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Abstract. We propose and investigate new robust preconditioners for space-time Isogeometric
Analysis of parabolic evolution problems. These preconditioners are based on a time parallel multi-
grid method. We consider a decomposition of the space-time cylinder into time-slabs which are
coupled via a discontinuous Galerkin technique. The time-slabs provide the structure for the time-
parallel multigrid solver. The most important part of the multigrid method is the smoother. We
utilize the special structure of the involved operator to decouple its application into several spatial
problems by means of generalized eigenvalue or Schur decompositions. Some of these problems have
a symmetric saddle point structure, for which we present robust preconditioners. Finally, we present
numerical experiments confirming the robustness of our space-time IgA solver.
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1 Introduction

Time-dependent Partial Differential Equations (PDEs) of parabolic type play an im-
portant role in the simulation of various physical processes, like heat conduction, dif-
fusion, and 2d eddy-current problems in electromagnetics. They are often given as initial-
boundary value problems (IBVP). The discretization of such problems is usually per-
formed either by first discretizing in time by a time-stepping method and then in space
by, e.g., finite elements or vice versa. The former approach is often denoted as Rothe’s
method [22] and the latter one vertical method of lines [30]. Both of the two approaches
are sequential in time. In order to treat such problems on massively parallel computers,
different approaches are required to overcome the sequential structure. There exist vari-
ous techniques for parallelization in time. We refer to [6] for an overview of time-parallel
methods.

In the current work, we focus on space-time methods. More precisely, we consider the time
as just another variable, say xd+1, where x1, . . . , xd are the d-dimensional spatial variables.
The derivative in time direction is then viewed as a strong convection term in the direction
xd+1. In order to provide a stable discretization, we use stabilization techniques developed
for convection dominated elliptic convection-diffusion problems, see, e.g., [28]. To be more
precise, we consider the Streamline-Upwind Petrov-Galerkin (SUPG) method, introduced
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in [16]. We consider the linear parabolic IBVP, find u : Q→ R such that

∂tu−∆u = f in Q, u = 0 on Σ, and u = u0 on Σ0, (1.1)

as a typical parabolic model problem posed in the space-time cylinder Q = Ω × J =
Ω × [0, T ] = Q ∪ Σ ∪ Σ0 ∪ ΣT , where ∂t denotes the partial time derivative, ∆ is the
Laplace operator, f is a given source function, u0 are the given initial data, T is the final
time, J = (0, T ) is the time interval, Q = Ω × (0, T ), Σ = ∂Ω × (0, T ), Σ0 := Ω × {0},
ΣT := Ω × {T}, and Ω ⊂ Rd (d = 1, 2, 3) denotes the spatial computational domain
with the boundary ∂Ω. In [23], a time-upwind test functions were used to construct a
stable single-patch discretization scheme in the Isogeometric Analysis (IgA) framework.
This approach was extended in [13] to multiple patches in time, where each space-time
patch Qn is given as space-time-slab Qn = Ω×(tn−1, tn) corresponding to a decomposition
0 = t0 < t1 < . . . < tN = T of the time interval [0, T ]. A discontinuous Galerkin (dG)
technique was used for coupling the space-time-slabs in an appropriate way. Finally, the
resulting huge linear system Lhuh = fh is solved by the time-parallel multigrid (MG)
method introduced in [7]. The main new contributions of this paper are the smoothers
that finally yield a robust multigrid solver and preconditioner for the GMRES solver,
respectively.

IgA is a powerful methodology for discretizing PDEs. It was first introduced in [17] and
its advantages have been highlighted in many publications, see, e.g., the monograph [5],
the survey paper [3] and the references therein. The main idea is to use that same smooth
higher order splines for both representing the computational domain and approximating
the solution of the PDE or the PDE system. The most common choices are B-Splines,
Non-Uniform Rational B-Splines (NURBS), T-Splines, Truncated Hierarchical B-Splines
(THB-Splines), etc., see, e.g., [8], [9] and [2]. One of the strengths of IgA is the capability
of creating high-order spline spaces, while keeping the number of degrees of freedom quite
small.

The purpose of this paper is to investigate the efficient realization of the time-parallel MG
method mentioned above. The special time-multipatch dG structure of the discretization
leads to a block-bidiagonal matrix Lh = blockbidiag(−Bn,An), where the block-diagonal
matrices An, i = 1, . . . , N , and the block-subdiagonal matrices Bn, i = 2, . . . , N , have
tensor product representations. The most costly part of the MG method is the application
of the smoother, which is of (inexact) damped block Jacobi type, i.e,

uk+1
h = ukh + ωD−1

h

[
fh − Lhu

k
h

]
for k = 1, 2, . . . .

The block diagonal matrix Dh is formed by the diagonal blocks of Lh, i.e., by An. This
paper investigates the efficient application of A−1

n by utilizing its tensor product structure.
We use ideas from [29] and [26] to perform a decomposition of An into a series of spa-
tial problems, for which we investigate robust block preconditions. These preconditioners
are constructed by means of operator interpolation, see, e.g., [33], [4] and [1]. Moreover,
their application can be further accelerated by using domain decomposition or multigrid
approaches in connection with parallelization in space.

The remainder of the paper is organized as follows. In Section 2, we rephrase basic defini-
tions and the stable space-time dG-IgA variational formulation. Section 3 is devoted to the
construction of efficient smoothers used in the time-parallel multigrid solver respectively
preconditioner. Numerical experiments confirming the theoretical results are presented in
Section 4. Finally, we draw some conclusions in Section 5.
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2 Preliminaries

In this section, we introduce the IgA concept, recall some important definitions, and state
the space-time variational IgA scheme derived and analysed in [13]. For a more detailed
discussion of IgA, we refer to [5] and [3]. We follow the notation used in [13].

2.1 Isogeometric Analysis

Let Ω̂ := (0, 1)d, be the d-dimensional unit cube, which we refer to as the parameter
domain. Let pι and Nι, ι ∈ {1, . . . , d}, denote the degree and the number of basis functions
in xι-direction. Moreover, let Ξι = {ξ1 = 0, ξ2, . . . , ξnι = 1}, nι = Nι − pι − 1, be a
partition of [0, 1], called knot vector. With this ingredients we are able to define the
B-Spline basis N̂i,p, i ∈ {1, . . . , Nι} on [0, 1] via Cox-De Boor’s algorithm, cf. [5]. The
generalization to Ω̂ is realized by considering a tensor product, again denoted by N̂i,p,
where i = (i1, . . . , id) and p = (p1, . . . , pd) are a multi-indices. For notational simplicity,
we define I := {(i1, . . . , id) | iι ∈ {1, . . . , Nι}} as the set of multi-indices.

The computational domain Ω, also called physical domain, is parametrized by the B-
Spline basis functions. It is given as image of the parameter domain Ω̂ under the so-called
geometrical mapping G : Ω̂ → Rd, defined as

G(ξ) :=
∑
i∈I

PiN̂i,p(ξ),

with the control points Pi ∈ Rd, i ∈ I. In order to represent more complicated geometries
Ω, multiple non-overlapping domains (patches) Ωn := Gn(Ω̂), n = 1, . . . , N are composed,
where each patch is associated with a different geometrical mapping Gn. In the following,
we refer to such domains Ω :=

⋃N
n=1 Ωn as multipatch domains.

In the IgA concept, the B-Splines are not only used for representing the geometry, but
also as basis for finite-dimensional space used for approximating the solution of the PDE.
This motivates to define the basis functions Ni,p := N̂i,p ◦ G−1 in the physical space by
mapping the corresponding basis functions N̂i,p defined in the parameter domain Ω̂.

