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Abstract

A stochastic multiscale mathematical model for glioma cell mi-

gration as well as proliferation is discussed, taking into consideration

molecular markers such as isocitrate dehydrogenase (IDH) mutations

which was highlighted in the recent updates of the world health organi-

zation (WHO) classification system of central nervous system (CNS).

1 Introduction

Gliomas are the most common primary brain tumors, arising from muta-

tions in glial cells in the human brain. These fast growing tumors invade

adjacent regions of the brain tissue and occur in all age groups. A number of

experimental results have shown that invasion is facilitated by the directed

movement of cells along the aligned neural fiber tracts that form much of the
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white matter. A total resection of the malignant tissue is generally impossible

due to the strong tumor infiltration of the healthy tissue and heterogenous

rate of invasion that leads to a non-sharp edged border undetectable under

current magnetic resonance imaging (MRI).

In fact the invasion of glioma cells in the human brain tissue involves sev-

eral processes at different spatial and temporal scales: from the microscopic

interactions between cancer cells and their micro-environement, through the

intercellular level where individual cell behaviours are presented, up to the

macroscopic setting for the cell population density description.

For these reasons being able to anticipate tumor behaviour, to then decide

what medical approach to follow, can be helpful, time and life saver.

Therefore, using mathematical models can provide a valuable tool for includ-

ing such detailed informations in the process, leading to enhanced forecasts

of the tumor margins and thus an improvement of therapy planning.

Multiple mathematical models for glioma growth have been proposed in the

literature ranging from purely discrete models such as cellular automata (CA)

models which consist of a grid of cells involving only local rules for the evo-

lution of the state of a given element (cancer cell) ie. the transition from one

state to the other which defines the dynamics of the system only depends

on the condition of its spatial neighborhood [2,11]. Totally continuous ap-

proaches [12,6,5] that involve a scheme of various types of reaction-diffusion

partial differential equations that describe the evolution of tumor density in

space and time while ignoring all the interactions that occur at the cellular

level, but, despite that they are less detailed, they are able to capture the

essential features of the modeled processes, and are better suited for efficient

numerical simulations. Since there is no satisfactory representation of tumor

growth by ”pure” models, many hybrid models have been created, which are
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essentially a combination of the two methods taking into account both a dis-

crete system for cell-to-cell interactions and a continuous system for tumor

mass growth [10,7,13,3].

We have reviewed a number of approaches to modelling gliomas and discussed

them with Dr med Philip Rauch, who is a neurosurgeon at the NeuroMed

Campus of the JKU.

In these discussions we have identified a number of issues that are not ad-

dressed in existing models, the construction of an easily scalable model of

tumor growth, which can correctly describes both tumor growth while consid-

ering genetic markers, the invisible migration of certain tumor cells responsi-

ble for the switch from spreading along the white matter fibers to everywhere,

patient specific data and the phenomena of cellular interactions, remains a

real problem in theory and computational biology and related fields.

We chose the model in [1] by C. Surulescu and her group because first it

covers all the the scales from the interactions happening in the cellular and

subcellular level [8] to the macroscale where the tumor behaviour is studied,

they also use diffusion tensor imaging (DTI) which measures the anisotropic

diffusion of water molecules in the brain tissue to increase the precision in

their modelling [9], all the more they integrate randomness into cell migara-

tion without forgetting to take into consideration the particular geometry of

the brain.
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2 Description of the fundamental mathemat-

ical model

The aim of this project is to extend the work done in [1] where they consider

a multi-scale approach for glioma modelling, starting from a description of

the subcellular communication between cancer cells.
dx = vdt.

dv = dS(t, x(t), v(t), z(t)).

dz = −(k+Q(x(t)) + k−)z(t)− f ′(Q(x(t)))v(t).∇xQ(x(t))dt.

Where x(t) is the position of a single cell and v(t) its corresponding velocity.

S(t) is a stochastic process depending on events occurring on the subcellular

scale which depends on time, position, velocity, and the binding status z(t)

which measures the deviation from the steady state in the kinetic equation

happening with a rate k, where k+ and k− denote respectively the attach-

ment and detachment rates of the reversible binding of the surface receptors

to the tissue fiber fraction.

Q(x) is the volume fraction of tissue fibres, and the function f given by

f(s) = k+s
k+s+k−

.

