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Abstract. We define a specific type of 3D-model for moving graphs which we
call L-model, the collision graph and induced collision graph of a given moving
graph. We prove that if the edge set of a moving graph can be partitioned into
two parts, such that the induced collision graph of both parts have no cycle,
then there exists a collision-free L-model of the given moving graph. We also
give algorithms showing how to get this height arrangement. In particular, we
prove that any Dixon-1 moving graph has a collision-free L-model. Also, we
prove that Dixon-2 moving graph has no collision-free L-model.

1 Introduction

Given a graph G = (V,E), if we parametrize the position of each vertex v in the plane
as v(t) = (xv(t), yv(t)) such that the distance between vi(t) and vj(t) is a constant if
vivj ∈ E, then this graph is called a moving graph. Examples of moving graphs can be
found in [4], [2].

For a connected moving graph M , a realization of an L-model of M consists of
vertical sticks and horizontal sticks. There is a 1 to 1 correspondence between vertical
sticks and the vertex set of M ; similarly for horizontal sticks and the edge set of M .
There are joint structures at both ends of horizontal sticks so that they can be connected
with vertical sticks. Figure 1 shows a realization of an L-model.

Fig. 1. Here is an L-model of a moving graph K3,3. The edges correspond to sticks with holes,
and the vertices correspond to gray columns.

? The research was funded by the Austrian Science Fund (FWF): Grant no.W1214-N15,
project DK9.



One observes collision at the time when a vertex hits an edge. The collisions depend
on the choice of heights of the horizontal sticks. Note that edge intersection is possible in
some moving graphs. We can avoid this situation simply by setting all edges (horizontal
sticks) to different heights. In this paper, we give a criterion which, when fulfilled,
allows to avoid collisions by choosing the heights of edges (horizontal sticks) properly in
an L-model of a moving graph. With this criterion we prove there exists a collision-free
L-model for every Dixon-1 moving graph. In addition, we prove that Dixon-2 moving
graphs cannot be realized in any L-model corresponding to it.

A result [1] by Abel et al. shows that any polynomial curve can be traced by a
non-crossing linkage. Our result differs from them in the sense that we generate a
motion (Dixon1), not just trace a curve. Another relevant result [3] is by Gallet et al.
They provide an algorithm which produces linkages realizing a planar motion without
collision. Our work differs from them in the sense that we consider arbitrary moving
graphs, not just those arise from their version of Kempe.

2 Problem statement

For a clear problem statement we need to introduce some definitions first.

Definition 1 (moving graph). A moving graph is a pair M = (G,F ), where G =
(V,E) is a graph and F = {fv : R→ R2, t 7→ (xv(t), yv(t))|v ∈ V, ‖fvi

(t)− fvj (t)‖ is a
constant if vivj ∈ E}.

Definition 2 (collision in a moving graph). Let M = (G,F ) be a moving graph,
where G = (V,E). Vertex vk ∈ V collides with edge vivj ∈ E if and only if the equation
‖fvk(t) − fvi(t)‖ + ‖fvk(t) − fvj (t)‖ = ‖fvi(t) − fvj (t)‖ has solution(s) in R, where
fvk

, fvi , fvj ∈ F and then (vk, vivj) is called a collision pair in M .

Definition 3 (L-model). Let M = (G,F ) be a moving graph, where G = (V,E). An
L-model of M is a pair L = (M,h), where h : E → Z is a function assigning to each
edge of G an integer height value.

Definition 4 (collision-free L-model). Let L = (M,h) be an L-model, where M =
(G,F ) and G = (V,E). L is collision-free if and only if

h(vivj) /∈ [ min
vvk∈E

h(vvk), max
vvk∈E

h(vvk)]

for any collision pair (vk, vivj) in M .

The problem we focus on in this paper is: Given a moving graph M, how to
find a collision-free L-model for it.

3 Collision detection

We have a collision-detection program, the algorithm of which is described in Algorithm1.
For a moving graph M = (G,F ) where G = (V,E), apply Algorithm 1 and then we

get the collision information of M . We implement our algorithm in Mathematica [5].