On each patch Ωn, we now define the local IgA space

V n
h := span{Ni,p}i∈I . (2.1)

The construction of global IgA space Vh depends on the used formulation, and is given in
the next section.

2.2 Space-time variational formulation and its IgA discretization

Let Ω be a bounded Lipschitz domain in Rd, d = 1, 2, or 3, with the boundary Γ = ∂Ω.
For any multi-index α = (α1, . . . , αd) of non-negative integers α1, . . . , αd, we define the
differential operator ∂αx = ∂α1

x1
. . . ∂αdxd , with ∂xj = ∂/∂xj, j = 1, . . . , d. As usual, L2(Ω)

denotes the Lebesgue space of all Lebesgue measurable and square-integrable functions

endowed with the norm ‖v‖L2(Ω) =
( ∫

Ω
|v(x)|2 dx

)0.5

, and L∞(Ω) denotes the space of
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functions that are essentially bounded. For a non-negative integer `, we define the standard
Sobolev space

H`(Ω) = {v ∈ L2(Ω) : ∂αx v ∈ L2(Ω) for all |α| =
∑d

j=1 αj ≤ `},

endowed with the norm

‖v‖H`(Ω) =
( ∑

0≤|α|≤`

‖∂αx v‖2
L2(Ω)

) 1
2 ,

whereas the trace space ofH1(Ω) is denoted byH
1
2 (Γ ). Further, we introduce the subspace

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 onΓ} of all functions v from H1(Ω) with zero traces on

Γ . We define the spatial gradient by ∇xv = (∂x1v, . . . , ∂xdv). Let ` and m be positive
integers. For functions defined in the space-time cylinder Q, we define the Sobolev spaces

H`,m(Q) = {v ∈ L2(Q) : ∂
α
x v ∈ L2(Q) for 0 ≤ |α| ≤ `, and ∂itv ∈ L2(Q), i = 1, . . . ,m},

where ∂t = ∂/∂t, and, in particular, the subspaces

H1,0
0 (Q) ={v ∈ L2(Q) : ∇xv ∈ [L2(Q)]

d, v = 0 onΣ} and
H1,1

0,0̄
(Q) ={v ∈ L2(Q) : ∇xv ∈ [L2(Q)]

d, ∂tv ∈ L2(Q), v = 0 onΣ, v = 0 onΣT}.

We equip the above spaces with the norms and seminorms

‖v‖H`,m(Q) =
( ∑
|α|≤`

‖∂(α1,...,αd)
x v‖2

L2(Q) +
m∑

m0=0

‖∂m0
t v‖2

L2(Q)

) 1
2

and
|v|H`,m(Q) =

( ∑
|α|=`

‖∂(α1,...,αd)
x v‖2

L2(Q) + ‖∂mt v‖2
L2(Q)

) 1
2 ,

respectively.

Using the standard procedure and integration by parts with respect to both x and t, we
can easily derive the following space-time variational formulation of (1.1): find u ∈ H1,0

0 (Q)
such that

a(u, v) = l(v) for all v ∈ H1,1
0,0̄

(Q), (2.2)

with the bilinear form

a(u, v) = −
∫
Q

u(x, t)∂tv(x, t) dx dt+

∫
Q

∇xu(x, t) · ∇xv(x, t) dx dt

and the linear form

l(v) =

∫
Q

f(x, t)v(x, t) dx dt+

∫
Ω

u0(x)v(x, 0) dx,

where the source f ∈ L2(Q) and the initial conditions u0 ∈ L2(Ω) are given.

Without loss of generality, we only consider homogeneous Dirichlet boundary conditions
on Σ. The method presented in this paper can easily be generalized to other constella-
tions of boundary conditions. The space-time variational formulation (2.2) has a unique
solution, see, e.g, [20] and [21].
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Assumption 1 We assume that the solution u of (2.2) belongs to V = H1,0
0 (Q)∩H`,m(Q)

with some ` ≥ 2 and m ≥ 1.

We describe the space-time cylinder Q as a union of non-overlapping time slabs Q1,
Q2,. . . ,QN . We consider a partition 0 = t0 < t1 < . . . < tN = T of the time interval [0, T ],
and denote the sub intervals by Jn = (tn−1, tn). We now define the time slabs Qn = Ω×Jn
and the faces Σn = Qn+1 ∩Qn = Ω × {tn} between the time slabs, where we identify ΣT

and ΣN . In that way, we have the decomposition Q = ∪Nn=1Qn, where each space-time
cylinder Qn has a geometrical mapping Gn. To keep the notation simple, in what follows,
we will use the sup-index n to denote the restrictions to Qn, e.g., un := u|Qn .

Remark 2.1. We note that the spatial domain Ω can also be a multipatch domain. This
leads to a representation of Qn as union of non-overlapping space-time patches Qn,k, k =
1, . . . , K, i.e., Qn = ∪Kk=1Qn,k. The corresponding bases are then coupled in a conforming
way.

We denote the global discontinuous B-Spline space and the local continuous patch-wise
B-Spline spaces by

V0h = {vh ∈ L2(Q) : vh|Qn ∈ V n
h , forn = 1, . . . , N, and vh|Σ = 0} (2.3)

and
V n

0h = {vh ∈ V n
h , forn = 1, . . . , N, and vh|Σ = 0}, (2.4)

respectively. Notice that vh ∈ V0h is discontinuous across Σn. We introduce the notations

vnh,+ = lim
ε→0+

vh(tn + ε), vnh,− = lim
ε→0−

vh(tn + ε), JvhKn = vnh,+ − vnh,−, JvhK0 = v0
h,+,

where JvhKn denotes the jump of vh across Σn for n ≥ 1, and JvhK0 = v0
h,+ denotes the trace

of vh on Σ0. For a smooth function u, we obviously have JuKn = un+ − un− = 0 forn ≥ 1,
and JuK0 = u|Σ0 .

Let us now consider the space-time slab Qn, and let us denote the outer normal to ∂Qn

by n = (n1, . . . , nd, nd+1) = (nx, nt). For the time being, we assume that un−1 is known.
Let vnh ∈ V n

0h and wnh = vnh + θn hn∂tv
n
h with some positive parameter θn, which will be

defined later. We note that wnh
∣∣
Σ
= 0. Multiplying ∂tu−∆u = f by wnh , integrating over

Qn, and applying integration by parts, we arrive at the variational identity∫
Qn

(∂t u (v
n
h + θn hn∂tv

n
h) +∇x u · ∇x v

n
h + θn hn∇xu · ∇x∂tv

n
h) dx dt

−
∫
∂Qn

nx · ∇xu(v
n
h + θn hn∂tv

n
h) dx+

∫
Σn−1

un−1
+ vn−1

h,+ dx

=

∫
Qn

f (vnh + θn hn∂tv
n
h) dx dt+

∫
Σn−1

un−1
− vn−1

h,+ dx

for n = 1, . . . , N , where we used that un−1
− = un−1

+ = un−1 on every Σn−1. Furthermore,
using nx|Σn = 0 and wh = 0 on Σ, we have

aQn(u, vh) :=

∫
Qn

(∂t u (v
n
h + θn hn∂tv

n
h) +∇x u · ∇x v

n
h + θn hn∇xu · ∇x∂tv

n
h) dx dt

+

∫
Σn−1

JuKn−1 vn−1
h,+ dx =

∫
Qn

f (vnh + θn hn∂tv
n
h) dx dt,
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for all n = 2, . . . , N , and

aQ1(u, vh) :=

∫
Q1

(∂t u (v
1
h + θ1 h1∂tv

1
h) +∇x u · ∇x v

1
h + θ1 h1∇xu · ∇x∂tv

1
h) dx dt

+

∫
Σ0

JuK0 v0
h,+ dx =

∫
Q1

f (v1
h + θ1 h1∂tv

1
h) dx dt+

∫
Σ0

u0 v
0
h,+ dx.

