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Abstract

How the brain makes sense of a complicated environment is an

important research question to us, and a first step is to be able to re-

constructing the stimulus that give rise to an observed brain response.

Neural coding relates neurobiological observations to external stim-

uli using computational methods. Encoding refers to how a stimulus

affects the neuronal output, and entails constructing a neural model

and parameters estimation. Decoding refers to reconstruction of the

stimulus that led to a given neuronal output. Here we perform neural
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encoding/decoding model for a mixture of multiple stimuli (4 types

of taste: sweet, sour, salty and bitter) using leaky integrate and fire

models describing neural spike trains. Our model’s performance will

be compared to the work of Dr. Kathrin Ohla [1].

1 Introduction

Taste is unique among sensory in its innate association with mechanisms of

reward and aversion in addition to its recognition of quality; Sweet taste

indicates the availability of carbohydrates, salty taste allows electrolyte de-

tection, umami taste serves protein recognition, and sour and bitter tastes

alert us to acids and potentially harmful substances like alkaloids, respec-

tively [2]. This paper performs an opportunity to combine between neuronal

modeling of Human taste and experimental data obtained under controlled

conditions, thanks to the collaboration with the lab of Dr. Kathrin Ohla.

The considered data ara EEG data. A progress in the modeling of human

taste signaling is our first goal. Here, we focus on the last stage of taste

transduction. The four taste qualities (sweet, sour, salty, bitter) contribute

to the membrane voltage that we model as a stochastic process with a dif-

fusion component. Leaky-integrate-and-fire model is our considered model

for the firing mechanism. We would like to remark, that mathematical mod-

els for sensory perception exist in large to small numbers for vision, hearing
1∗Supported by the Austrian Science Fund (FWF), project DK14.
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and olfaction, respectively. Modelling taste perception appears to be not

addressed in the literature.

2 Leaky Integrate-and-fire model

The leaky integrate-and-fire (LIF) models are simple diffusion models for the

dynamics of the membrane potential in single neurons [3][4], the most com-

mon being Ornstein-Uhlenbeck processes (OU) with constant conductance,

leak potential, and diffusion coefficient. However, the model can be extended

by incorporating post-spike currents with a spike-response kernel function [5].

3 Stochastic Stimulus

A stimulus is stochastic if it involves strong noise besides its deterministic

part, such a stimulus is described by a stochastic diffusion process. Decod-

ing a stochastic stimulus requires estimating its parameters and recovering

the realization of the stocchastic stumuli at each time step. Stimuli differ

from each others, a stimulus may define a sound, position of object, smell of

perfume. In our case, a stimulus is defined by a tastant (sweet, sour, bitter

or salty). Those signals are more realistically represented by a stochastic

process than a deterministic functions. In this work we consider mixtures of

stochastic stimuli represented by an OU process evolving continuously over

time.
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4 Neural Decoding

Decoding refers to the problem of how to read out the information con-

tained in a set of spike trains and has both theoretical implications for the

study of neural decoding. The neural decoding plays an important role in

understanding the mechanisms of neurons and the brain. Well-performing

algorithms of decoding involve necessary components of brain-machine inter-

faces [6][7] . Different methods have been used in this area of computational

neuroscience. Some methods focus on regression-related approaches building

linear models between spike trains and the corresponding stimulus by opti-

mal linear estimation(OLE) [8][9]. Machine learning method are also used

for decoding stimulli, i.e., artificial neural networks [10], kernel regression,

and kernel-based neural metrics [11][12]. These methods use general sta-

tistical techniques and exclude the specefic spike-generating mechanism of

the neural response. Contrarily, stimulus decoding employs spiking neural

models that describe the spike generating mechanisms from stimuli [13][14].

Different encoding models can be used. Approximate methods using point

processes treat the spikes in a spike train as sequential random events, which

can be equivalently formulated as generalized linear models (GLM) for model

fitting [14][15]. In the meantime, there exists othe neuorobiological methods

as integrate-and-fire models which study the evolution of the membrane po-

tential. In decoding methods, the encoding models are used in the posterior

distribution to infer the most likely stimuli. Decoding of constant stimu-

lus can be obtained from the posterior distribution by using the Maximum

A Posteriori (MAP) or Sequential Monte Carlo Methods. The decoding of
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temporal stimuli can be discretized as a sequence of constant decoding tasks,

which can be solved by Kalman filtering [16] or particle Monte Carlo methods

[17][18][19][20]. Previous research at the Institute of Stochastics has consid-

ered Kalman filtering and Apprximate Bayesian Computation to estimate

the state and parameters of stochastic differential equations modelling neu-

ronal models. In each case the part of the contribution involved developing

stochastic numerical methods to perform the statistical procedures efficiently.