Algorithm 1: collision-detection program
Input : function set F of a moving graph M = (G,F ), where G = (V,E)
Output : Collision pairs in M

1 for i = 0 to |V |
2 for j = 0 to |E|
3 if is a collision pair(solve equation in Definition 2) in M
4 print (vi, ej)

Example 1. Consider one example from the class of Dixon-1 moving graphs [7], denote
it as M , M = (G,F ), G = (V,E). It is a complete bipartite graph with 7 vertices. Two
independent sets of V are {1, 2, 3, 4} and {5, 6, 7}.

Functions in F are:
f1(t) = (sin t, 0),
f2(t) = (

√
1 + sin2 t, 0),

f3(t) = (−
√
2 + sin2 t, 0),

f4(t) = (
√
3 + sin2 t, 0),

f5(t) = (0, cos t),
f6(t) = (0,

√
1 + cos2 t),

f7(t) = (0,−
√
2 + cos2 t).

Apply the collision-detection program, we get the collision pairs in M :
(1, 52), (1, 53), (1, 54), (2, 54), (5, 61), (5, 71).

4 Sufficient condition for the existence of a collision-free
L-model

After collecting the collision information for the given moving graph, we want to describe
these information in a nicer way.

Definition 5 (collision graph). Let M = (G,F ) be a moving graph, where G =
(V,E). The collision graph of M , denoted as graph C, is C = (VC , EC), where VC = E
and −−→eiej ∈ EC if and only if at least one of the vertices of ei collide(s) with edge ej in
M .

Remark 1. Note that the collision graph is a directed graph.

Definition 6 (induced collision graph). For a moving graph M = (G,F ), where
G = (V,E). S ⊂ E, the collision graph of M induced by S is C[S], the subgraph of C
induced by S, where C is the collision graph of M .

Example 2. We continue with Example 1. From collision information collected in
Example 1, we construct the collision graph C as is shown in Figure 2.

Definition 7 (partition condition). Let C = (VC , EC) be a directed graph. If there
exists a bi-partition of VC into V1 and V2 such that C[V1] and C[V2] both are acyclic,
then we say C fulfills partition condition.



Fig. 2. Here is the collision graph of M - a Dixon-1 moving graph of K3,4. A directed edge
(ij)→ (kl) means either (i, kl) or (j, kl) is a collision pair in M .

Theorem 1. Let M = (G,F ) be a finite moving graph, where G = (V,E). C =
(VC , EC) is the collision graph of M . If C fulfills partition condition then there exists a
collision-free L-model of M .

First we introduce two algorithms contructing the height function for the vertex
set, given an acyclic directed graph.

Definition 8 (height order). Given an acyclic directed graph U , the height order <
on the vertex set of U is defined as: i < j if and only if there is a (directed) path from i
to j.

Remark 2. It is a strict weak order.

Proposition 1. For a finite acyclic directed graph U = (V,E), there exist at least one
minimal element in V with respect to height order.

Proof. If there is no minimal element in V under height order, then there is a infinite
chain v1 > v2 > ... in V . Since there is no cycle in U , so all the elements in this chain
are pairwise distinct. This contradicts to the finiteness of |V |. ut

Proof (termination of Algorithm 2 and Algorithm 3). If graph C is not empty, by
Proposition 1 there must exist at least one minimal vertex under height order. So S
is not be empty at the beginning. By "Step 2", the graph strictly reduces. Since the
given graph is finite, both algorithms terminate. ut

Proposition 2. Let M = (G,F ) be a moving graph that fulfills the condition in
Theorem 1 and two induced collision graphs are CL and CU . After applying Algorithm 2
to CU , Algorithm 3 to CL, we get a collision-free height function for an L-model of M.



Algorithm 2: algorithm for constructing the height function for elements in
VC
Input : a finite acyclic directed graph C = (VC , EC)
Output : height values for VC , here we denote height function as h
– Initialization: k := 1.
– Step 1: S:= collection of all minimal vertices in the vertex set of graph C under height

order.
– Step 2: Replace C by C[VC − S], where C[VC − S] is the subgraph of C induced by

VC − S.
– Step 3: If S = ∅, go to Step 4; Otherwise, pick one element r in S, set h(r) := k. Replace

S by S − {r}. k := k + 1, go to Step 3.
– Step 4: If C = ∅, return h; Otherwise, go to Step 1.

