0 and extended and
modi�ed it a bit to accommodate our needs, but really started completely from
scratch again; this seemed to be the more reasonable approach, as the internal
architecture of Theorema 2.0 di�ers considerably from the one of Theorema 1.
Also note that the dynamic, graphical presentation of proof trees, which consti-
tutes a central component of the interactive environment discussed in [PK05], is
now an integral part of Theorema 2.0 [Win12] and hence has absolutely nothing
to do speci�cally with our interactive proof strategy.
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6.3.1 How it Works in Practice

The interactive proof strategy, as its name suggests, is simply a Theorema proof
strategy that can be selected just as any other (automatic) proof strategy when
initiating a new proof; no further actions are required. As soon as the proving
starts, and whenever a new proof situation arises whilst proving, the interactive
proof strategy is called (note that internally it is just a Mathematica function).
Then, it either

• applies a high-priority inference rule from the selected prover fully auto-
matically, or, if this is not possible,

• opens a dialog-window displaying all relevant information for the user to
decide how to proceed.

By default, every Theorema inference rule has a priority attached to it: the prior-
ity is an integer between 1 and 100, where the lower the number, the higher the
priority of the respective rule; typically, proving strategies take these priorities
into account when applying the rules, in the sense that they try to apply rules
with higher priority �rst. Although every rule gets a default priority, the user
can easily adjust them according to his needs; the same is true for the thresh-
old determining whether a rule is regarded a high-priority rule or not by the
interactive strategy (by default this threshold is 20). Examples of inference rules
typically having a very high priority are rules for detecting terminal proof situa-
tions, as well as the rule that splits conjunctions in the knowledge base into their
conjuncts; these rules de�nitely “do not do any harm”, in the sense that they will
never render a provable proof situation unprovable—this being the reason why
such inference are performed instantly.

Anyway, the interactive strategy tries all high-priority rules in order and ap-
plies the �rst possible one to the current proof situation, in which case new proof
situations arise and the whole process starts again. Otherwise, if none of these
high-priority rules is applicable, a dialog-window pops up, displaying the current
proof situation (i. e. the current proof goal and list of assumptions, as ordinary
Theorema formulas in easily readable, two-dimensional syntax) and asking the
human user to decide how to continue (by clicking on buttons or menu items).
In particular, the user may choose one of three main possibilities, namely

• specify the inference rule to apply to the current proof situation by choos-
ing from the list of all available inference rules from the selected prover
(except the high-priority rules that have already been tried unsuccessfully),
or
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• select a di�erent pending proof situation where the proof search shall con-
tinue, e. g. if the current one is only one of several alternatives, which
furthermore does not look very promising, or

• abort the proof attempt.

There are a couple of things to note in connection with the �rst of these three
possibilities, choosing an inference rule. First of all, no pre-selection of applicable
rules is made, meaning that the chosen rule might actually not be applicable to
the current proof situation. In such a case, no progress in the proof development
happens, of course, and the user may simply do something else instead. However,
it could well be the other way round, too: the requested inference rule might be
applicable in more than one way (inference rules for rewriting the proof situation
are perhaps the best example for that). In such a case, the user may choose one of
the possible alternatives in yet another dialog window. Finally, before applying
an inference rule, it is possible to activate and deactivate formulas in the cur-
rent proof situation (by marking the respective check-boxes in the main dialog
window; see Figure 6.3) for specifying the “target” formulas of the rule. For in-
stance, the two rules modusPonensTollens and expandPiecewise discussed
in Section 6.2.1 usually operate on the �rst activated implication or Piecewise-
expression, respectively, they encounter when scanning the proof situation, thus
giving the user the opportunity to explicitly specify which formulas they shall
be applied to in advance. Note, however, that an inference rule may also ignore
whether a formula is activated or not; this solely depends on its concrete imple-
mentation and cannot be in�uenced by the interactive proof strategy.

