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Approximately C1-smooth Isogeometric
Functions on Two-Patch Domains

Agnes Seiler, Bert Jüttler

Abstract Motivated by the promising recent results concerning the construction of
smooth isogeometric functions on multi-patch domains on bilinearly parameterized
domains [14] or reparameterizations of more general domains [5], which, however,
impose quite restrictive assumptions on the underlying domain, we propose two ap-
proaches to construct spaces G1,ε

h
of approximately C1-smooth isogeometric func-

tions on general two-patch domains. The main idea is to work with C0-continuous
functions and to bound the jump of their gradients across the interface between
neighboring patches. The constructions are based on two suitably chosen bilinear
forms B1 and B2 and their eigenstructures, which lead to different bounds on the
gradient jumps, respectively. We show that while the gradient jumps of the func-
tions based on B1 fulfill a stricter bound, the functions themselves do not realize
optimal convergence rates. Numerical experiments suggest that the functions based
on B2 reach the optimal approximation order for solving second order problems.
Furthermore, they are smooth enough to solve higher order problems such as the
biharmonic equation. However, the bound on their gradient jump is mesh-size de-
pendent.

1 Introduction

Isogeometric Analysis, introduced in 2005 by Hughes et al. [6], is an approach to
numerical simulation via partial differential equations (PDEs). The computational
domain is represented by a spline parameterization, which is called the geometry
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mapping. The discretization relies on isogeometric functions, which serve as test
functions in the weak form of the problem. They are obtained by concatenating
the basis functions that contribute to the parameterization of the geometry with the
inverse geometry mapping. Hence, Isogeometric Analysis (IgA) does not need a
triangulation of the domain. Since it directly uses a spline parameterization to define
the discretization, it is said to close the gap between the CAD representation of the
geometry and numerical analysis [6].

Another advantage of IgA consists is the increased smoothness of the discretiza-
tion compared to standard finite elements. Within the patches, isogeometric func-
tions are typically Cp−1 smooth. This facilitates the discretization of higher order
problems. While simple physical domains can be parameterized by a single ge-
ometry map, more complicated ones will be represented as a collection of several
patches, each of which with its own parameterization. In this case, the multi-patch
structure of the domain has to be taken into account, since the isogeometric func-
tions are not automatically smooth across patch interfaces. Thus, appropriate cou-
pling methods are required.

Standard coupling methods from the finite element literature carry over to
multi-patch isogeometric discretizations. These methods work with broken Sobolev
spaces, where weak differentiability across patch interfaces is not guaranteed. Suit-
able coupling terms are added to the weak form of a partial differential equation. For
instance, the mortar method [2, 3], Nitsche Mortaring [16, 19] or the discontinuous
Galerkin method [15, 17] perform the coupling via average and jump terms. Those
terms need to be adapted to the order of the problem. While it suffices to consider the
jump of function values for second order problems, fourth order problems require
to take the difference of the normal derivatives into account. More generally, via the
relation between a coercive bilinear form of an elliptic problem and its equivalent
quadratic optimization problem, suitable methods from non-linear optimization can
be applied to the coupling problem [8].

This paper explores a different approach, which is based on approximately
smooth isogeometric test functions on the entire domain. Consequently, no mod-
ification of the variational form is required.

The coupling of isogeometric discretization across patch interfaces recently at-
tracted substantial interest:

• C0-coupling of isogeometric functions can be performed easily by identifying
the coefficients of neighboring basis functions along an interface.

• The construction of C1-smooth test functions, which are useful for higher or-
der problems, is considerably more complicated. Recent results rely on the re-
lation between geometric continuity of a graph surface and the smoothness of
the associated functions [7, 14]. However, C1-constructions are based on cer-
tain assumptions about the parameterization of the underlying domain, which
are needed to ensure sufficient flexibility of the resulting discretizations. For in-
stance, in [9, 14], the authors use bilinear or bilinear-like parameterizations. A
reparameterization is needed for more general domains [5, 10]. A numerical ap-
proach to the computation of C1-smooth discretization is presented in [4].
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• These results have partially been extended to C2-smooth isogeometric discretiza-
tions [11, 12, 13].