Summing over all Qn, we conclude that

ah(u, vh) = lh(vh), ∀vh ∈ V0h, (2.5)

where

ah(u, vh) =
N∑
n=1

aQn(u, vh)

and

lh(vh) =
N∑
n=1

∫
Qn

f (vnh + θn hn∂tv
n
h) dx dt+

∫
Σ0

u0 v
0
h,+ dx.

Now, the space-time dG IgA variational scheme for (1.1) reads as follows: Find uh ∈ V0h

such that
ah(uh, vh) = lh(vh), ∀vh ∈ V0h. (2.6)

Motivated by the definition of the bilinear form ah(·, ·) in (2.6), we introduce the mesh-
dependent dG norm

‖v‖dG :=
( N∑
n=1

(
‖∇xv‖2

L2(Qn) + θn hn ‖∂tv‖2
L2(Qn) +

1

2
‖JvKn−1‖2

L2(Σn−1)

)
+

1

2
‖v‖2

L2(ΣN )

) 1
2
,

In the following, we recall some important properties of the IgA scheme (2.6) respectively
the bilinear form ah(·, ·). For the proofs, we refer to [13].

Lemma 2.1. The bilinear form ah(·, ·), defined in (2.6), is V0h-elliptic, i.e.,

ah(vh, vh) ≥ Ce‖vh‖2
dG, for vh ∈ V0h, (2.7)

where Ce = 0.5 for θn ≤ C−2
inv,0, with the positive, hn-independent constant Cinv,0 from the

inverse inequality
‖vh‖2

L2(Σn−1) ≤ Cinv,0h
−1
n ‖vh‖2

L2(Qn)

that holds for all vh ∈ V n
h , n = 1, . . . , N .

The V0h-ellipticity of the bilinear form ah(·, ·) implies that there exists a unique solution
to (2.5). In order to obtain a priori error estimates, we introduce the space V0h,∗ = V +V0h

endowed with the norm

‖v‖dG,∗ :=
(
‖v‖2

dG +
N∑
n=1

(θnhn)
−1‖v‖2

L2(Qn) +
N∑
n=2

‖vn−1
− ‖2

L2(Σn−1)

) 1
2
. (2.8)
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Lemma 2.2. Let u ∈ V0h,∗. Then the boundedness inequality

|ah(u, vh)| ≤ Cb‖u‖dG,∗‖vh‖dG (2.9)

holds for all vh ∈ V0h, where Cb = max(Cinv,1 θmax, 2), with θmax = maxn{θn} ≤ C−2
inv,0 and

the positive, hn-independent constant Cinv,1 from the inverse inequality

‖∂t∂xivh‖2
L2(Qn) ≤ Cinv,1h

−2
n ‖∂xivh‖2

L2(Qn)

that holds for all vh ∈ V n
h , n = 1, . . . , N , i = 1, . . . , n.

Theorem 2.1. Let u and uh solve (2.2) and (2.6), respectively. Under the regularity
Assumption 1, there exists a positive generic constant C, which is independent of h =
max{hn}, such that

‖u− uh‖dG ≤ C(h`−1 + hm−
1
2 ) ‖u‖H`,m(Q). (2.10)

Moreover, if 1 ≤ m < ` ≤ p+ 1, then

‖u− uh‖dG ≤ Chm−
1
2‖u‖H`,m(Q). (2.11)

Remark 2.2. We remark that, for the case of highly smooth solutions, i.e., p + 1 ≤
min(`,m), estimate (2.10) takes the form

‖u− uh‖dG ≤ C hp ‖u‖H`,m(Q). (2.12)

2.3 Efficient Matrix Assembly

Let us recall the IgA variational problem given in (2.6). The local bilinear form for each
space-time slab Qn is given by

aQn(uh, vh) =

∫
Qn

∂t u
n
h (v

n
h + θn hn∂tv

n
h) +∇x u

n
h · ∇x(v

n
h + θn hn∂tv

n
h) dx dt

+

∫
Σn−1

un−1
h,+ vn−1

h,+ ds−
∫
Σn−1

un−1
h,− v

n−1
h,+ ds

=:bQn(u
n
h, v

n
h)−

∫
Σn−1

un−1
h,− v

n−1
h,+ ds,

where n = 1, . . . , N . For the local spaces V n
0h defined by (2.4), we now introduce the

simpler notation ϕnj for the B-Spline basis functions such that

V n
0h = span{ϕnj }Nnj=1

for n = 1, . . . , N . Once the basis is chosen, from the IgA variational scheme (2.6), we
immediately obtain the linear system

Lhuh :=


A1

−B2 A2

. . . . . .
−BN AN



u1

u2
...
uN

 =


f 1

f 2
...
fN

 =: fh, (2.13)
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with the matrices

An[i, j] := bQn(ϕ
n
j , ϕ

n
i ) for i, j = 1, . . . , Nn

on the diagonal for n = 1, . . . , N , and the matrices

Bn[i, k] :=

∫
Σn−1

ϕn−1
k,− ϕ

n−1
i,+ ds for k = 1, . . . , Nn−1 and i = 1, . . . , Nn.

on the lower off diagonal for n = 2, . . . , N . Moreover, the right hand sides are given by

fn[i] := lh(ϕ
n
i ), i = 1, . . . , Nn,

for n = 1, . . . , N .

If the geometrical mappings Gn : Q̂ → Qn, n = 1, . . . , N , preserve the tensor product
structure of the IgA basis functions ϕni , we can use this information to save assembling
time and storage costs for the linear system (2.13). In this case, we can write the basis
functions ϕni in the form

ϕni (x, t) = φnix(x)ψ
n
it(t) with ix ∈ {1, . . . , Nn,x} and it ∈ {1, . . . , Nn,t},

where Nn = Nn,xNn,t. Using this representation, we can write the matrices An, n =
1, . . . , N as

An = Kn,t ⊗Mn,x +Mn,t ⊗Kn,x, (2.14)

with the standard mass and stiffness matrices with respect to space

Mn,x[ix, jx] :=

∫
Ω

φnjxφ
n
ix dx, Kn,x[ix, jx] :=

∫
Ω

∇xφ
n
jx · ∇xφ

n
ix dx,

where ix, jx = 1, . . . , Nn,x, and corresponding matrices with respect to time

Kn,t[it, jt] :=

∫ tn

tn−1

∂tψ
n
jt(ψ

n
it + θnhn∂tψ

n
it) dt+ ψnjt(tn−1)ψ

n
it(tn−1),

Mn,t[it, jt] :=

∫ tn

tn−1

ψnjt(ψ
n
it + θnhn∂tψ

n
it) dt,

(2.15)

with it, jt = 1, . . . , Nn,t. The matrices on the off diagonal Bn, n = 2, . . . , N , can be written
in the form

Bn := Nn,t ⊗ M̃n,x,

with the matrices

M̃n,x[ix, kx] :=

∫
Ω

φn−1
kx

φnix dx and Nn,t[it, kt] := ψn−1
kt

(tn−1)ψ
n
it(tn−1),

where ix = 1, . . . , Nn,x, kx = 1, . . . , Nn−1,x, it = 1, . . . , Nn,t and kt = 1, . . . , Nn−1,t.