5 Gustatory Cortex Model

We constructed a GC model by means of attractor dynamics that has been

shown to play effective roles in memory storage and sensory processing [21]

[22]. Assuming that the GC network has 2-dimensional array of GC neurons,

it containsM neurons in each row and N in each column. GC neurons receive

the output of the thalamus, as represented in the figure 2, and represent the

gustatory information of taste quality and intensity. The GC model has two

main simplified features for the anatomical structures of GC. Firstly, the GC

network involves neural units, each has a pair of main neuron (excitatory)

and interneuron (inhibitory) as it is shown in the figure 3. The main neuron

provides an excitatory output for an interneuron, and receives an inhibitory

input. According to [23], the interneurons are distributed in a random man-

ner in the GC and they provide the neighbouring neurons with inhibition.

In the following presented model, the local inhibition from the neihboring

neurons was modeled with an inhibitory paired with GC neurons. Secondly
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is on the connection between the GC neurons. It’s not yet understood how

the GC neurons are connected to each other in the gustatory cortex. Even

though, we assumed that the main neurons are fully connected with excita-

tory synapses, figure 3. In our model, we assume that the connection of GC

neurons is shaped by experience dependent learning. Hence, the only GC

neurons responsive to the same taste quality are strongly connected to each

other after the learning.

The way how the input or external signal determines the membrane voltage

of the receptor neuron (i, j), V GC
ij , is modeled by a stochastic leaky integrate

and fire (LIF) model

dV GC
ij =

[
− 1

τGCij

(
V GC
ij − V0

)
+ Fij + I(t) +H(t)

]
dt+ σdW

Fij =
tm∑
t=t1

∑
kl

ωij,kl(t, td)f(Vkl(t− td))

dV IN
ij

dt
= − 1

τIN

(
V IN
ij − V0

)
+ ωEf(V GC

ij (t))

Where ωij,kl(t, td) is the weight of the synaptic connection from the (k, l)th

GC neuron to the (i, j)th one, with the time delay td. The time delay has

a multiple delays described by t1, t2, . . . , tm, where ti (i = 1−m; m = 10)

take the values of 0 − 9 ms with the time interval of 1 ms. The synaptic

weight ωE is the weight of the excitatory connection from main neuron to

the paired interneuron. τGC and τIN are the time constants of the mem-

brane potentials , V GC
ij and V IN

ij , respectively. The stimulus current I(t)

is shaped from the external stimulus S(t) through a stimulus kernel ks(t);

I(t) =
∫ t
−∞ ks(t)(t− s)S(s)ds. The post-spike current arises from past spikes

convoluted with a response kernel kh(t); H(t) =
∫ t
−∞ kh(t − s)I(s)ds. Here
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I(s) =
∑

τ∈{t1,t2,... } δ (s− τ) represents the spike train, where δ(.) denotes the

Dirac delta function. Here, W = {W (t), t ≥ 0} is a one-dimensional Wiener

process, while the drift componnet and the diffusion coefficient fullfill the nec-

essary global Lipschitz and linear growth conditions to ensure the existence

of the unique solution [24]. Assuming that the stimulus kernel is without

delay, such that ks(t) = δ(t), which implies that I(t) = S(t). The response

kernel is considered to be the difference of two exponentials decaying over

time,

kh(t) = η1e
−η2t − η3e

−η4t

with four positive parameters, η = (η1, η2, η3, η4). By adjusting the parame-

ters, different kernels are obtained.

Figure 1: Realization of the voltage membrane at the GC.
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Figure 2: Taste Pathways
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Figure 3: (b) The neural units of the GC model and their connections. The

ith unit consists of a main neuron, Mi, and an inhibitory neuron Qi. The

main neuron Mi provides the interneuron Qi with an excitation, and the

interneuron Qi gives the neuronMi an inhibition. The main neurons,Mi and

Mj, are connected with the synapses with different time delays, t1, . . . , tm.

6 Likelihood of an Observed Spike Train

We suppose that there are a total of K stimuli inside a neuron, and de-

note by S =
(
S1, S2, . . . , SK

)
. Define, Y as

(
Y 1, Y 2, . . . , Y M

)
, the realiza-

tion of the stimuli and spike trains are respectively s =
(
s1, s2, . . . , sK

)
and

y =
(
y1, y2, . . . , yM

)
. Following the probability-mixing encoding model. the
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stimuls driven current, I(t), follows a probability mixture:

I(t) = Sk(t),with probability αk,

where
∑K

k=1 αk = 1. So, the probability of each spike train is also a mixture

distribution given by,

p(ym|s) =
K∑
k=1

αkp(y
m|sk),

where p(ym|sk), represents the probability of generating spike train ym from

the single stimulus sk, defined as the product of the probability densities of

all spike times ym = (t1, t2, . . . ). However, the dependance between spike

times is accounted for by conditioning on the history of the the past spike

times, denoted by Hti−1,m,

p(ym|sk) =
∏
i

f(ti|sk, Hti−1,m).

f(t|sk, Hti−1) represents the conditional probability density of spiking at a

given time t within the k−th stimulus and the past spike up to the spike time

ti−1. In case of the independance of the spike trains Y =
(
Y 1, Y 2, . . . , Y M