In order to avoid the limitation to bilinear-like parameterizations, we relax the con-
struction by considering approximate C1 smoothness of isogeometric functions on
multi-patch domains. This enables us to generate function spaces on general (not
bilinear-like) domains. Our construction is based on suitably chosen bilinear forms.
More precisely, we explore two different forms and obtain two different function
spaces. Starting from globally C0-smooth functions, we provide bounds on the gra-
dient jump of the corresponding approximately C1-smooth isogeometric functions.

The remainder of this paper is organized as follows: Section 2 introduces the no-
tation and the two different bilinear forms B1 and B2. The next section describes the
construction of a space of approximately C1-smooth isogeometric functions based
on B1 and investigates its properties. In particular, we observe that the resulting
space is not guaranteed to contain the trivially smooth functions. In order to address
this deficiency, Section 4 describes another construction, which is based on the sim-
plified bilinear form B2. Section 5 is devoted to numerical experiments concerning
the approximation power and the dimension of the spaces. In particular, we will
provide experiments suggesting that the functions we construct are smooth enough
to solve fourth-order problems. Finally, we conclude the paper.

2 Preliminaries

We consider a planar two-patch domainΩ = Ω1∪Ω2 ⊆ R2 with interface Γ between
the individual patches Ω1 and Ω2, as depicted in Figure 1. It is parameterized by a

ξ2

ξ11

1

-1 0
0

Ω1 Ω2

Γ
Ω̂

G

Fig. 1 Two patch domain Ω parameterized by a bicubic geometry map G. The knot vectors are
given by [−1, −1, −1, −1, 0, 0, 0, 1, 1, 1, 1] × [0, 0, 0, 0, 1, 1, 1, 1].

tensor-product B-spline mapping G via

G : Ω̂→ Ω : (ξ1, ξ2) 7→
∑
i∈I

Pi βi (ξ1, ξ2), (ξ1, ξ2) ∈ Ω̂ = [−1,1] × [0,1], (1)
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where Pi ∈ R2 are control points and βi are tensor-product B-splines of bidegree
(p1,p2) with index set I, defined by open knot vectors Ξ1,Ξ2 with maximal knot
span sizes h1,h2 in ξ1 and ξ2 direction, respectively. We set h = max{h1,h2}. The
multiplicities of the inner knots do not exceed p − 1, except for the knot 0 in Ξ1,
which appears p times. The simplest instance of the knot configuration is visualized
in Figure 1. The patch interface is Γ= G({0} × [0,1]). The associated isogeometric
basis functions

bi (x) =
(
βi ◦ G−1

)
(x), i ∈ I (2)

are collected in the vector
b(x) = (bi (x))i∈I (3)

and span the isogeometric discretization space

Vh = span{bi : i ∈ I} ⊆ C0(Ω). (4)

Finally we recall the definition of the jump operator

[ f ] = f 1 |Γ − f 2 |Γ,

which is defined for any function f ∈ L2(Ω) with

f 1 = f |Ω1 ∈ H1(Ω1), f 2 = f |Ω2 ∈ H1(Ω2).

We will use two different bilinear forms in order to construct approximately C1-
smooth isogeometric functions on Ω. The first one is given by

B1 : Vh × Vh → R : ( f ,g) 7→ ε

∫
Ω

f (x)g(x)dx −
∫
Γ

[∇ f (x)]T [∇g(x)]dx (5)

and depends on a positive parameter ε. The second one takes the form

B2 : Vh × Vh → R : ( f ,g) 7→
∫
Γ

[∇ f (x)]T [∇g(x)]dx. (6)

More precisely, our aim is to construct isogeometric functions with a bounded gra-
dient jump ‖[∇ f ]‖L2 (Γ) , and the bilinear forms B1 and B2 are designed with this
objective in mind. For the first one, a suitable value of ε has to be chosen in ad-
vance. It controls the magnitude of the bound. The spaces of approximately smooth
isogeometric functions obtained by using B1 and B2 have different properties, al-
though the constructions themselves are quite similar.
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3 Results for B1

We show that the bilinear form B1 yields a mesh-size independent bound on the gra-
dient jump. However, we will also see that this space lacks optimal approximation
power.