Besides working directly on the development of the proof, the user may take
a range of further actions as well, including

• adjusting the prover settings, e. g. the priorities of the inference rules or
the proof strategy (in particular, the interactive proof strategy may be re-
placed by an automatic one if the current proof situation seems to be simple
enough),

• inspecting the proof document of the proof created so far,

• inspecting the internal representations of the current proof situation (goal,
knowledge base, additional data), the whole proof object, and the list of
available rewrite-rules (e. g. for debugging),

• saving the proof object in an external �le for creating a “secure point” the
proof attempt may be resumed at later on; note that our interactive proof
strategy lacks the possibility to undo erroneous steps.
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Figure 6.3 illustrates the application of an inference rule to a proof situation,
using the interactive strategy. The �rst of the three windows depicts the main
dialog window of the interactive strategy, titled “Proof Commander”. The top-
most bar (white text on blue background) constitutes the menu bar. Below, the
name of the inference rule about to be applied when hitting “Enter”, as selected
by the user, is displayed (black text on light-blue background); in the situation
displayed, a quanti�ed formula is going to be instantiated interactively. The cur-
rent proof situation is presented in the remaining part of the window, divided
into the goal (above the black line) and the list of assumptions (below the black
line). As can be seen, the proof goal is the only activated formula, meaning that
the interactive instantiation will instantiate the existential quanti�er in the goal
rather than the universal quanti�er in the assumptions.

The second window in Figure 6.3 actually has nothing to do with the inter-
active proof strategy but stems from the requested (interactive!) inference rule,
instantiateInteractive, allowing the user to input a witness term for the
existential quanti�er. The third window, �nally, displays the new proof situation
after instantiating the quanti�er, and waits again for instructions from the user.

6.3.2 Implementation Details

As already mentioned above, the interactive proof strategy is integrated into the
proving architecture of Theorema 2.0 as a separate proof strategy and imple-
mented a such, i. e. it is essentially a function mapping a proof situation to a list
of new proof situations; a little bit of a hack is needed to realize the more ad-
vanced features of the interactive strategy, like selecting di�erent pending proof
situations where the proof search shall continue.

Something similar is also true for the communication between the strategy
and the inference rules, e. g. about which formulas are activated and which are
not: at the moment, all this happens through global variables whose values are
set accordingly. Passing the information directly to the inference rules would
de�nitely be more elegant and robust, but is currently not possible because of
the very architecture of Theorema 2.0.

Another weakness in the implementation of the interactive proof strategy is
related to its dialog windows: whenever the user con�rms an interactive action
(e. g. by clicking on a button), the respective window is closed and a new window
with updated content pops up. The entire interface could certainly be made much
more attractive if one single window, whose content is updated dynamically, was
�xed once and for all while proving. Even more, all the graphical interface for
interactive proving could perhaps also be integrated into the main Theorema-
Commander window—this remains future work.
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Figure 6.3: Performing an (interactive) inference using the interactive proof strategy.
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6.4 TheoryTools
One of the lessons we learned from the formalization of reduction ring theory
is that keeping track of the (logical) structure of libraries of extensive Theorema
theories, though highly desirable, is almost impossible without the support of
automatic tools that serve precisely this purpose. Hence, we developed a Mathe-
matica-package, called TheoryTools, consisting of methods for automatically re-
trieving and analyzing the logical structure of Theorema theories, in particular
the dependencies of their formulas on each other.

Although the implementation of most functions contained in the package is
fairly simple and straightforward, TheoryTools nevertheless proved extremely
useful in practice: quite often, existing Theorema theories have to be restruc-
tured (e. g. changing the order of formulas, relabeling formulas, modifying for-
mulas that have already been used as assumptions in proofs, etc.), making it of
utmost importance to know how these changes a�ect other theories, and in par-
ticular proofs that have already been carried out. In Theorema 2.0 proofs are
stored in external proof �les; hence, if a formula occurring in a proof is modi�ed
afterward (e. g. by relabeling it), the respective �le should be updated as well—
this, however, does not happen automatically, but must be taken care of by the
user herself.

The TheoryTools package is divided into three main components: the Theory-
Analyzer for analyzing the logical dependencies of formulas, the (still prototyp-
ical) ConsistencyChecker for checking whether sets of formulas are consistent,
and the TheoryManipulator for automatically manipulating sets of proof �les
(e. g. changing formula-labels).