3 Solvers for space-time problems

This section aims at the development of an efficient solver for the huge space-time system
(2.13). Our new solver is based on the time parallel multigrid method proposed in [7], see
also the PhD thesis [25]. The key point in realizing the method efficiently is the application
of the smoother, which is the most costly part of the algorithm. The goal is to utilize the
structure of the involved matrix A−1

n , which then allows for a faster application.
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3.1 Time-parallel multigrid

We want to give an overview of the time-parallel multigrid method introduced in [25].
Multigrid consists of three main ingredients: the coarse grid solver, the smoother and the
prolongation/restriction operators. Concerning the restriction and prolongation operator,
it is advantageous to consider coarsening in space and in time separately. The restriction
in time direction is realized by combining two consecutive time-slabs into a single one.
For a more detailed discussion on how space and time coarsening can be combined, we
refer to [25].

In this work, we are mostly interested in the smoother, which is of (inexact) damped block
Jacobi type, i.e.,

uk+1
h = ukh + ωD−1

h

[
fh − Lhu

k
h

]
for k = 1, 2, . . . .

We use the block diagonal matrix Dh := diag{An}Nn=1 and the damping parameter ω = 1
2
,

see also [7]. The application of the smoother can be accelerated by replacing the inverse
of Dh by some approximation, i.e., an approximation Â−1

n to A−1
n . The aim of this work

is to find a procedure, which allows an efficient application of Â−1
n to a vector. In order

to achieve this, we will heavily exploiting the special tensor structure of An.

3.2 General construction of an approximation for A−1
n

In this section, for notational simplicity, we drop the subscript n when considering matrices
and vectors defined on the space-time slice Qn. We recall the structure of the matrix A,

A = Kt ⊗Mx +Mt ⊗Kx,

where the matrices Mx and Kx are symmetric and positive definite, while the matrices
Kt and Mt are non-symmetric, cf. (2.14). The matrices Mx and Kx correspond to d-
dimensional problem, whereas Kt and Mt are only related to a one dimensional problem
in one time-slice. Hence, the size of the latter two matrices is much smaller than the
first two. The idea is to use already available preconditioners for symmetric positive
definite problems of the form Kx + γMx with γ > 0 to construct efficient and robust
preconditioners for A−1. The ideas of this section are based on the results developed in
[29] and [26].

We will achieve this by performing a decomposition of M−1
t Kt using one of the three

following methods: Diagonalization, Complex-Schur decomposition, Real-Schur decompo-
sition. We obtain a decomposition of the form M−1

t Kt = X−1ZX, where the entries of the
matrices X and Z are complex or real numbers, and Z has some sort of “simple” structure.
A detailed specification will be presented in Section 3.3, Section 3.4 and Section 3.5.

By defining Y := (MtX)−1, we obtain the following representations

Mt = Y−1X−1 and Kt = Y−1ZX−1.

Now we can rewrite A in the form

A = Kt ⊗Mx +Mt ⊗Kx

= (Y−1ZX−1)⊗Mx + (Y−1X−1)⊗Kx

= (Y−1 ⊗ I) · (Z⊗Mx + I⊗Kx) · (X−1 ⊗ I).
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Using the well-known fact that (Y−1⊗ I)−1 = Y⊗ I and (X−1⊗ I)−1 = X⊗ I, we obtain

A−1 = (X⊗ I) · (Z⊗Mx + I⊗Kx)
−1 · (Y ⊗ I). (3.1)

In the subsequent subsections, we will investigate the structure of the matrix (Z⊗Mx +
I ⊗ Kx) for each of the decomposition methods, and we will look for efficient ways of
(approximate) inversion.

In the following, the generalized eigenvalues λi := αi + ıβi ∈ C of (Kt,Mt), i.e.,

Ktzi = λiMtzi, (3.2)

with the eigenvector z := x+ ıy, will play an important role for constructing an efficient
application of (3.1). First of all, for 0 < θn ≤ C−2

inv, where Cinv denotes the constant from
the inverse inequality

|v(tn−1)|2 ≤ C2
invh

−1
n ‖v‖2

L2(tn−1,tn) ∀v ↔ v ∈ RNt , (3.3)

we have the positiveness of the matrices Kt and Mt, see [31] for an explicit formula of
Cinv = Cinv(p) in the case of polynomials of the degree p.

Lemma 3.1. Let Kt and Mt be given by (2.15), and let the constant Cinv > 0 be defined
according to (3.3). If θn > 0, then the matrix Kt is positive, i.e., vTKtv > 0 for all
v ∈ RNt \ {0}, and if θn < 2C−2

inv, then the matrix Mt is positive.

Proof. We first consider the matrix Kt. We can write vTKtv in the following way:

vTKtv = (Ktv,v) =

∫ tn

tn−1

(v′(t)v(t) + θnhn(v
′(t))2) dt+ |v(tn−1)|2

= θnhn‖v′‖2
L2(tn−1,tn) +

1

2

∫ tn

tn−1

(v2)′(t) dt+ |v(tn−1)|2

= θnhn‖v′‖2
L2(tn−1,tn) +

1

2
|v(tn)|2 −

1

2
|v(tn−1)|2 + |v(tn−1)|2

= θnhn‖v′‖2
L2(tn−1,tn) +

1

2
(|v(tn)|2 + |v(tn−1)|2) > 0.

for all v ↔ v ∈ RNt \ {0}. Using (3.3), we similarly obtain

vTMtv = (Mtv,v) =

∫ tn

tn−1

(v(t)2 + θnhnv
′(t)v(t)) dt

= ‖v‖2
L2(tn−1,tn) +

1

2
θnhn(|v(tn)|2 − |v(tn−1)|2)

≥
(
1− C2

invθn
2

)
‖v‖2

L2(tn−1,tn) +
1

2
θnhn|v(tn)|2 > 0.

for all v ↔ v ∈ RNt \ {0}. �

Next we are going to investigate the generalized eigenvalues in (3.2). More precisely, we
want to find conditions under which the real part α is positive. However, for a generalized
eigenvalue problem Az = λBz, this does not follow from the positivity of A and B as
following example shows.
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Example 1. Let the matrices A and B be given by

A =

[
5 −2
13 18

]
and B =

[
4 10
−10 9

]
.

For the spectra, we have σ(A) = {9 ± 2
√
5ı} and σ(B) = {13

2
± 5
√
15ı}. However, the

generalized eigenvalues are σ(B−1A) = {−103
272
±
√
4435ı}.

Let z be the eigenvector to the eigenvalue λ = α + ıβ, i.e., (A − λB)z = 0. Multiplying
from the left with (x− ıy)T yields

(x− ıy)T (A− (α + ıβ)B)(x+ ıy) = 0.

Separating the real and imaginary part, we obtain

α(xTBx+ yTBy)− β(xT (B−BT )y) = xTAx+ yTAy

α(xT (B−BT )y) + β(xTBx+ yTBy) = xT (A−AT )y.
(3.4)

Introducing the abbreviations a := xTAx+yTAy, b := xTBx+yTBy, c := xT (B−BT )y
and d := xT (A−AT )y, we can rewrite this system in the compact form[

b −c
c b

] [
α
β

]
=

[
a
d

]
,

and α is then given by the formula

α =
1

b2 + c2
(ab+ cd). (3.5)

We can easily observe the statements of the following lemma.

Lemma 3.2. Let A and B be positive matrices, then the following statements hold:

1. a > 0 and b > 0

2. If β = 0, i.e., the eigenvalue λ ∈ R, then λ = α > 0.

3. If either A or B are symmetric, then α > 0.

If A is only non-negative, then these inequalities hold with ≥ instead of >.