Algorithm 3: algorithm for constructing the height function for elements in
VC
Input : a finite acyclic directed graph C = (VC , EC)
Output : height values for VC , here we denote height function as h
– Initialization: k := 0.
– Step 1: S:= collection of all minimal vertices in the vertex set of graph C under height

order.
– Step 2: Replace C by C[VC − S], where C[VC − S] is the subgraph of C induced by

VC − S.
– Step 3: If S = ∅, go to Step 4; Otherwise, pick one element r in S, set h(r) := k. Replace

S by S − {r}. k := k − 1, go to Step 3.
– Step 4: If C = ∅, return h; Otherwise, go to Step 1.



Proof. We start our consideration from graph M = (G,F ) where G = (V,E). First
divide its edges into two parts, EU and EL. Now we consider part EU (the upper part,
also the vertices of CU ): For any edge i (of graph G) in EU , for all the vertices that
collide with i, there is a direct edge from those edges containing at least one of these
vertices to i in the corresponding graph CU . So they are less than i under height order.
By Algorithm 2, they are strictly lower than i. So i is outside of the range of all vertices
that could collide with it.

Now we consider part EL (the lower part,also the vertices of CL): For any edge i in
part EL, for all the vertices that collide with i, there is a direct edge from those edges
containing at least one of these vertices to i in the collision graph CL. So they are less
than i under height order. By Algorithm 3, these edges are strictly higher than i. So i
is outside of the range of all vertices that could collide with it.

For any edge i in part EU , if some vertex j in part EL collides with i. There are two
cases: j also shows up in EU ; j only shows up in EL. For the second case, we know the
range of vertex j is limited within part EL, but edge i is in part EU . By our algorithm,
height of i is outside of the range of vertex j. For the first case, since all the edges that
contain j in part EU already are lower than edge i. It is obvious that all the edges that
contain j in part EL are also by height lower than i, so i is outside of the range of these
vertices. As for the case when some vertex j in part EU collides with any edge i in part
EL, the argument is analogous.

By now, we finish the analysis for all situations, and we have shown that Algorithm 2
and Algorithm 3 together provides us a collision-free height arrangement in the L-model
for moving graph M . ut

Proof (proof of theorem 1). Given two acyclic collision graphs CL and CU ofM induced
by EU and EL, respectively. Apply Algorithm 2 and Algorithm 3, we get a collision-free
height arrangement for edges of M in its corresponding L-model. Theorem 1 follows
from Proposition 2. ut

We continue with Example 1, apply Algorithm 2 and 3 to it.

Example 3. We partition edges of M into two parts:

EU = {51, 52, 53, 54}, EL = {61, 62, 63, 64, 71, 72, 73, 74},

then from this two parts we construct the induced collision graphs CU and CL, respec-
tively.

After applying Algorithm 2 and Algorithm 3, we get a collision-free height ar-
rangement for a corresponding L-model as: h(54) = 4, h(53) = 3, h(52) = 2, h(51) =
1, h(61) = 0, h(62) = −1, h(63) = −2, h(64) = −3, h(71) = −4, h(72) = −5, h(73) =
−6, h(74) = −7.

M in this example is just one graph from the Dixon-1 moving graph family. In the
next section we discuss this family of moving graphs.

Theorem 2. The converse statement of Theorem 1 does not hold. That is to say, there
exists a moving graph M = (G,F ) where G = (V,E) that has a collision-free L-model
but we cannot partition E into two parts such that the induced collision graph of M in
both parts are acyclic.



Fig. 3. Here on the left is the collision graph of M induced by {51, 52, 53, 54} and on the right
is the collision graph of M induced by {61, 62, 63, 64, 71, 72, 73, 74}.

Proof. We show a counter-example which we call S2 moving graph [6]. Let M = (G,F ),
where G = (V,E), V = {vi|1 ≤ i ≤ 8, i ∈ N}, E = {v1v2, v1v4, v1v5, v8v2, v8v4, v8v5,
v3v2, v3v4, v3v5, v1v7, v7v6, v5v6, v4v6}.

F = {fvi : R→ R2, t 7→ (xvi(t), yvi(t))|1 ≤ i ≤ 8, i ∈ N}.