6.4.1 TheoryAnalyzer
The main purpose of the TheoryAnalyzer, as mentioned above, lies in analyz-
ing the logical structure of Theorema theories, i. e. the logical dependencies of
their formulas on each other. It does so by �rst reading all proof �les in a given
list of directories and retrieving, from each �le, the proof goal and the used as-
sumptions as Theorema formulas; these formulas have additional context infor-
mation, such as unique identi�ers, the names and locations of the notebooks
they are contained in, as well as their labels attached to them, making it easy
to identify formulas occurring in several di�erent �les. From this information,
the TheoryAnalyzer then constructs a directed graph whose nodes correspond
to the formulas thus found, and where a two nodes A and B are connected by a
directed edge from A to B i� the formula ϕA corresponding to A is an assump-
tion in a proof of the formula ϕB corresponding to B, i. e. one of the proof �les
read has ϕB as its goal and ϕA in its list of assumptions—in this case, ϕB depends
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on ϕA.3 Because of the obvious one-to-one correspondence between formulas
in the theory and nodes in the graph, the terms “formula” and “node” are used
interchangeably below.

Once the dependency graph has been created, the TheoryAnalyzer o�ers a
range of well-known graph-theoretic functions for analyzing it, namely

• collecting all direct/indirect/basic assumptions of a given formula,

• collecting all direct/indirect/terminal consequences of a given formula,

• �nding the relation between two given formulas (i. e. whether one of them
depends on the other), and

• detecting cycles; a cycle in the graph corresponds to a circular argument
in the theory, meaning that the graph should ideally be acyclic.

A formula ϕ is a basic assumption of a formula ψ i� ψ depends on ϕ, either
directly or indirectly, and ϕ is not proved itself. ϕ is a terminal consequence of ψ
i� ϕ depends on ψ, again either directly or indirectly, and ϕ is never used as an
assumption in a proof.

Apart from the functions operating on the dependency graph, the TheoryAn-
alyzer also provides functionality for automatically retrieving the sizes of indi-
vidual theories by means of the numbers of unproved axioms and proved theo-
rems, as well as the sizes of proofs of individual formulas by means of the num-
bers of inference steps. Moreover, the information thus gathered can then be
visualized automatically in nicely-formatted theory dependency graphs (similar
to Figure 4.1) and statistics diagrams (similar to Figure 4.2).
Remark 26. In the current implementation of the TheoryAnalyzer, dependency
graphs are not updated when the corresponding theories change (e. g. new for-
mulas are inserted). Instead, the graphs must be constructed from scratch again,
but only on an explicit request by the user.

6.4.2 ConsistencyChecker
The very nature of Theorema is not to force its users to adhere to any kind of
conventions when formulating their mathematical theories (although they are
advised to do so, of course). This, in particular, is true for conventions ensur-
ing the consistency of the respective theories, at least relative to the presumed
consistency of the foundations of mathematics (like Zermelo-Fraenkel set the-
ory). Many other mathematical assistant systems adopt a far more rigorous point

3ϕB might have several proofs with di�erent assumptions. The TheoryAnalyzer cannot han-
dle such situations properly, though.
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of view; for instance, in the well-known Isabelle system [Wen16] new notions
(types, functions, predicates) may only be introduced by quite speci�c means,
e. g. primitive- or well-founded recursion, minimizing the danger of contradic-
tions.

It is clear, though, that the consistency of formalizations is an important is-
sue in Theorema, too, and therefore we developed a tool for checking the con-
sistency of a set of Theorema formulas, called ConsistencyChecker. Of course,
checking whether a set of formulas is consistent of contradictory is a highly non-
trivial task, and even undecidable in our setting of general untyped higher-order
predicate logic. So, what the ConsistencyChecker actually does is merely an-
alyzing/inspecting the given formulas and partitioning them into basically two
subsets: a subset of those formulas that are possibly problematic (but not neces-
sarily) and an as-large-as-possible subset that is probably consistent (but not with
100% certainty either), assisting the user in discovering potential contradictions.
Hence, the ConsistencyChecker in its current incarnation never returns de�nite
answers such as “The given set is surely consistent” but always leaves the �nal
decision to the user.

Let us now shed some light on how the detection of possibly problematic for-
mulas proceeds; to that end, let F be an arbitrary set of closed (i. e. without free
variables) Theorema formulas. First and foremost one must note that at present,
the ConsistencyChecker can only deal with de�nitions; all other formulas in F
are immediately, without any closer look, marked as possibly problematic. The
reason behind this seemingly strange behavior is that the ConsistencyChecker
was designed to work together with the TheoryAnalyzer, operating on the sets of
all basic assumptions of important theorems, which are typically made up mainly
from de�nitions.