Proof. The positivity of a and b immediately follows from the definition. If the eigenvalue
λ is real, i.e., β = 0, we obtain from the first equation of (3.4) that α = a/b > 0. If either
A or B is symmetric, then either d or c is zero. Hence, by (3.5), α is positive. �

Let us now consider the special case of A = Kt and B = Mt. For notational simplicity,
we drop the subscript n, and consider the interval [0, T ]. First we observe that

c = xT (B−BT )y = θh

∫ T

0

y′(t)x(t)− x′(t)y(t) dt

d = xT (A−AT )y =

∫ T

0

x′(t)y(t)− y′(t)x(t) dt.
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Hence, it follows that c = −θhd. This relation leads to the following formula for α:

α =
1

b2 + c2
(ab− θhd2). (3.6)

The problem then reduces to check the relation ab− θhd2 > 0, which then reads as

(xTAx+ yTAy)(xTBx+ yTBy)− θh(xT (A−AT )y)2 > 0, (3.7)

for the eigenvector z = x + ıy corresponding to λ = α + ıβ. Rewriting (3.7) in terms of
functions, we get the relation(

θnhn‖x′‖2 +
1

2
(|x(T )|2 + |x(0)|2) + θnhn‖y′‖2 +

1

2
(|y(T )|2 + |y(0)|2)

)
·
(
‖x‖2 +

1

2
θnhn(|x(T )|2 − |x(0)|2) + ‖y‖2 +

1

2
θnhn(|y(T )|2 − |y(0)|2)

)
− θh

(∫ T

0

x′(t)y(t)− y′(t)x(t) dt
)2

> 0

Unfortunately, in this work, we cannot give a complete characterization of the conditions
under which the last inequality holds.

Let us consider the special case θ = 0. First of all, we note that vTKtv = 1
2
(|v(tn−1)|2 +

|v(tn)|2), which then only defines a seminorm. Hence, discrete coercivity is not valid.
Therefore, this case is not covered by the analysis presented in [13]. For its analysis, we
refer to [27], where an inf-sup condition and error estimates are proven. The matrix Mt

is symmetric and vTMtv = ‖v‖2
L2 . From this fact, we can deduce the following statement

by means of Lemma3.2:

Proposition 3.1. Let Kt and Mt be as defined above with θ = 0. Then α ≥ 0.

Remark 3.1. In the condition number analysis of the following subsections, we consider
matrices of the form Kx+αMx, which are required to be positive definite. Therefore, the
positivity of α can be relaxed in the case that |ΓD| > 0.

Remark 3.2. A more detailed investigation of (3.4) shows that

α = 0⇐⇒ x(0) = x(T ) = y(0) = y(T ) = 0, (3.8)

for the eigenvector z = x+ ıy corresponding to α + ıβ.

For the case p = 1, one can even show that for an eigenvector corresponding to an
purely imaginary eigenvalue the property x(0) = x(T ) = y(0) = y(T ) = 0 cannot hold.
Considering a uniform knot vector in [0, 1] with B-Splines of degree p = 1 and Nt ≥ 3, it
holds

Kt =
1

2



1 1
−1 0 1

. . . . . . . . .
−1 0 1
−1 0 1
−1 1


and Mt = Cn



2 1
1 4 1
. . . . . . . . .

1 4 1
1 4 1

1 2


,
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where Cn > 0 depends on Nt. Rewriting Ktz = ıβMtz as recurrence relation for z =
[z1, z2, . . . , zNt−1, zNt ], we obtain

z1 + z2 = ıβ(2z1 + z2)

−zi−1 + zi+1 = ıβ(zi−1 + 4zi + zi+1) i = 2, . . . , Nt − 1

−zNt−1 + zNt = ıβ(zNt−1 + 2zNt),

(3.9)

where we put the real number Cn and the 1/2 in front of Kt into the eigenvalue ıβ. In
order for z = [0, z2, . . . , zNt−1, 0] to be an eigenvector, we obtain from the first line of (3.9)

z2 = ıβz2 ⇔ (1− ıβ)z2 = 0.

Since (1− ıβ) cannot be zero, the only possibility for this equation to hold is when z2 = 0.
Considering now the second line of (3.9) and assuming z1 = . . . = zj = 0, then, for i = j,
the equation reads

zj+1 = ıβzj+1 ⇔ (1− ıβ)zj+1 = 0.

Therefore, zj+1 = 0. By induction it follows that z = 0. Hence, it cannot be an eigenvector.

In the case of p > 1, the matrices Kt and Mt have more than one off diagonal and such
a relation would not follow so easily. Numerical experiments in Section 4.2 indicate that
the real part of λ is positive for the case p > 1 too.

Remark 3.3. Let us consider the case |ΓD| > 0. From Remark 3.1, Proposition 3.1 and
the continuous dependence of α on θ, we obtain that Kx + αMx must be positive for
sufficiently small θ.

Remark 3.4. Numerical experiments for various values of θ, p and hn in Section 4.2 in-
dicate that the generalized eigenvalues λi have a positive real part α provided that the
real part of the eigenvalues of Mt is positive. Moreover, in the practical implementation,
one has to compute the eigenvalues λi anyway. Therefore, we always have an a posteriori
control on the positivity of α. If it happens that α ≤ 0, than we have to use a smaller θ.

3.3 Diagonalization

If the matrix M−1
t Kt is diagonalizable, the eigenvalue decomposition allows us to write

M−1
t Kt = X−1DX, (3.10)

where D = diag(λi), λi ∈ C, is a diagonal matrix with possibly complex eigenvalues on
the diagonal, and X ∈ CNt×Nt denotes the matrix of the possibly complex eigenvectors.
Due to the fact that the matrix M−1

t Kt is non-symmetric, the eigenvectors do not form
an orthogonal basis, i.e. X−1 6= XH . An efficient calculation can be performed by means
of solving the generalized eigenvalue problem Ktx = λMtx.

Thanks to (3.10), the matrix (Z⊗Mx + I⊗Kx)
−1 from (3.1) takes the form

(Z⊗Mx + I⊗Kx)
−1 = (D⊗Mx + I⊗Kx)

−1 = diagi=1,...,Nt((Kx + λiMx)
−1).
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Therefore, only Nt problems of the form (Kx + λiMx) have to be solved, independently
of each other. We have to distinguish two cases: the first case where the eigenvalue λi is
a positive real number, and the second one where λi is a complex number.

In the first case, we consider λi = αi ∈ R+. In this case the matrixKx+λiMx is symmetric
positive definite. This allows for many possible exact and inexact solution strategies, e.g.,
Multigrid, Domain Decomposition type methods.

The second case, where λi = α+ ıβ ∈ C with α, β ∈ R, α > 0, is more difficult to handle.
We note that (Kx + λiMx)

H 6= Kx + λiMx. Separating the real and imaginary parts, we
can rewrite the complex system (Kx + λiMx)z = h as a real system with a real block
system matrix of twice size.

(Kx + λiMx)z = h

⇐⇒
[
Kx + αiMx −βMx

βMx Kx + αiMx

] [
x
y

]
=

[
f
g

]
⇐⇒

[
Kx + αiMx βiMx

βiMx −(Kx + αiMx)

]
︸ ︷︷ ︸

=:Ai

[
x
−y

]
=

[
f
g

]
,

where z = x+ ıy and h = f + ıg. The matrix Ai ∈ R2Nx×2Nx is symmetric, but indefinite.
We are now looking for an robust preconditioner for Ai. In order to construct such a
preconditioner, we use operator interpolation technique, see, e.g., [33], [4] and [1]. First,
we need the definition of the geometric mean of two operators and the general operator
interpolation theorem, see also Definition. 2.28 and Theorem. 2.29 in [32].

Definition 1. Let A and B be real, symmetric and positive definite matrices. We define
the geometric mean of A and B by the relation

[A,B]1/2 = A1/2
(
A−1/2BA−1/2

)1/2
A1/2.