In the following functions we have a = 1, b = 11
5 , c = 3

2 :

fv1(t) = (−a cos t−
√
b2 − a2 sin2 t,−a sin t−

√
c2 − a2 cos2 t),

fv2(t) = (a cos t−
√
b2 − a2 sin2 t,−a sin t+

√
c2 − a2 cos2 t),

fv3(t) = (a cos t+
√
b2 − a2 sin2 t, a sin t+

√
c2 − a2 cos2 t),

fv4(t) = (−a cos t+
√
b2 − a2 sin2 t,−a sin t+

√
c2 − a2 cos2 t),

fv5(t) = (−a cos t+
√
b2 − a2 sin2 t, a sin t−

√
c2 − a2 cos2 t),

fv6(t) = (−3a cos t+
√
b2 − a2 sin2 t,−a sin t−

√
c2 − a2 cos2 t),

fv7(t) = (−3a cos t−
√
b2 − a2 sin2 t,−a sin t− 3

√
c2 − a2 cos2 t),

fv8(t) = (−a cos t−
√
b2 − a2 sin2 t, a sin t+

√
c2 − a2 cos2 t).

After applying our collision-detection program, we get collision pairs in M as:
(v6, v1v5), (v3, v1v4), (v8, v1v2), (v8, v2v3), (v4, v2v3), (v4, v3v5), (v6, v3v5), (v3, v4v6),

(v5, v4v6), (v3, v4v8), (v2, v4v8), (v2, v5v8), (v6, v5v8), (v5, v6v7).

One can easily check that h(v6v7) = 0, h(v1v4) = 1, h(v4v6) = 2, h(v4v8) =
3, h(v3v4) = 4, h(v5v6) = 5, h(v5v8) = 6, h(v1v5) = 7, h(v1v7) = 8, h(v3v5) = 9, h(v2v8) =
10, h(v2v3) = 11, h(v1v2) = 12 is a collision-free height arrangement for an L-model of
M .

However, from the collision information of M , we know that in its collision graph
C = (VC , EC), −−→e1e2,−−→e2e1,−−→e1e3,−−→e3e1,−−→e2e3,−−→e3e2 ∈ EC , where e1 = v2v3, e2 = v4v6, e3 =
v5v8. Then no matter how we try to bi-partition VC , we will get two of e1, e2, e3 in one
partitioned group in which there is a multi-edge (cycle) in the induced collision graph.



So we cannot partition VC into two parts such that the induced collision graph of both
parts are acyclic. ut

To sum up this section, how to decide whether a given moving graph has a collision-
free L-model? We need to go through the following steps:

– 1) Collect collision information of the given moving graph M , namely the collision
pairs in M .

– 2) Construct the collision graph of this moving graph, denote it as C.
– 3) Decide whether C fulfills partition condition. If yes, with our algorithm we can

get a collision-free height arrangement for the corresponding L-model and we can
construct it.

Remark 3. In the above steps, step 3) lacks an algorithm.

Definition 9 (multi-edged subgraph). Let C = (V,E) be a directed graph. Collect
all vertices that are contained in at least one multi-edge in set S, substitute all multi-
edges in C[S] with a single non-directed edge. Then we get the multi-edged subgraph
of C.

Example 4. We give an example with Figure 2, denote the graph in it as C. The
multi-edged subgraph C1 of C is shown in Figure 4.

Fig. 4. Here is the multi-edged subgraph C1 of graph C which is shown in Figure 2.

Now we give an algorithm for deciding whether C fulfills partition condition.

5 Dixon-1 graph

In this section we focus on Dixon-1 moving graph family.
Let m,n be positive integers. The graph is Km,n, the complete undirected bipartite

graph withm+n vertices. Fix real numbers 0 < a1 < ... < am−1 and 0 < b1 < ... < bn−1,
a0 = b0 = 0. Two independent sets of vertices are {p0, ..., pm−1} and {q0, ..., qn−1}. At
time t, the coordinates of vertices of graph Km,n are:

fp0
(t) = (sin t, 0),

fpi(t) = (±
√
ai + sin2 t, 0), for i = 1, 2, ...,m− 1

fq0(t) = (0, cos t),



Algorithm 4: algorithm for deciding whether C fulfills partition condition
Input : a directed graph C = (VC , EC)
Output : If C fulfills partition condition, output the partition on VC ; otherwise,

output "NO".
– Step 1: Construct the multi-edged subgraph of C, denote it as U = (VUEU ).
– Step 2: If U is not bipartite, return "NO"; otherwise, go to Step 3.
– Step 3: Find all bi-partitions for U , denote these bi-partitions as sequence B1, ..., Bm,

denote the Bi as (pi, qi). List all possible bi-partitions for vertices in VC \ VU as
B′