So, assume that F entirely consists of (universally quanti�ed, conditional)
de�nitions. The ConsistencyChecker now iterates through all pairs of elements
of F , and for each pair (γ, δ) checks whether the left-hand-sides of the de�ni-
tions γ and δ overlap, in which case it instantly marks both of them as possibly
problematic. In our sense, two expressions, potentially containing free variables
stemming from universal quanti�ers, overlap i� one of them can be uni�ed with
some sub-expression of the other. For instance, x (2 + y) and z + π overlap if y
and z are free variables, the unifying substitution being {y ← π, z ← 2}.

The attentive reader certainly notices that the procedure carried out by the
ConsistencyChecker for detecting contradictory de�nitions is neither correct
nor complete, meaning that contradictory de�nitions might be marked as un-
problematic and consistent de�nitions as problematic:

Example 18. The single de�nition c := c + 1 is marked as unproblematic by
the ConsistencyChecker if the constant c does not occur in the left-hand-side
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of any other formula in F . Still, the de�nition is problematic in some sense, as
unfolding it would cause an in�nite loop. �

The previous example illustrates that no special attention is payed to (mutual)
recursive de�nitions and their “termination”. More than that, the right-hand-
sides of de�nitions are completely ignored at all, even if taking them into account
would render otherwise problematic formulas unproblematic:
Example 19. The ConsistencyChecker marks the two de�nitions

f[0] := 0

and
∀
x
f[x] := x

as problematic, because their left-hand-sides apparently overlap. However, the
only uni�er also uni�es their right-hand-sides, meaning that the de�nitions are
in fact consistent. �

Conditions constraining de�nitions are not taken into account either:
Example 20. The ConsistencyChecker marks the two de�nitions

∀
x
P[x]⇒ f[x] := 0

and
∀
x
¬P[x]⇒ f[x] := 1

as problematic, because their left-hand-sides apparently overlap. However, no
instance of x satis�es both P and ¬P at the same time, meaning that as before
the de�nitions are actually consistent. �

Although matters are already complicated enough for �rst-order de�nitions,
higher-order de�nitions make things even worse:4

Example 21. It is well-known that the innocent-looking higher-order de�nition

∀
P

R[P] :⇔ ¬P[P]

is contradictory; this is essentially Russel’s paradox phrased for predicates rather
than sets. �

In the absence of types, detecting whether a single higher-order de�nition is
consistent or contradictory can be arbitrarily complex. The approach pursued

4Recall that a universally quanti�ed variable is considered higher-order i� it is applied to
arguments somewhere in the respective formula.
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by the ConsistencyChecker to circumvent this problem is simple: it tests higher-
order de�nitions for overlapping left-hand-sides (with other �rst- and higher-
order formulas) as well, just as any other de�nitions, but even if no overlaps are
found, higher-order de�nitions are still marked as possibly problematic—only
because they are higher-order.5

Since the core component for detecting overlapping de�nitions is uni�cation,
and (higher-order) uni�cation, maybe even with sequence variables, is known to
be undecidable in general (see the remarks in Section 6.1), the design of the uni-
�cation algorithm of the ConsistencyChecker is similar to that of the uni�cation
algorithm in the higher-order rewriting mechanism. Informally, the algorithm
tries to answer as accurately as possible, but in case of doubt simply returns
“uni�able”; more formally, it prefers false-positive answers over false-negative
ones, to be on the safe side: claiming that two overlapping de�nitions are non-
overlapping is clearly worse than claiming that two non-overlapping de�nitions
are overlapping.

De�nitions with universally quanti�ed sequence variables appearing on their
left-hand-sides have to marked as possibly problematic, too, since pattern-match-
ing with sequence variables is not unitary in general and may thus cause prob-
lems, as can be seen in the following

Example 22. The �rst-order de�nition

∀
x,y...,z...

g[y..., x, z...] := x

is contradictory, as it allows to infer both g[1, 2] = 1 and g[1, 2] = 2. �

Finally, the ConsistencyChecker also pays special attention to implicit de�-
nitions, i. e. de�nitions whose right-hand-side is in the scope of one of the two
choice-binders “such a” (denoted by ε in Theorema) or “the”: if a de�nition of
this kind is not explicitly constrained by existence (and uniqueness) conditions
on the de�ning term, it is marked as possibly problematic.