3.1 Construction of Approximately Smooth Functions

We consider functions f ,g ∈ Vh with

f (x) = uTb(x),g(x) = vTb(x), (7)

with coefficient vectors u,v ∈ R|I | . Consequently, B1( f ,g) can be rewritten in
matrix-vector-form as

B1( f ,g) = uT (εM − Q)v, (8)

where
M = (mi, j )i, j∈I with mi, j =

∫
Ω

bi (x)bj (x)dx (9)

and
Q = (qi, j )i, j∈I with qi, j =

∫
Γ

[∇bi (x)]T [∇bj (x)]dx, (10)

as confirmed by a short computation. The matrices M and Q are symmetric positive
semi-definite, as

uT Mu = ‖ f ‖2
L2 (Ω) ≥ 0 (11)

and
uTQu = ‖[∇ f ]‖2

L2 (Γ) ≥ 0. (12)

Now let 0 ≤ λ1 ≤ . . . ≤ λn be the non-negative eigenvalues of εM − Q in
ascending order and let c1, . . . ,cn be the corresponding eigenvectors, n ≤ |I|. The
eigenvectors satisfy

(ck )T c` = 0 and (ck )T ck = 1 for k , `,1 ≤ k, ` ≤ n, (13)

possibly after performing the Gram-Schmidt orthonormalization, if multiple eigen-
values are present.

We define

G1,ε
h
B span

∑
i∈I

cki bi (x) : k = 1, . . . ,n


=

∑
i∈I

dibi (x) : d ∈ span
{
c1, . . . cn

} .
(14)

as the space of approximately C1-smooth isogeometric functions.
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3.2 Properties of the Function Space

By construction, G1,ε
h

is a linear space. As an immediate consequence from its defi-
nition, we obtain a mesh-size independent bound on the gradient jump.

We denote by C ∈ R|I | ×n the matrix containing the eigenvectors c1, . . . ,cn as
column vectors.

Proposition 1 The gradient jump of any function f = (Cd)Tb ∈ G1,ε
h

with d ∈ Rn

can be bounded by
‖[∇ f ]‖2

L2 (Γ) ≤ ε‖ f ‖2
L2 (Ω) . (15)

Proof We use (11) and (12) and obtain

ε‖ f ‖2
L2 (Ω) − ‖[∇ f ]‖2

L2 (Γ) = (Cd)T (εM − Q)(Cd)

= dTCT (εM − Q)Cd

= dTdiag
(
λ1, . . . , λn

)
d

= λ1d2
1 + . . . + λnd2

n ≥ 0,

where the last inequality holds because we only consider non-negative eigenvalues
λi . �

The space G1,ε
h

based on B1 does not necessarily contain the trivially smooth
isogeometric functions bki with

∇bki |Γ = 0.

We will refer to these functions as off-interface basis functions. Since they are con-
stantly zero across the interface Γ, their gradient jumps across Γ are zero as well.
However, their coefficient vectors with respect to the basis b, which are the canoni-
cal unit vectors in R|I | , are not necessarily eigenvectors of εM −Q. As we shall see
in Section 5, the functions in G1,ε

h
do not possess the same approximation power as

the full space of isogeometric functions.

4 Results for B2

We study another bilinear form in order to ensure the existence of trivially smooth
functions in the resulting space of approximately smooth isogeometric functions.
However, in this case we cannot expect to obtain an estimate of ‖[∇ f ]‖L2 (Γ) that is
independent of the mesh size.
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4.1 Construction of Approximately Smooth Functions

The modified space Ĝ1,ε
h

is constructed analogously to the procedure described in
Section 3.1. Recall that B2( f , f ) can equivalently be written as

B2( f , f ) = uTQu

for
f = uTb ∈ Vh , u ∈ R|I | .