1, ..., B
′
k, denote B′

i as (p′i, q′i). For i from 1 to m, for j from 1 to k, check whether
(pi ∪ p′j , qi ∪ q′j) is a partition of VC such that the induced subgraph of both parts are
acyclic. If any of them does fufill, return this partition and quit; otherwise, return "NO".

fqj (t) = (0,±
√
bj + cos2 t), for j = 1, 2, ..., n− 1.

For convenience, we represent distance between two vertices v1, v2 as |v1v2| instead
of ‖fv1(t)− fv2(t)‖. Also, we denote the first coordinate (x-coordinate) of a vertex v as
v|x instead of fv(t)|x and the second coordinate (y-coordinate) of it as v|y instead of
fv(t)|y.

Theorem 3. A Dixon-1 moving graph has and only has these four possible collision
situations:

– 1) p0 collides with all edges containing vertex q0 except for edge p0q0.
– 2) pi(i > 0) collides with all edges pkq0, where k > i and pk|x · pi|x > 0.
– 3) q0 collides with all edges containing vertex p0 except for edge p0q0.
– 4) qi(i > 0) collides with all edges qkp0, where k > i and pk|y · pi|y > 0.

Proof. |p0q0| + |p0pi| = |piq0|(i > 1) has solution in R, so collision in 1) exists. If p0
collides with pkql(k > 0, l > 0), then ql|y = 0. But l > 0, |ql|y| =

√
bl + cos2 t 6= 0(bl >

0). This is a contradiction. So p0 does not collide with edges not containing q0.
|q0pi| + |pipj | = |q0pj |(j > i, i > 0, pj |x · pi|x > 0) has solution in R, so collision

in 2) exists. If pi(i > 0) collides with pkql(k > 0) and pk|x · pi|x < 0, w.l.o.g., assume
pi|x > 0, pk|x < 0. Then the collision leads to pk|x ≥ 0. This is a contradiction! If
pi(i > 0) collides with pkql(0 < k < i). Obviously we have |qlpk| < |qlpi|. Collision
leads to |qlpk| ≥ |qlpi|. This is a contradiction! If pi(i > 0) collides with those edges
pkql(l > 0), pk|x ·pi|x > 0 (k > i). Since pi|y = pk|y = 0, collision leads to ql|y = 0(l > 0).
However, |ql|y| =

√
bl + cos2 t 6= 0 (bl > 0). This is a contradiction. Hence pi(i > 0)

only collides with all edges pkq0, where k > i and pk|x · pi|x > 0.
Because of the generalized symmetry of Dixon-1 moving graph, proof for 3) and 4)

is analogous. ut

Theorem 4. Every Dixon-1 graph has a collision-free L-model.

Proof. From the analysis above, we know that if for a given Dixon1 moving graph
M , all the pi(1 ≤ i ≤ m − 1) have the same sign in the x−coordinate and all the
qj(1 ≤ j ≤ n − 1) have the same sign in the y−coordinate. Then the set of collision



pairs in M is strictly contained in the set of collision pairs in other Dixon-1 graphs that
are isomorphic to it. W.l.o.g., we just need to analyze this situation.

First, I divide the edges into two groups as the following:
EU : {q0p0, q0p1, ..., q0pm−1}
EL: {q1p0, q1p1, ..., q1pm−1, q2p0, q2p1, ..., q2pm−1, ..., qn−1p0, qn−1p1, ..., qn−1pm−1}

In part EU , in the induced collision graph CU , there is a directed edge from q0p0
to all the other vertices. There is a directed edge from q0pi(i > 0) to all q0pk(k > i).
Apparently there is no cycle in CU . In part EL, in the induced collision graph CL, there
is a directed edge from all qipl(i > 0, l can take values from 0 to m) to qkp0 if and only
if k > i. From Theorem 3 we know that these are all the edges in the collision graph in
part EL. Since all edges are directed from some edge with lower q-vertex corner index
to some edge with strictly higher q-vertex coner index, so there is no cycle in it.