Example 23. The implicit de�nition

∀
x

(∃!
y
x = y2)⇒ sqrt1[x] := the

y
x = y2

is �ne, as the existence and uniqueness of a term t satisfying s = t2 is explicitly
required in order for the de�nition to be applicable to some term sqrt1[s];
only note that the “unique existence”-quanti�er ∃! is not part of the Theorema
language and only used here to abbreviate an otherwise lengthy formula.

5Testing higher-order de�nitions for overlaps although they are marked as problematic any-
way might also detect problematic �rst-order de�nitions.
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In contrast, the ConsistencyChecker marks the de�nition

∀
x∈R

x ≥ 0⇒ sqrt2[x] := ε
y∈R

x = y2 ∧ y ≥ 0

as possibly problematic, even though the existence (and uniqueness) of a suitable
term might be provable in the underlying background theory. �

Summarizing, a de�nition is marked as possibly problematic by the Consis-
tencyChecker i�

• its left-hand-side overlaps with the left-hand-side of another de�nition,

• it is higher-order,

• sequence variables appear in its left-hand-side, or

• it is an implicit de�nition where existence (and uniqueness) of the de�ning
term are not explicitly required.

The preceding discussion shows that the current implementation of our Con-
sistencyChecker is still prototypical and incomplete, with room for improvement
in a variety of respects. Just as an example, external �rst-order reasoners, like
CVC4 [BT+], Vampire [VRH+] or Z3 [dMB+], could be employed to detect fur-
ther contradictions or, conversely, formulas that have erroneously been marked
as problematic.

In any case, the consistency of formalized mathematics is a serious issue that
might have to be addressed more carefully in Theorema in the future.

6.4.3 TheoryManipulator
The third and last component of the TheoryTools-package is the so-called Theo-
ryManipulator. It provides functions for automatically manipulating proof �les,
like adjusting the labels or sources of formulas (the source of a formula is a string
composed from the name and location of the notebook it is contained in). Our
own experience shows that these tasks occur quite frequently when formalizing
large mathematical theories, hence having a tool for automating them at one’s
disposal facilitates matters considerably. After all, one de�nitely does not want
to update hundreds of �les manually.
Remark 27. Updating proof �les when relabeling a formula in a notebook is actu-
ally not necessary (at least from Theorema’s point of view), but highly desirable
for maintaining a coherent formalization.



Chapter 7

Conclusion

In this thesis we presented the formalization of a variety of aspects of the the-
ory of Gröbner bases in Theorema 2.0, including a completely generic, formally
veri�ed implementation of Buchberger’s algorithm in reduction rings and the
analysis of the algorithm in the bivariate case in the original setting of poly-
nomial rings over �elds. Although neither of these two theories is itself novel,
we still managed to make some contributions (simpli�cations, generalizations,
corrections) to both of them in the frame of our formal treatment.

A substantial portion of reduction ring theory is now available in a fully for-
mal and veri�ed form as a collection of Theorema theories, including all the main
de�nitions, results and algorithms. It is clear, though, that because of the sheer
size of Gröbner bases theory in the original setting, which is a special case of re-
duction ring theory, there are still hundreds of interesting and important results
that are not part of the formalization yet; see Section 7.2 for a list of some of these.
Still, the formalization of reduction ring theory also necessitated the formal rep-
resentation of many elementary mathematical concepts, such as sets, numbers
and tuples, resulting in several independent Theorema theories that may easily
be reused in future theory explorations in Theorema.

The apparent value of all our formalization, of the elementary theories, re-
duction ring theory and the complexity analysis alike, is that it may serve as the
foundation for further (formal and even informal) investigations in the �eld of
Gröbner bases and related subjects. We are convinced that, in general, comput-
erized and certi�ed mathematics bears the prospect of aiding the extension of
existing and the development of completely new theories in many ways.