As explained before, the matrix Q is symmetric positive semi-definite. We choose a
positive value ε. Let λ̂1 ≤ . . . ≤ λ̂ n̂ ≤ ε be the eigenvalues of Q that are bounded
by ε and let ĉ1, . . . , ĉn̂ be the corresponding orthonormalized eigenvectors, n̂ ≤ |I|.
We define

Ĝ1,ε
h
B span

∑
i∈I

ĉki bi : k = 1, . . . , n̂

 . (16)

4.2 Properties of the Function Space

Again, by construction, Ĝ1,ε
h

is a linear space. Moreover, all trivially smooth iso-
geometric functions f , i.e., the off-interface basis functions as well as constant and
linear functions (which are contained in the space of isogeometric functions, due to
use of the isoparametric principle), fulfill

B( f , f ) = 0.

Since the matrix Q is symmetric positive semi-definite, this implies that the coeffi-
cient vector of f is an element of the kernel of Q. Consequently, the corresponding
coefficient vector is an eigenvector to the eigenvalue 0 of Q. Since we set ε > 0,
all elements in the kernel will also be elements of Ĝ1,ε

h
. This is independent of the

mesh size h. As we will see, the inclusion of these functions in Ĝ1,ε
h

is important to
achieve optimal convergence.

Subsequently, we bound the gradient jump of functions in Ĝ1,ε
h

. We denote by
Ĉ ∈ R|I | × n̂ the matrix containing the eigenvectors ĉ1, . . . , ĉn̂ of Q as column vec-
tors. Let f ∈ Ĝ1,ε

h
, i.e. we set

f (x) = (Ĉd)Tb(x) (17)

with d ∈ Rn .

Theorem 1 Let the knot vectors Ξ1,Ξ2 be quasi-uniform. Then all functions f ∈
Ĝ1,ε

h
satisfy

‖[∇ f ]‖2
L2 (Γ) ≤ ε

C
h2 ‖ f ‖2

L2 (Ω) (18)
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for a constant C that depends on the maximal spline degree p and the geometry
mapping G, but not on the maximal mesh size h.

Proof Let f = (Ĉd)Tb ∈ G1,ε
h

as denoted above. Then we have

‖[∇ f ]‖2
L2 (Γ) = (Ĉd)TQ(Ĉd) = dT Ĉ

T
QĈd

= dTdiag
(
λ̂1, . . . , λ̂ n̂

)
d

= λ̂1d2
1 + . . . + λ̂ n̂d2

n̂

≤ ε

n̂∑
i=1

d2
i = ε‖d‖22 = ε‖Ĉd‖22 ,

where the last equality holds because Ĉ is an orthogonal matrix.
Next, we use the stability of tensor-product B-spline bases {βi }i∈I [18] with

stability constant D2
p , where p = max{p1,p2} and get

‖[∇ f ]‖2
L2 (Γ) ≤ ε‖Ĉd‖22 ≤ εD4

p

1
h2








∑
i∈I

(Ĉd)i βi








2

L2 (Ω̂)

. (19)

We rewrite βi in terms of the push-forward bi ◦ G and obtain

‖[∇ f ]‖2
L2 (Γ) ≤ εD4

p

1
h2








∑
i∈I

(Ĉd)i (bi ◦ G)








2

L2 (Ω̂)

, (20)

which again can be rewritten and summarized as

‖[∇ f ]‖2
L2 (Γ) ≤ εD4

p

1
h2











∑
i∈I

(Ĉd)ibi


 ◦ G









2

L2 (Ω̂)

= εD4
p

1
h2 ‖ f ◦ G‖2

L2 (Ω̂)
.

(21)

Now we transform the integral
∫
Ω̂

( f ◦ G)2 on Ω̂ to an integral on Ω, which yields

‖[∇ f ]‖2
L2 (Γ) ≤ εD4

p

1
h2 ‖ det∇(G)−1‖L∞ (Ω) ‖ f ‖2

L2 (Ω) . (22)

Finally we set
C(p,G) = D4

p ·



det∇(G)−1


L∞ (Ω)

.

This concludes the proof. �

This result resembles standard inverse inequalities for isogeometric functions,
which can be found in [1], apart from the power of h and the factor ε, which is
chosen in advance. If we chose ε ∈ O(h2), we can eliminate the mesh-size depen-
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dence in the bound of the gradient jump. However, smaller values of ε lead to fewer
functions in Ĝ1,ε

h
, which we will discuss in the following section.