Moreover, for any ϑ ∈ [0, 1], we define the symmetric and positive matrix by

[A,B]ϑ = A1/2
(
A−1/2BA−1/2

)ϑ
A1/2.

Theorem 3.1. Let A : Rn → Rn such that the inequalities

c0‖u‖X0 ≤ ‖Au‖Y0 ≤ c0‖u‖X0 and c1‖u‖X1 ≤ ‖Au‖Y1 ≤ c1‖u‖X1 ∀u ∈ Rn

hold, where the linear vector spaces Xj = Rn and Yj = Rn with j ∈ {0, 1} are equipped
with the norms ‖ · ‖Xj and ‖ · ‖Yj , which are associated to the inner products

(u, v)Xj = (Mju, v)`2 and (u, v)Yj = (Nju, v)`2 ,

given by the symmetric and positive definite matrices M0,M1, N0 and N1, and the eu-
clidean inner product (·, ·)`2. Then, for Xϑ = [X0, X1]ϑ and Yϑ = [Y0, Y1]ϑ, with ϑ ∈ [0, 1],
the inequalities

c1−ϑ
0 cϑ1‖u‖Xϑ ≤ ‖Au‖Yϑ ≤ c1−ϑ

0 cϑ1‖u‖Xϑ ∀u ∈ Rn. (3.11)

hold, where the norms ‖ · ‖Xϑ and ‖ · ‖Yϑ are the norms associated to the inner products

(u, v)Xϑ = (Mϑu, v)`2 , with Mϑ = [M0,M1]ϑ, and
(u, v)Yϑ = (Nϑu, v)`2 , with Nϑ = [N0, N1]ϑ,

respectively.
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Proof. For the proof, we refer to the proof of Theorem 2.29 in [32] and references therein,
see also [1]. �

Remark 3.5. Using the notation from Theorem 3.1, one can show the alternative repre-
sentation

‖u‖2
Xϑ

=
2 sin(ϑπ)

π

∫ π

0

t−(2ϑ+1)K(t;u)2 dt

of ‖u‖Xϑ , where K(t;x) = infx=x0+x1(‖x0‖2
X0

+t2‖x1‖2
X1
)1/2. From this representation, one

observes that

[X0, X1]ϑ = [X1, X0]1−ϑ. (3.12)

Let us consider a general saddle point matrix

A =

[
A B
BT −C

]
,

where A and C are symmetric positive definite matrices. We can define two possible
negative Schur complements

S := C +BA−1BT and R := A+BC−1B, (3.13)

and the associated block diagonal preconditioners

P0 =

[
A 0
0 S

]
and P1 =

[
R 0
0 C

]
.

For P0 and P1, the following spectral inequalities are known

(
√
5− 1)/2‖u‖Pj ≤ ‖Au‖P−1

j
≤ (
√
5 + 1)/2‖u‖Pj j ∈ {0, 1},

see Theorem 2.26 in [32] and references therein. Based on these two preconditioners, we
construct a preconditioner Pϑ with ϑ = 1/2 by an interpolation of the preconditioners P0

and P1:

P1/2 = [P0, P1]1/2 =

[
[A,R]1/2 0

0 [S,C]1/2

]
.

By means of Theorem 3.1 and the setting M0 = P0,M1 = P1, N0 = P−1
0 and N1 = P−1,

it follows that

(
√
5− 1)/2‖u‖P1/2

≤ ‖Au‖P−1
1/2
≤ (
√
5 + 1)/2‖u‖P1/2

.

Hence, condP1/2
(P−1

1/2A) ≤ (
√
5+1)/(

√
5−1). Note, this condition number estimate would

hold for all ϑ ∈ [0, 1]. In the following, we are looking for an approximation of P1/2, which
can easily be realized in an implementation.
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Theorem 3.2. Let Kx and Mx be symmetric and positive matrices, and let α and β be
real numbers with α > 0. Furthermore, we define the block matrices

A :=

[
Kx + αMx βMx

βMx −(Kx + αMx)

]
, (3.14)

P :=

[
Kx + (α + |β|)Mx 0

0 Kx + (α + |β|)Mx

]
. (3.15)

Then the condition number estimate

condP (P−1A) ≤
√
2

√
5 + 1√
5− 1

(3.16)

holds.

Proof. The proof follows the lines in [32], Section 3.3. For simplicity, we introduce the
notations K := Kx + αMx andM := Mx. Recall the system matrix

A :=

[
Kx + αMx βMx

βMx −(Kx + αMx)

]
=

[
K βM
βM −K

]
.

Since K is symmetric and, due to α > 0, also positive definite, we can reformulate the
two Schur complements from (3.13) for the matrix A as follows:

S = R = K + β2MK−1M.

We are looking for an spectral equivalent approximation P of P1/2, which is easy to realize
and fulfils the spectral inequalities

cP ≤ P1/2 ≤ cP, (3.17)

where the constants c and c are independent of α and β. Next we estimate [K, R]1/2 and
[S,K]1/2. Here we make use of the following matrix inequalities

1√
2
(
√
aI +

√
bX1/2) ≤ (aI + bX)1/2 ≤

√
aI +

√
bX1/2, (3.18)

where X is a symmetric positive definite matrix, and I denotes the identity matrix. First
we derive an upper bound for [K, R]1/2:

[K, R]1/2 = K1/2
(
K−1/2RK−1/2

)1/2K1/2

= K1/2
(
K−1/2(K + β2MK−1M)K−1/2

)1/2K1/2

= K1/2
(
I + β2K−1/2MK−1MK−1/2

)1/2K1/2

≤ K1/2
(
I + (β2K−1/2MK−1MK−1/2)1/2

)
K1/2

= K + |β|K1/2(K−1/2MK−1MK−1/2)1/2K1/2

= K + |β|K1/2(K−1/2MK−1/2)1/2(K−1/2MK−1/2)1/2K1/2

= K + |β|K1/2(K−1/2MK−1/2)K1/2

= K + |β|M.
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Similarly, for the lower bound, we obtain

[K, R]1/2 = K1/2
(
K−1/2RK−1/2

)1/2K1/2

= K1/2
(
I + β2K−1/2MK−1MK−1/2

)1/2K1/2

≥ K1/2
( 1√

2
(I + (β2K−1/2MK−1MK−1/2)1/2)

)
K1/2

=
1√
2
(K + |β|K1/2(K−1/2MK−1MK−1/2)1/2K1/2)

=
1√
2
(K + |β|M).

The missing estimate from above and below for [S,K]1/2 follow from the fact that [S,K]1/2 =
[K, S]1/2 = [K, R]1/2, see (3.12). Hence, for the preconditioner

P :=

[
K + |β|M 0

0 K + |β|M

]
=

[
Kx + (α + |β|)Mx 0

0 Kx + (α + |β|)Mx

]
,

we obtain the spectral constants c = 1√
2
and c = 1 in (3.17). Finally, we arrive at the

estimate

condP (P−1A) = ‖P−1A‖P‖A
−1
P‖P ≤

√
2‖P−1

1/2A‖P1/2
‖A−1

P1/2‖P1/2
≤
√
2

√
5 + 1√
5− 1

.

(3.19)

�

Remark 3.6. The estimate (3.19) of the condition number condP (P−1A) can be improved
by solving the generalized eigenvalue problem

A

[
x
y

]
= λP

[
x
y

]
directly. Following the procedure outlined in Remark 9 in [33], see also the proof of
Theorem 3.3, we find that the generalized eigenvalues satisfy the estimates

|λmin| ≥
1√
2

and |λmax| ≤ 1,

which leads to the condition number estimate condP (P−1A) ≤
√
2.