Nevertheless, our work may also be regarded a major case study of mathe-
matical theory exploration in Theorema. In that sense, we gained a lot of valu-
able experience in how to reasonably structure and build up formal theories and
how to approach extensive formalizations in the �rst place; our concrete �ndings
are summarized in Section 7.1. Moreover, our extensive use of Theorema was the
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main incentive for �nally implementing a couple of strongly needed missing fea-
tures for e�ciently working with the system, listed in Chapter 6. Some of these
features were known to be missing for a long time already or have even been part
of the old version of Theorema (like an environment for interactive proving), but
others, like most of those implemented in the TheoryTools package, seem to not
have attracted the attention of the Theorema project before at all. However, there
are also equally important features that still await being looked at more closely;
some of them are listed in Section 7.2.

7.1 Findings
Below we summarize our most important �ndings from the formal treatment of
reduction ring theory and of the complexity analysis in Theorema. Each of them
might well be relevant for future theory explorations, too.

The �rst �nding concerns functors and domains, and their relation to sets.
As explained in Section 4.1.2, the carrier of a domain does not necessarily have
to be a set (according to the axioms of Zermelo-Fraenkel set theory), necessitat-
ing the explicit use of a separate predicate, isDomain, to characterize domains
whose carriers do constitute sets. Furthermore, we also gave an account on the
duplicate e�ort that is needed when working with domains and sets in parallel,
e. g. because notions have to be introduced once for domains and once for sets.
All this is truly not very elegant and should be addressed more thoroughly in the
future (of course, one could in principle restrict oneself to work with domains
only and completely forget about sets, but this does not seem to be a feasible
solution either, as sets are ubiquitous in mathematics).

The second �nding is related to interactive proof development, as opposed
to automatic proving. Clearly, the ultimate goal of systems like Theorema is
to automate as much aspects, not only of proving but also of theory explo-
ration as a whole, but especially the formalization of the complexity analysis
revealed that proving complicated and technical formulas, at present, cannot be
done (semi-)automatically in a satisfactory fashion in Theorema—even following
Theorema’s paradigm of equipping the reasoning mechanism with tailor-made,
theory-speci�c inference rules.

The third and last major �nding concerns the consistency of Theorema the-
ories. As mentioned at the beginning of Section 6.4.2, Theorema adopts a fairly
liberal point of view toward the way how mathematical content is allowed to
enter the system. This, apparently, entails the danger of introducing inconsis-
tencies, maybe even inconsistencies that are extremely hard to detect (ignoring
issues related to the consistency of the well-established foundations of mathe-
matics, of course). We believe, though, that a mathematical assistant system, like
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Theorema, should not only support its users in proving, computing, solving, etc.,
but also ensure that what the users do really “makes sense”.1 A �rst step in this
direction could be the integration of a type system enforcing the well-typedness
of formulas already when they are entered into the system (and not only when
they appear in proofs).

A problem related to the consistency of mathematical theories is the equally
important problem of establishing the correctness of a given set of inference
rules (e. g. relative to a �xed set of basic inferences). Preliminary research in this
area, in the frame of Theorema 1, has already been conducted in [GB07], but no
concrete implementation has come into existence up to now.

7.2 Future Work
Future work related to the contents of this thesis can be divided into three parts:
work on the theoretical aspects of reduction rings, work on their formalization
(and that of Gröbner bases in general), and work on the Theorema system itself.

7.2.1 Reduction Rings
Regarding the further development of reduction ring theory, two research di-
rections could be of particular interest. On the one hand, one could try to gen-
eralize the commutative setting to non-commutative reduction rings and thus
non-commutative Gröbner bases (of one- and two-sided ideals). Apart from ad-
justing the axioms and perhaps adding new ones, the crucial modi�cation of
the existing formulation would probably a�ect the reduction relation: instead of
multiplying the reductor only by one multiplier from the left, allow for a second
multiplier that is multiplied from the right. In fact, some of the phenomena Gröb-
ner bases theory in non-commutative polynomial rings over �elds exhibits, like
the presence of more than one critical pair for a given pair of polynomials, are
already present in commutative reduction ring theory anyway and should hence
not cause any major di�culties. Other issues, like the non-existence of �nite
Gröbner bases for certain �nitely generated ideals, might have to be addressed
in more detail in connection with non-commutative reduction rings, though.