Followed by a mesoscopic description that illustrates the behavior of indi-

vidual cells and their interactions with the underlying anisotropic tissue [2].

The kinetic equation for the density function p(t, x, v, z), depending on time

t, position x ∈ Rn, velocity v ∈ V ⊂ Rn and internal state z ∈ Z ⊂ Rn is

given by:

∂tp(t, x, v, z) + divx(vp)− divz
(

((k+Q+ k−)z + f
′
(Q)v.∇xQ)p

)
= L[λ(z)]p.

where λ is the turning rate such that λ[z] = λ0+λ1z > 0 with a change in the

sign of λ1 to compensate the sign change of z and L[λ(z)] denotes the turning
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operator; a mathematical representation for modelling the velocity changes

of the cells due to the oriented motility response of cells to the anisotropy

in the environment given by L[λ]p = λ
(
q(x, v)

∫
V
p(v

′
)dv

′ − p(v)
)
, where

q : X × V → R is the fiber probability density that describes the oriented

structure of the environment.

At this intermediate scale, one can include a proliferation term P(p) via

cell-tissue interactions.

∂tp(t, x, v, z)+divx(vp)−divz
(

((k+Q+ k−)z + f
′
(Q)v.∇xQ)p

)
= L[λ(z)]p+P(p).

Finally, using the parabolic scaling technique, and the Hilbert expansion for

the moment, they deduce the following macroscopic equation:

∂tM0 − divxdivx(DM0) + divx(gD∇xQM0) = µ(M0)QM0.

where M0 is the macroscopic glioma density given by M0 = m0

q0
− λ1

λ0q0
(qM z

0 −

mz
0), D is the tumor diffusion tensor given by D(x) =

∫
V
v⊗v
λ0
q(x, v̂)dv (see

[1,12] for details), g(x) = λ1
λ0+k+Q+k−

f
′
(Q), and µ is the growth function such

that µ(s) = cg(1− s), for all s ≥ 0 where cg is a growth parameter.

In particular, the tumor diffusion tensor can be made patient specific by

incorporating data from the patient. The group of C. Surulescu has devel-

oped and implemented numerical methods approximating the solution of this

deterministic partial differential equation.
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3 Extension of the model in section 2

• Although the work in [1] covers a good part of tumor modeling such

as the complex geometry of the brain, contact-guided migration where

cells choose their new direction according to the given fiber network, the

growth factor which depends on patient specific data, and taking into

consideration different scales from the cellular level to the macroscopic

description of the tumor, some fundamental issues are not addressed.

For instance low grade glioma is considered an initially slow growing

tumor with an irrevocable tendency to malignant transformation in 7

to 8 years.

• In particular, mutations in IDH1 / 2 are one of the main factors influ-

encing the transition from slow growing low diffusing tumor to more

aggressive deadly one according to the World Health Organization re-

cent updates about the classification of tumors of the central nervous

system (CNS).

• Moreover, based on a discussion with Doctor Philip-Rudolf Rauch, IDH

mutations must be included in the growth factor term.

First ideas in this direction result in the proliferation term becoming a

stochastic process and thus, the whole system a hybrid stochastic/de-

terministic differential equation.

• Apart from this, statistics show that patients with the same histological

diagnosis do not respond to the treatment in the same way and have

a different outcome, so randomness in tumor behaviour arises in this

context and the deterministic differential equation given above should

be coupled with a stochastic process for better prediction of the tumor
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upgrowth.

• Another problem that should be taken into account is the border of

the tumor, unfortunately the glioma does not have the limited visible

perfectly clear border but rather an irregular unsharped border due

to the finger-like spreading, so a good mathematical model should in

one hand describe the visible tumor density with all the characteris-

tics which influence its growth, then predict the random branching-like

spreading at the border of the visible mass, using stochastic branching

processes.

• In order for this work to be useful in the context of medicine, the

numerical analysis of this 3D model must be studied, for that I aim to

collaborate with the team of DK14, who have expertise in numerical

methods for partial differential equations, I will also collaborate with

Luca Gerardo Giorda who in particular has already worked with a

similar model in dimension 2.1

1This research was partially supported by the Austrian Science Fund (FWF): W1214-

N15, project DK14.
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