We note that both block-diagonal entries of P are identical, and the matrix Kx + (α +
|β|)Mx is symmetric and positive definite. This opens various possibilities for precondi-
tioning based on standard techniques for symmetric and positive definite matrices. The
linear system Ay = f can then be solved, e.g., by means of MinRes preconditioned by P−1.
We can even use an spectral equivalent approximation P̂−1, i.e., cP̂−1 ≤ P−1 ≤ CP̂−1,
with constants c and C, independent of α and β. Moreover, this approach allows for a
further parallelization by applying An in parallel for n = 1, . . . , Nt.

Unfortunately, this approach has a severe drawback. Due to the fact that the matrix
M−1

t Kt is non-symmetric, the matrix X of eigenvectors is not unitary and, therefore,
cond(X) 6= 1. Actually, numerical tests in Section 4.1 show that, for large B-Spline degree
or small ht, we observe that the condition number cond(X) ≈ 1012. In that case we cannot
correctly apply (3.1) and the algorithm fails. This problem can be circumvented by using
the Complex or Real Schur decomposition, as presented in the subsequent two subsections.
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3.4 Complex Schur decomposition

In this section, we investigate an alternative possibility for decomposing M−1
t Kt. The

Complex Schur decomposition provides a decomposition of the form

M−1
t Kt = Q∗TQ, (3.20)

where Q ∈ CNt×Nt and T ∈ CNt×Nt is a upper triangular matrix with Tii = λi. The
advantage of the (complex) Schur decomposition is the fact that we obtain a unitary
matrix Q. Hence, cond(Q) = 1, but the diagonal matrix D in the decomposition (3.10)
is now replaced by the upper triangular matrix T in the decomposition (3.20), By means
of (3.20), the matrix Z⊗Mx + I⊗Kx from (3.1) takes the form

(Z⊗Mx + I⊗Kx)
−1 = (T⊗Mx + I⊗Kx)

−1

=


Kx + T11Mx T12Mx . . .

0 Kx + T22Mx T23Mx
... 0

. . . TNtNt−1Mx

0 . . . 0 Kx + TNtNtMx


−1

=


Kx + λ1Mx T12Mx . . .

0 Kx + λ2Mx T23Mx
... 0

. . . TNtNt−1Mx

0 . . . 0 Kx + λNtMx


−1

The application of (T ⊗Mx + I ⊗Kx)
−1 to some vector f can be performed staggered

way as presented in Algorithm 1.

Algorithm 1 Calculation of y = (T⊗Mx + I⊗Kx)
−1f

for i = Nt, Nt − 1 . . . , 1 do
g = fi
for j = i+ 1, i+ 2 . . . , Nt do

g = g − Tijyj
end for
Solve (Kx + λiMx)yi = g, where λi = Tii.

end for
return y

In order to solve the linear systems (Kx + λiMx)yi = g, i = 1, . . . , Nt in Algorithm 1, we
can use the techniques developed in the previous subsection. This decomposition method
allows us to have a well conditioned transformation matrix Q, however at the cost that
the linear system cannot be solved independently of each other. We note that this method
and the eigenvalue decomposition require complex arithmetic, which is more expensive
than the real one. In the following subsection, we investigate the real Schur decomposition,
which eliminates the need for having complex arithmetic.

3.5 Real Schur decomposition

In this subsection, we look at the decomposition of M−1
t Kt by means of the Real Schur

decomposition. It provides a decomposition of the form

M−1
t Kt = Q∗TQ, (3.21)
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where Q ∈ RNt×Nt . The matrix T ∈ RNt×Nt is a upper quasi-triangular matrix, i.e., the
diagonal consists of 1 × 1 and 2 × 2 blocks. The values of the 1 × 1 blocks correspond
to the real eigenvalues, while the 2 × 2 blocks correspond to the complex eigenvalues of
M−1

t Kt.

By additionally performing a Givens rotation, the 2× 2 block can be transformed to the
structure

B :=

[
α β1

β2 α

]
,

where α, β1, β2 ∈ R and β1 6= β2 6= 0. The eigenvalues of this matrix are given by
α±
√
β1β2. Due to the fact that the eigenvalues have to be complex and the real part has

to be positive, we obtain that α > 0 and β1 and β2 have different signs. Therefore, we can
write the eigenvalues as α± ı

√
|β1β2|.

Using this decomposition, the matrix Z⊗Mx+ I⊗Kx appearing in (3.1) has a structure,
which is similar to that one of the Complex Schur decomposition. The corresponding sys-
tem of linear algebraic equations can also be again solved in a staggered way as presented
in Algorithm 1. One has to adapt the algorithm in such a way that, if the diagonal block is
a 2×2 block, one has to work with two-block vectors and a 2×2 block matrix. It remains
to investigate the solution strategy for the 2× 2 block matrix. As already mentioned, the
2 × 2 block of T is non-symmetric. Hence, the 2 × 2 block matrix is also non-symmetric
and is given in the following way[

Kx + αMx β1Mx

β2Mx Kx + αMx

]
.

The structure of the matrix is very similar to A in Theorem 3.2 up to the non-symmetry,
which origins just from the different scalings β1 and β2 and their different sign. By a
proper rescaling, we can transform this linear system into an equivalent system with a
symmetric, but indefinite system matrix:[

Kx + αMx β1Mx

β2Mx Kx + αMx

] [
x
y

]
=

[
f
g

]
⇐⇒

[
Kx + αMx −β1Mx

β2Mx −(Kx + αMx)

] [
x
−y

]
=

[
f
g

]
⇐⇒

[
|β2|(Kx + αMx) −β1|β2|Mx

|β1|β2Mx −|β1|(Kx + αMx)

]
︸ ︷︷ ︸

=:A

[
x
−y

]
=

[
|β2|f
|β1|g

]
,

We note that β1 and β2 have different signs. Hence, −β1|β2| = −β2|β1|. Motivated by
the construction of the preconditioner in the case of the eigenvalue decomposition, we
can come up with an optimal preconditioner. The following theorem presents this optimal
preconditioner for the matrix A.

Theorem 3.3. Let Kx and Mx be symmetric and positive matrices, and let α, β1, β2 be
real numbers with α > 0. Furthermore, we define the block matrices

A :=

[
|β2|(Kx + αMx) −β1|β2|Mx

|β1|β2Mx −|β1|(Kx + αMx)

]
,

P :=

[
|β2|(Kx + (α +

√
|β1β2|)Mx) 0

0 |β1|(Kx + (α +
√
|β1β2|)Mx)

]
.
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Then the condition number estimate

cond(P−1A) ≤
√
2.

holds.

Proof. The proof follows the lines from Remark 9 in [33], which gives a sharper bound
than using interpolation theory as in [32]. For notational simplicity, we introduce the
abbreviations K := Kx+αMx andM := Mx. We now consider the generalized eigenvalue
problem Au = λPu, which reads[

|β2|K −β1|β2|M
|β1|β2M −|β1|K

] [
x
y

]
= λ

[
|β2|(K +

√
|β1β2|M) 0

0 |β1|(K +
√
|β1β2|M)

] [
x
y

]
.

(3.22)

At first we consider the generalized eigenvalue problem

Kz = µ(K +
√
|β1β2|M)z.

Due to the fact that K and M are symmetric, there exists an basis {e1, e2, . . . , eNx}
of eigenvectors, which are orthonormal with respect to the inner product generated by
K+

√
|β1β2|M, and corresponding eigenvalues µj. Since K is dominated by K+

√
|β1β2|M

and due to their positivity, we have that µj ∈ [0, 1]. Therefore, we can express x and y
as linear combination of ej with coefficients x̂j and ŷj, respectively. Moreover,Mz fulfils
the following identity

Mz = (|β1β2|)−1/2(
√
|β1β2|M+K)z − (|β1β2|)−1/2Kz

= (|β1β2|)−1/2(
√
|β1β2|M+K)z − (|β1β2|)−1/2µ(K +

√
|β1β2|M)z

= (|β1β2|)−1/2(1− µ)(
√
|β1β2|M+K)z.