On the other hand, an interesting question raised recently by Buchberger in
a personal communication is the following: is it possible to generalize the all-
important elimination property of Gröbner bases in polynomial rings (see Sec-
tion 3.5.3) to arbitrary reduction rings without any polynomial structure, and

1Theorema could still o�er opportunities for “experimental” content, as long as it is explicitly
marked as such.
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would this make sense? A quick inspection of the elimination property in poly-
nomial rings reveals that the crucial property of the reduction relation in such
structures probably is

p→q ⇒ lp(q) � lp(p) (7.1)

allowing one to conclude that a polynomial p may only be reduced by polyno-
mials q not involving indeterminates that are greater than those appearing in
p, if a lexicographic term order is used. Generalizing (7.1) to arbitrary reduc-
tion rings, where the notion of “leading power-product” does not exist, might be
challenging.

7.2.2 Formalization
The existing formalization of reduction rings presented in Chapter 4 can be ex-
tended in many ways. First and foremost, there are still some rings that are
known to be reduction rings, like the Gaussian integers, cyclic foldings and the
k-fold direct product of a reduction ring with itself; each of these structures could
be integrated into the formalization. In particular, direct products are essential
for computing Gröbner bases of syzygies, as discussed in Section 3.5.4, which
themselves play an important role in Gröbner bases theory in the original set-
ting.

Furthermore, the original setting of polynomial rings over �elds being a spe-
cial case of reduction rings opens a multitude of opportunities for further ex-
tending the formalization, concentrating now exclusively on the original set-
ting. For instance, applications of Gröbner bases in various areas, e. g. solv-
ing systems of algebraic equations, geometric theorem proving, any many more,
could �rst be formalized as an object-level theory and then employed as certi-
�ed reasoning techniques on the meta level. In addition, the research on the
relation between Gröbner bases and generalized Sylvester matrices conducted by
Manuela Wiesinger-Widi in her PhD thesis [WW15] has the potential of becom-
ing a promising research direction that may pro�t from a formal treatment in a
mathematical assistant system.

7.2.3 Theorema
In connection with Theorema there are at least two possibilities for further en-
hancements that have not been mentioned at all so far in this thesis, the �rst
of these being a direct consequence of interactive proving: if proofs are devel-
oped interactively, there is a dire need for a mechanism that automatically “re-
runs” existing proofs. As it turned out, quite frequently proved theorems have to
be slightly modi�ed to properly incorporate changes in the background theory,
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meaning that it should be possible to take their existing (interactively generated)
proofs and pass them to a tool that somehow “checks” them again, automatically
adjusting inference steps that are not correct any more because of the aforemen-
tioned modi�cations. Of course, the tool envisioned will only be able to cope with
situations where the old- and the new versions of the theorems are su�ciently
close to each other (e. g. equal up to renaming of constants, adding further con-
juncts to conjunctions in the knowledge base, or removing conjuncts from the
proof goal)—but this should su�ce for the vast majority of practical applications.

The second enhancement aims at the automation not only of proving, but of
basically all tasks frequently encountered in theory explorations. Probably the
best example for illustrating this idea is the construction of a quotient algebra
A/∼ (represented, e. g., as a Theorema functor) from a given algebra A and an
equivalence relation ∼. Once su�ciently many facts aboutA and ∼ are known,
i. e. proved by the user, constructing A/∼ and transferring de�nitions and the-
orems from A to A/∼ becomes trivial and may thus be delegated to a tool that
takes care of it fully automatically. Besides constructing quotient algebras, the
envisioned tool could also be employed for de�ning inductive sets, algebraic data
types, (primitive) recursive functions, etc., and for automatically proving simple
facts about these notions following a well-de�ned pattern. Please note that tools
serving precisely this purpose already exist in other mathematical assistant sys-
tems, e. g. Isabelle/HOL [BBD+16, HK13, Wen16].



Appendix A

A Sample Proof in Theorema

Below, we present a sample Theorema-proof of a formula appearing in our for-
malization of the theory of reduction rings. Although the validity of the formula
is quite apparent and the proof thus comparatively short, it nevertheless exhibits
a couple of interesting aspects of both the natural-style presentation of proofs
in Theorema in general, as well as proving in reduction ring theory speci�cally.
Note that the proof presented here, as most other proofs, was developed fully
interactively with our interactive proof strategy discussed in Section 6.3.
Remark 28. The main contents of the screen-shots shown below have not been
modi�ed in any way and precisely illustrate how proof documents in Theorema
look like.