Apply Algorithm 2 and Algorithm 3, we get: h(q0pi) = i + 1 and when i > 0,
h(qipl) = −(i− 1)(m+ 1)− l.

From Theorem 1, Theorem 3, Algorithm 2, Algorithm 3 and our analysis above, we
obtain that this height arrangement can realize a collision-free L-model for all Dixon-1
moving graphs. ut

6 Dixon-2 graph

In this section we discuss another class of moving graphs, Dixon-2 moving graph [7].
The vertex-set is : {1, 2, 3, 4, 5, 6, 7, 8}. It is K4,4 and the two independent sets

of vertex-set are {1, 2, 3, 4}, {5, 6, 7, 8}. The coordinates of vertices are(a, b, c, d ∈ R+,
c > d > a, b > a):

f1(t) = (
a·cos t+

√
b2−a2 sin2 t

2 , a·sin t+
√
d2−a2 cos2 t
2 ),

f2(t) = (−a·cos t+
√

b2−a2 sin2 t

2 , a·sin t+
√
d2−a2 cos2 t
2 ),

f3(t) = (−a·cos t+
√

b2−a2 sin2 t

2 ,−a·sin t+
√
d2−a2 cos2 t
2 ),

f4(t) = (
a·cos t+

√
b2−a2 sin2 t

2 ,−a·sin t+
√
d2−a2 cos2 t
2 ),

f5(t) = (
−a·cos t+

√
b2−a2 sin2 t

2 , −a·sin t+
√
d2−a2 cos2 t
2 ),

f6(t) = (−−a·cos t+
√

b2−a2 sin2 t

2 , −a·sin t+
√
d2−a2 cos2 t
2 ),

f7(t) = (−−a·cos t+
√

b2−a2 sin2 t

2 ,−−a·sin t+
√
d2−a2 cos2 t
2 ),

f8(t) = (
−a·cos t+

√
b2−a2 sin2 t

2 ,−−a·sin t+
√
d2−a2 cos2 t
2 ),

If we denote the coordinates of 1 by (x1, y1) and the coordinates of 5 by (x2, y2),
then x1, y1, x2, y2 fulfills the following system of equations, where x1, x2, y1, y2 > 0
always holds. The coordinates of other vertices are obtained by changing the sign of
some of the coordinates in vertex 1 or 5.



(x1 − x2)2 + (y1 − y2)2 = a2

(x1 + x2)
2 + (y1 − y2)2 = b2

(x1 + x2)
2 + (y1 + y2)

2 = c2

(x1 − x2)2 + (y1 + y2)
2 = d2

Theorem 5. For a Dixon-2 moving graph, collision only happens at these six moments:

– when vertex 1 collides with edge 52;
– when vertex 1 collides with edge 54;
– when vertex 1 collides with edge 53;
– when vertex 5 collides with edge 16;
– when vertex 5 collides with edge 18;
– when vertex 5 collides with edge 17.

To sum up, vertex 1 collides with all edges containing vertex 5 except for edge 15; Vertex
5 collides with all edges containing vertex 1 except for edge 15. Situations for the other
vertices are symmetrically analogous.

These are all the possible collisions for any Dixon-2 moving graph.

Proof. For convenience, we represent distance between two vertices x, y as |xy| instead
of ‖fx(t)− fy(t)‖. When vertex 1 collides with edge 52, we have

|15|+ |12| = |52| ⇐⇒√
(x2 − x1)2 + (y2 − y1)2 + 2x1 =

√
(x2 + x1)2 + (y2 − y1)2.

x1 = b−a
2 , x2 = a+b

2 , y1 = y2 =
√
d2−a2

2 ⇐⇒ t = 2kπ, ∀k ∈ Z

Since we get real number solutions satisfying the defining equation system, so this
collision happens. This collision situation is shown in the left picture in Figure 5. We
solve similarly for the other five cases. As is shown in Figure 6.