5 Numerical Examples

We consider least squares approximation, the Poisson problem, and the biharmonic
equation on a two-patch domain. In this context we are interested in the approxi-
mation power of G1,ε

h
and Ĝ1,ε

h
. Furthermore we will study the number of interface

basis functions under uniform h-refinement.

5.1 Approximation Power

Throughout the remainder of this section, all errors are measured patch-wisely and
then summed up, e.g. we refer to

‖ fapprox |Ω1 − fexact |Ω1 ‖H1 (Ω1) + ‖ fapprox |Ω2 − fexact |Ω2 ‖H1 (Ω2)

as the H1 error and to

‖ fapprox |Ω1 − fexact |Ω1 ‖H2 (Ω1) + ‖ fapprox |Ω2 − fexact |Ω2 ‖H2 (Ω2)

as the H2 error of fapprox. The patch-wise splitting is not necessary for the L2 error,
as G1,ε

h
⊆ L2(Ω) and Ĝ1,ε

h
⊆ L2(Ω).

Least Squares Approximation

We start with an example that identifies the limitations of the space G1,ε
h

, which is
based on the bilinear form B1. Figure 2 shows the function

fexact(x, y) = 3xy exp(−x) sin(πy) (23)

which we approximate on a two-patch domain by functions in G1,ε
h

. The domain
coincides with the one shown in Figure 1. We solve the constrained least squares
fitting problem

min
f ∈G

1,ε
h

‖ f − fexact‖
2
L2 (Ω) .

The parameter ε was set to 0.5. The relative L2 and H1 errors are depicted in the left
plot of Figure 3. After some refinement steps, no significant reduction of the error is
achieved. Considering the distribution of the error values in the last refinement step,
shown in Figure 3, right, we note that the largest errors occur close to the interface
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Fig. 2 Bicubically parameterized domain (see Fig. 1) and transparent plot of the exact solution
3xy exp(−x) sin(πy).

and in the back corners. This is a possible indicator that the corresponding corner
basis functions are not present in G1,ε

h
.

20 2−1 2−2 2−3 2−4 2−5 2−6

10−3

10−2

10−1

100

h

er
ro

rv
al

ue

L2 error
H1 error

Fig. 3 Least squares approximation with functions in G
1,ε
h with ε = 0.5. Left: relative L2 and H 1

error for the approximate solution of degree 3. Right: L2 error values at the finest discretization
step (scaled by factor 100).

Consequently, we consider only the space Ĝ1,ε
h

based on the bilinear form B2.
The following experiment shows that - in contrast to the previous approach - the
functions in Ĝ1,ε

h
maintain the full approximation power.

Again, we choose ε = 0.5 and approximate the same function (23) on the same
domain as before. We use a uniform h-refinement strategy. The relative L2 and H1

error values and the respective convergence rates are shown in Figure 4, top left and
top right. A comparison with the reference slopes shows that the functions in Ĝ1,ε

h

maintain the optimal convergence rates of p + 1 and p for the L2 and the H1 error,
respectively.

At the finest level of refinement we used 8,840 (9,111) basis functions of degree
3 (4) with mesh size 2−6. Note that this number of basis functions is slightly less
than the number of original tensor-product B-splines, which is 8,978 (9,248) for
degree 3 (4).
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The bottom plot in Figure 4 depicts the solution using 8,840 basis functions of
degree 3 as a patch-wise plot with added flat shading. These effects highlight the
smoothness of the solution across the curved interface.

20 2−1 2−2 2−3 2−4 2−5 2−6
10−11

10−9

10−7

10−5

10−3

10−1

h
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ro

rv
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ue

L2 error

p = 3
p = 4
O (h4)
O (h5)

20 2−1 2−2 2−3 2−4 2−5 2−6

10−8

10−6

10−4

10−2

100

h

er
ro

rv
al

ue

H 1 error

p = 3
p = 4
O (h3)
O (h4)

Fig. 4 Least squares approximation with functions in Ĝ
1,ε
h with ε = 0.5. Relative L2 (top left)

and H 1 (top right) error of the solution to the fitting problem on the bi-cubic domain, see Figure 1.
Bottom: patch-wise representation of the solution with 8,840 basis functions of degree three with
flat shading.