We start with some general remarks on the presentation of proofs in Theo-
rema; see also [BJK+16]:

• Proof documents are displayed in separate notebooks (see Figures A.2 to A.6),
whereas proof trees are visualized in the Theorema Commander window
(see Figure A.1).

• Proof documents are automatically created from abstract proof objects stored
in separate �les, meaning that the informal explanatory text can easily be
adapted even after the proof was constructed; this, in particular, means that
a di�erent language may be chosen (at least if corresponding language data
is installed in Theorema).

• At the beginning of any proof document, the proof goal and the used
knowledge are explicitly summarized (as can be seen in Figure A.2).

• If the cursor is moved over the label of a formula, the whole formula is
displayed in a tooltip (see the tooltip in Figure A.3). Furthermore, formula-
labels are in fact hyperlinks, linking to the �rst occurrence of the respective
formula in the proof document.
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• Every node in the proof tree corresponds to an inference step in the proof.
Clicking on a node selects precisely those cells in the proof document that
explain the corresponding inference.

• The cell brackets at the right of proof documents group together common
parts of proofs, e. g. sub-goals, and hence facilitate navigation and allow
to hide uninteresting parts.

The formula whose proof is presented below is

∀
isReductionRing[R]

∀
∈

DomainSets[R]
[B]

∀
∈
R
[a,b]

a→B
R

b ⇒ a ≡B
R

b (→⊆≡)

in Theory ReductionRings.nb. Informally, it states that for any reduction ringR,
all sets B of ring elements and all ring elements a and b, if a can be reduced to b
moduloB in one step, then a and b are congruent modulo the ideal generated by
B. The knowledge used in the proof includes the de�nitions of ideal congruence
and the reduction relation, and some simple facts about reduction modulo sets
and �nite sums; see Figure A.2 for the complete list.

The proof basically proceeds by unfolding the de�nition if ideal congruence,
instantiating the resulting existentially quanti�ed goal by the (obvious) terms,
and then doing some rewriting modulo known equalities, in particular the two
equalities involving �nite sums; the rest of the proof is completely trivial. Nev-
ertheless, some speci�c remarks are in place:

• As can be seen, the two trivial identities 1 − 1 = 0 and
∑
D

i=1,...,0

f[i] = 0
D

are explicitly included among the assumptions for rewriting. This would
not be necessary: Theorema provides a lot of built-in computation rules
for the most common operations in arithmetic, set theory, etc. that can
be employed in proofs. These built-in rules are not made use of here only
for demonstrating that Theorema does not force its users to rely on any
speci�c built-ins.

• In contrast, the computation of the lengths of tuples happened automat-
ically in the proof: in Figure A.5, after instantiating the existential quan-
ti�er, |〈c〉| is instantly computed to be 1 (the upper endpoint in the sum),
without any explicit inference (e. g. for rewriting) being applied. However,
the original, unsimpli�ed formulas can still be inspected in tooltips, see
Figure A.5.
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Figure A.1: The visualization of the proof tree corresponding to the proof of For-
mula (→⊆≡) in the Theorema Commander.

• Assumptions (sum base) and (sum step minus) are higher-order formulas,
necessitating the use of the higher-order rewriting mechanism presented
in Section 6.1; rewriting modulo these equalities takes place at the bottom
of Figure A.5 and in the middle of Figure A.6.

• The very last step in the proof, depicted in Figure A.6, is the application
of the special inference rule equalityCommRing1 of the ReductionRing-
Prover for simplifying equalities in commutative rings with identity, as
explained in Section 4.5.5. Note that R is known to be a reduction ring
and hence is a commutative ring with identity by de�nition.
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Figure A.2: The �rst part of the proof, where the proof goal and the used knowledge
are summarized.
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Figure A.3: The second part of the proof, where some simple inferences are performed
and de�nitions are unfolded.
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Figure A.4: The third part of the proof, where the existentially quanti�ed goal is instan-
tiated by concrete terms.
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Figure A.5: The fourth part of the proof, where three of the four resulting sub-goals are
shown.



171

Figure A.6: The last part of the proof, where the remaining sub-goal is shown by rewrit-
ing and simplifying an equality inR.
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