Fig. 5. 1→52(left), 5→16(right)



Fig. 6. 1→54(left top), 5→18(right top), 1→53(left bottom), 5→17(right bottom)

Take vertex 1 (or 5) for example, vertex 1 (or 5) actually collides with all edges
containing vertex 5(or 1), except for edge 15. Since in our pre-condition, x1, y1 > 0
(x2, y2 > 0 ) always holds, it is impossible for vertex 1 (or 5) to collide with edges that
does not show up in the first quadrant. From the definition we know that all edges
containing vertex 5 (or 1) are exactly all edges that show up in the first quadrant. So
vertex 1 (or 5) does not collide with any other edges. Because of the symmetry property
of Dixon2 graph, proof for any other vertex is analogous. ut

Lemma 1. If there is collision-free L-model for a moving graph, then there exists a
height arrangement of the model such that all edges have different height values.

Proof. If there is a collision-free L-model of a moving graph, then we can always split
those edges that are in the same layer so that we finally obtain a collision-free L-model
of the graph where all edges have different height values. One can check the collision
situation is not influenced by this split manipulation. ut

Theorem 6. There is no collision-free L-model for Dixon-2 moving graphs.

Proof. Suppose there is a height arrangement that realizes a collision-free L-model for
Dixon-2 moving graph. By Lemma 1, we can always assume all edges have different
height values.

Denote height function as h. If h(15) > h(1s) > h(5t), where s 6= 5 and t 6= 1,
then edge 1s is within the range of vertex 5. Since vertex 5 collides with all edges
containing 1 (except for 15), 5 also collides with edge 1s. This is a contradiction. If
h(15) < h(5s) > h(1t), where s 6= 1 and t 6= 5, then edge 5s is within the range of
vertex 1. Since vertex 1 collides with all edges containing 5 (except for 15), 1 also
collides with edge 5s. This is a contradiction. Thus, there cannot be any other edges
containing vertex 1 lying in between edge 15 and any other edges containing vertex 5.



Also, there cannot be any other edges containing vertex 5 lying in between edge 15 and
any other edges containing vertex 1. To conclude, range of vertex 1 and range of vertex
5 must only intersect on edge 15, i.e., 15 must be on the boundary of range of vertex
1 and range of vertex 5. W.l.o.g., assume edges containing 1 (except for edge 15) are
all higher than the heights of edges containing 5 (except for edge 15). Then we obtain
h(1x) > h(1y) > h(1z) > h(15) > h(5u) > h(5v) > h(5w), where {x, y, z} = {6, 7, 8},
{u, v, w} = {2, 3, 4}.

Now I claim that h(47) > h(53). Suppose this does not hold, i.e., h(47) < h(53).
Then we obtain h(17) > h(53) > h(47). Now we see that edge 53 is within the range of
vertex 7. Since vertex 7 collides with all edges containing 3 (except for edge 37), this is
a contradiction. So we have h(47) > h(53). Now I claim that h(38) > h(54). Suppose
this does not hold, i.e., h(38) < h(54). Then we obtain h(18) > h(54) > h(38). Now we
see that edge 54 is within the range of vertex 8. Since vertex 8 collides with all edges
containing 4 (except for edge 48), this is a contradiction. So we have h(38) > h(54).

Then we try to arrange the heights of edge 47 and 38. If h(47) > h(38), then we
have h(47) > h(38) > h(54). Now we see that edge 38 is within the range of vertex
4. Since vertex 4 collides with all edges containing 8 (except for edge 48), this is a
contradiction. If h(47) < h(38), then we have h(53) < h(47) < h(38). Now we see that
edge 47 is within the range of vertex 3. Since vertex 3 collides with all edges containing
7 (except for edge 37), this is a contradiction. Hence, no matter how we arrange edge
47 and edge 38, there must be some collision!

Hence, there is no zero-collision L-model realization for Dixon2 moving graph. ut

Corollary 1. Dixon-2 moving graph does not fulfill the condition in Theorem 1. That
is to say, there is no partition of the edges of Dixon-2 moving graph into two parts EL,
EU , such that the induced collision graphs CL(by EL) and CU (by EU ) both are acyclic.

Proof. Suppose not, then by Theorem 1 there is a height arrangement for the an L-model
of Dixon-2 moving graph such that there is zero collision. However, this contradicts
with Theorem 6. ut
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