Poisson Problem

Solving the Poisson equation leads to very similar results. We consider the dis-
cretized weak form:

Find u ∈ Ĝ1,ε
h,0 such that

∫
Ω

∇u(x)∇v(x)dx =

∫
Ω

f (x)v(x)dx ∀v ∈ Ĝ1,ε
h,0, (24)

where Ĝ1,ε
h,0 = {u ∈ Ĝ1,ε

h
: u|∂Ω = 0}. The zero Dirichlet boundary conditions are

imposed strongly in the test function space. Again we set the threshold ε to 0.5. The
exact solution is given by

u(x, y) = 40(0.25x + 0.75 − y)(−0.25x + 1.25 − y)
(−0.25x + 0.25 − y)(0.25x − 0.25 − y) sin(0.5πx).
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The physical domain Ω consists of two patches with a curved interface, see Figure
5, left. It is biquadratically parametrized. The solution to (24) is found by means of
a Galerkin method. Figure 5, right, shows its solution for 2,048 degrees of freedom
with element size 2−5. The patch-wise plot with the flat shading effect emphasizes
that the solution is smooth in the area of the interface.

Fig. 5 Poisson problem (24). Left: Domain Ω and its control net. Right: Patch-wise plot of the
solution with 2,048 basis functions of degree two in Ĝ

1,ε
h for ε = 0.5 with flat shading.

The behavior of the relative L2 and the H1 error are shown in Figure 6, left and
right, respectively. We see that in both cases and for the tested degrees two, three
and four of test functions we realize optimal convergence rates. This is consistent
with the L2 approximation results.
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10−9

10−7

10−5

10−3

10−1

h

er
ro

rv
al

ue

L2 error

p = 2
p = 3
p = 4
O (h3)
O (h4)
O (h5)
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O (h4)

Fig. 6 Poisson problem (24). Relative L2 (left) and H 1 error (right) of the approximate solution
for basis functions of different degrees in Ĝ

1,ε
h for ε = 0.5.
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Biharmonic Equation

The examples shown previously did not require C1-smooth basis functions. Conse-
quently, the approximately smooth functions we presented did not exhibit any ad-
vantage over standard C0-smooth isogeometric functions (which can be constructed
by identifying the corresponding degrees of freedom along the interface), except
for the fact that we used slightly less basis functions. We now consider a fourth-
order equation, where the bilinear form governing the weak formulation cannot be
evaluated for only C0-smooth functions. The following examples demonstrate that
- depending on the value of the parameter ε that controls the magnitude of the jump
- approximately smooth functions are suitable for solving such a higher-order prob-
lem and even to maintain full approximation power with respect to the L2, H1 and
H2 error.

We consider the discretized weak form of the biharmonic equation:

Find u ∈ Ĝ1,ε
h,0 such that

∫
Ω

∆u(x)∆v(x)d(x) =

∫
Ω

f (x)v(x) ∀v ∈ Ĝ1,ε
h,0, (25)

where Ĝ1,ε
h,0 = {u ∈ Ĝ1,ε

h
: u|∂Ω = (∇u · n) |∂Ω = 0}. Again, we impose the

boundary conditions strongly in the test function space and solve (25) by means
of the Galerkin method. The right-hand side f is obtained from the exact solution
(1 − cos(2πx))(1 − cos(2πy)). The domain Ω is a square, which is split into two
patches with a curved interface, see Figure 7, left. Figure 7, right, depicts the solu-
tion for 2101 basis functions of degree four and element size h = 2−5 for ε = h2.
The shading demonstrates the smoothness of the solution across the interface in the
patch-wise plot.

Fig. 7 Biharmonic equation (25): Domain with its control net (left) and patch-wise plot of the
solution with shading (right) for 2101 basis functions of degree four in Ĝ

1,ε
h with ε = h2.