)
,

the likelihood for the realizations y = (y1, y2, . . . , ym) will be given by

p(y|s) =
M∏
m=1

p(ym|s) =
M∏
m=1

K∑
k=1

αkp(y
m|sk),

Decoding of the stochastic stimulus

Considering a stochastic stimulus mixtures, described by stochastic processes

with unknown paramaters. Our aim is both estimating the parameters gov-

erning the law of the k−th stimulus as well as decoding its stochastic realiza-

tion. The stochastic stimuli are described by Ornstein-Uhlenbeck processes,
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for a mixture of K stimuli S =
(
S1, S2, . . . , SK

)
, the k−th stimulus compo-

nent is governed by the folllowing stochastic differential equation,

dSK =
(
µk − Sk(t)

)
dt+ γdW (t)

µk and γ represent parameters of the stimuli, and W (t) is a standard Wiener

process. Note that the drift parameter is a stumlus specific and the diffusion

parameter is considered to be the same for all the stimuli in the mixture.

The parameters describing the stimulus are unknown, namely θ = (γ, µ) ∈

R×RK . For decoding the stumuli, we focus on different statistical methods,

to name filtering and smoothing theories for more details see [25].

6.1 State space model

State space model are class of probabilistic models that describe the proba-

bilistic dependence between the latent state variable and the observed mea-

surement. We use this type of model to describe the dynamical evolution

of the stochastic stimuli. The state space is aimed to include the unknown

stimulus related parameters that are included for the construction of the de-

coding algorithm, besides the stimulus. The stimuli S are continuous states

Markov processes. The transition of the stimuli states is parametrized by

θ = (γ, µ). Denote by Zn = (Sn, θn) the full hidden states, and by zn its

realization. The full states are:

γn common diffusion parameter of all stimuli

βn =
(
β1
n, β

2
n, . . . , β

K
n

)
drift parameter of all stimuli
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Sn =
(
S1
n, S

2
n, . . . , S

K
n

)
value of each stimulus

The index n refers to the current time in the state evolution. Note that the

propagation of the states at time n is given by:

γn ∼ Ntr (γn−1, Vγ)

βkn ∼ N (βn−1, Vβ)

Skn ∼ N
(
Mk

n , V
k
n

)

for k ∈ {1, . . . , K}. The parameters γn and βn follow a Gaussian distribution

with variances Vγ and Vβ. The strength of each stimulus, is updated accord-

ing to the OU model following a Gaussian distribution with the following

mean and variance,

Mk
n =

(
Skn−1 − βkn

)
e−δt + βkn

V k
n = γ2

n

(
1− e−2δt

)
2

.

Given the parameters, the likelihood of the spike train is obtained via the

encoding model. Based on the small discretization of the time interval, we

have to take into account the boundary effects, meaning the time from the

left boundary of the interval to the first spike, and the time from last spike

to the right boundary. Denote by Tb and Te the begining and the end of the

interval, respectively. If yn is not empty, i.e. Tb ≤ t1 < t2 < · · · < tLn ≤ Te.

Given a stimulus S1:n = s1:n, the likelihood of yn is given as follows
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p(yn|sn, sn−1, HTb) =
Ln∏
l=2

g(tl|sn, Htl−1
) (Complete ISI)

× g(t1|sn, sn−1, HTb) (Left Boundary)

×

[
1−

∫ Te

tLn

g(τ |sn, HtLn
)dτ

]
(SP, right boundary),

whre SP means the survival probability. In the absence of spikes, the likel-

hood is given by the survival probability

p(s1:n|y1:n) =

∫
Ω

p(z1:n|y1:n)dθ =

∫
Ω

p(s1:n|y1:n, θ1:n)p(θ1:n|y1:n)dθ,

Where Ω = R× RK is the parameter space.

7 Conclusion

Our goal focuses on setting up a forward backward mathematical model,

encoding decoding model, in order to obatin output similar to the experi-

mental results achieved by Dr. Kathrin Ohla. Both problems require a deep

synthesis of the state-of-art mathematical and neuroscientific expertise.
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2020-06 A. Bostan, F. Chyzak, A. Jiménez-Pastor, P. Lairez: The Sage Package comb walks for
Walks in the Quarter Plane June 2020. Eds.: M. Kauers, V. Pillwein

2020-07 A. Meddah: A stochastic multiscale mathematical model for low grade Glioma spread June

2020. Eds.: E. Buckwar, V. Pillwein

2020-08 M. Ouafoudi: A Mathematical Description for Taste Perception Using Stochastic Leaky
Integrate-and-Fire Model June 2020. Eds.: E. Buckwar, V. Pillwein

2019
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Institute of Applied Geometry

Address:
Johannes Kepler University Linz
Doctoral Program “Computational Mathematics”
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:
office@dk-compmath.jku.at

Homepage:
http://www.dk-compmath.jku.at

Submissions to the DK-Report Series are sent to two members of the Editorial Board
who communicate their decision to the Managing Editor.