We consider the decay of the relative error for different degrees of the basis func-
tions, starting with degree p = 3. The plots in Figure 8 show that the optimal ap-



14 Agnes Seiler, Bert Jüttler

proximation order with respect to the L2 (left) and H2 (right) norm is reached for
ε = C · hk for k ≤ 2, but not for k = 3.
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Fig. 8 Biharmonic equation (25): Relative L2 (left) and H 2 (right) errors of the approximate
solution for basis functions of degree three in Ĝ

1,ε
h for four choices of ε.

The situation is slightly different for p = 4. Here, the optimal approximation
order with respect to the L2 (left) and H2 (right) norm is reached for ε = C · hk

for k = 2,3, but neither for k ≤ 1 nor for k ≥ 4, see Figure 9. Finally, the optimal
approximation order for p = 5 with respect to the L2 (left) and H2 (right) norm is
reached for ε = C · hk for k = 3, but neither for k ≤ 2 nor for k ≥ 4, as shown in
Figure 10.
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Fig. 9 Biharmonic equation (25): Relative L2 (left) and H 2 (right) errors of the approximate
solution for basis functions of degree four in Ĝ

1,ε
h for four choices of ε.
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Fig. 10 Biharmonic equation (25): Relative L2 (left) and H 2 (right) errors of the numeric solution
for basis functions of degree five in Ĝ

1,ε
h for three choices of ε.

On the one hand, a higher power of h and thus a smaller value of ε results in
smoother, but at the same time in fewer basis functions, hence in a loss of approx-
imation power. On the other hand, while choosing a larger value of ε increases the
dimension of Ĝ1,ε

h
, the resulting discretizations are not smooth enough for solving

higher order problems. We conjecture that ε = C · hp−2 is the optimal choice.

5.2 Dimension of the Space

We investigate the influence of ε on the number of interface basis functions, and
thus on the dimension of the space Ĝ1,ε

h
. Note that the number of trivially smooth

basis functions is not affected by the choice of ε.
We cannot expect nested spaces, i.e., we cannot ensure that

Ĝ1,ε
h
⊆ Ĝ1,ε

h
2
.

Nevertheless, the number of interface basis functions grows as h is decreased.
Figure 11 shows the number of interface basis functions for different degrees and

different choices of ε. For ε = C · hk with k ≤ p − 2, the number of interface basis
functions grows linearly under h-refinement for all degrees. A larger choice of k,
however, results in significantly fewer functions.
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Fig. 11 Number of interface basis functions under uniform h-refinement on the domain shown
in Figure 1. Basis functions of degree three (top left), four (top right), five (bottom left) and six
(bottom right) for various choices of ε.

6 Conclusion

We proposed a concept of constructing approximately C1-smooth isogeometric
functions on planar multi-patch domains which is based on selecting eigenvalues
and corresponding eigenvectors of the matrix representation of a suitable bilinear
form. The functions will have a non-zero gradient jump across the interface.

We studied two different bilinear forms. The first bilinear form led to a bound on
the gradient jump of the form

‖[∇ f ]‖2
L2 (Γ) ≤ ε‖ f ‖2

L2 (Ω) ,

where ε is to be chosen in advance. This bound is h-independent. However, the
space constructed via this bilinear form does not necessarily contain trivially smooth
functions, which led to a decrease in the approximation order. The function space
based on the second bilinear form contains all trivially smooth isogeometric func-
tions and the gradient jump is bounded by a mesh-dependent term.
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Numerical experiments suggested that for second-order problems, the latter ap-
proach maintains the optimal approximation order even for constant choices of ε
and that the functions are sufficiently smooth to solve the biharmonic equation. The
convergence of the approximate solution was influenced by the choice of ε. De-
pending on the degree of the basis functions, ε had to be chosen as a suitable power
of the mesh size h in order to achieve convergence of the solution to the biharmonic
problem.

In future work we would like to establish a theoretical background for the exper-
imental results. This includes

• investigating a projector to the space of approximately C1-smooth isogeometric
functions to prove optimal convergence rates,

• studying the eigenstructure of the matrix Q to develop a lower bound for the
number of non-trivial basis functions and

• analyzing the influence of ε.

The last point affects the first two points as well: A smaller value of ε creates
smoother but fewer functions. Last but not least we are interested in generalizing
the approach to domains with more than two patches and to the three-dimensional
case.
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