Using the expansion of x and y into the eigenvectors {ej}, system (3.22) decomposes into
the 2× 2 systems[

|β2|µj −β1|β2||β1β2|−1/2(1− µj)
|β1|β2|β1β2|−1/2(1− µj) −|β1|µj

] [
x̂j
ŷj

]
= λ

[
|β2| 0
0 |β1|

] [
x̂j
ŷj

]
.

Since there exists at least one pair (x̂j, ŷj) which is non-zero, the determinant of the
system matrix must be zero, i.e.,

det
([

|β2|µj −β1|β2||β1β2|−1/2(1− µj)
|β1|β2|β1β2|−1/2(1− µj) −|β1|µj

]
− λ

[
|β2| 0
0 |β1|

])
= 0,

which reduces to

|β1β2|(λ2 − µ2
j)− (β1β2)

2|β1β2|−1(1− µj)2 = 0,

where we used that−β1|β2| = |β1|β2 6= 0. We immediately obtain that |λ| =
√
µ2
j + (1− µj)2

for µi ∈ [0, 1] and it follows that 1√
2
≤ |λ| ≤ 1, which gives the desired bound on the

condition number of P−1A. �

Now we can again use the MinRes preconditioned by P as iterative solver for systems
with the system matrix A, and we obtain a robust method. Moreover, due to the use of
real arithmetic, this approach is usually more efficient than that one using the Complex
Schur decomposition.
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4 Numerical examples

In this section, we test the proposed preconditioners on the three (2+1) dimensional space-
time cylinder Q illustrated in Figure 1. The two dimensional spatial domain Ω consists
of 21 spatial subdomains (volumetric patches). For each time slap, we use conforming
B-Splines of degree p. The problems were calculated on a Desktop PC with an Intel(R)
Xeon(R) CPU E5-1650 v2 @ 3.50GHz and 16 GB main memory. We use the C++ library
G+Smo for describing the geometry and performing the numerical tests, see also [18] and
[24].

Fig. 1. The left picture shows the space-time cylinder Q with 8 time slabs, while the right
picture presents the spatial domain Ω consisting of 21 patches.

4.1 Condition number of eigenvector matrix X

Here, we study the condition number of the generalized eigenvectors of (Kt,Mt). Due to
the non-symmetry of Kt and Mt, we do not obtain an orthogonal basis of eigenvectors.
Hence, the condition number is not 1. Actually, it can be quite large. We report on the
condition number for different p and Nt in Table 1. We observe that the condition number
grows exponentially with p and Nt. We conclude that for small p or small number of dofs
in time direction, the approach presented in Section 3.3 may be still feasible.

4.2 Smallest eigenvalue of M−1
t Kt

In Section 3.2, we observed the necessity that the real part of the smallest eigenvalue of
M−1

t Kt is positive. In this section, we present numerical studies for different p, h and θ,
where we fix the time interval to [0, 1]. The results are summarized in Table 2, where the
entries with ∗ indicate that the matrix Mt had at least one eigenvalue with negative real
part. Consequently, the smallest real part of the generalized eigenvalues was also negative.
We observe that, if Mt > 0, then also the real part of M−1

t Kt is positive. The positive
real part of the eigenvalues for the p = 1 and θ = 0 is in agreement with Remark 3.2.
Moreover, for θ = 0 and increasing p we observe even an increase of the smallest real part
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Nt − p \ p 2 3 4 5 6 7 8

2 64 309 362 766 1706 3907 9501
4 481 1036 3037 9419 41959 39323 73946
8 2869 16118 39693 74370 180054 472758 1e+06
16 34332 188263 463148 1e+06 6e+06 3e+07 1e+08
32 701306 2e+06 1e+07 6e+07 4e+08 7e+09 1e+10
64 5e+07 4e+07 3e+08 3e+09 6e+10 3e+11 1e+12
128 2e+08 1e+09 1e+10 3e+11 2e+13 5e+13 4e+14

Table 1. Condition number of X for θ = 0.01 and |tn+1 − tn| = 0.1.

of the eigenvalues, cf. Proposition 3.1 and Remark 3.2. The numerical tests indicate that,
for sufficiently small θ, the smallest real part of the generalized eigenvalues stays positive.

2 uniform refinements 4 uniform refinements
θ\p 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 1.5 2.4 3.2 3.8 4.3 4.7 5.0 0.2 0.5 0.9 1.5 2.1 2.7 3.4
0.01 1.6 2.5 3.2 3.6 4.0 4.4 4.9 0.7 0.7 1.1 1.6 2.2 2.8 3.3
0.1 2.5 2.9 3.2 3.6 4.0 4.5 5.2 4.8 2.9 2.7 3.0 3.4 3.6 4.1
1 4.1 4.5 4.7 * * * * 12.4 12.0 9.2 * * * *
10 4.6 5.2 5.2 * * * * 6.7 11.8 * * * * *

6 uniform refinements 8 uniform refinements
θ\p 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0.01 0.03 0.06 0.1 0.1 0.2 0.2 0.0008 0.002 0.004 0.006 0.009 0.01 0.02
0.01 1.9 1.0 0.8 0.7 0.6 0.6 0.6 7.7 4.0 3.0 2.5 2.0 1.8 1.6
0.1 18.6 9.9 7.4 6.0 5.1 4.5 4.0 34.8 33.8 29.5 23.8 20.0 17.2 15.1
1 34.2 35.1 33.8 * * * * 34.8 34.4 34.5 * * * *
10 11.4 17.4 * * * * * 29.0 32.2 * * * * *

Table 2. Smallest real part of generalized eigenvalues Ktx = λMtx for different B-Spline
degrees p, θ and number of dofs. The ∗ indicates that the matrix Mt has at least one
eigenvalue with negative real part.

4.3 Condition number of preconditioned Kx + λMx

The aim of this section is to verify the optimal condition number bound presented in
Theorem 3.2 and Theorem 3.3. To do so, we report on the maximum number of MinRes-
iterations in order to solve Kx + λiMx, where λi ∈ C are the generalized eigenvalues of
(Kt,Mt). We use zero initial guess, and a reduction of the initial residual by 10−10. We
choose θ = 0.1. In Table 3, we investigate the robustness of the preconditioners from
Theorem 3.2 and Theorem 3.3. We observe that the number of iterations stays bounded
for various p and h.
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Complex Schur decomp. Real Schur decomp.
ref. x and t \ p 2 3 4 5 6 2 3 4 5 6

0 23 22 26 26 26 18 18 20 21 22
1 25 24 24 27 26 20 20 22 22 22
2 25 25 25 27 27 22 22 22 22 22
3 24 26 26 27 27 22 22 22 22 21
4 25 25 26 27 26 22 22 22 22 20

Table 3.Maximum number of MinRes iterations to solveKx+λiMx, i = 1, . . . , Nt, result-
ing from the Complex and Real Schur decomposition. Refinement is performed uniformly
in x and t.

4.4 Application to Space-Time Multigrid

This section deals with the use of the iterative methods developed in Section 3.2 as
smoothers in the space-time multigrid. The realization of the preconditioner P , see The-
orem 3.2 and Theorem 3.3 is performed via a sparse direct solver. We use the PARDISO
5.0.0 Solver Project [19] for performing the LU factorizations. We compare the three dif-
ferent approaches, presented in Section 3.2, with the exact realization of A−1

n via the
sparse direct solver PARDISO. For approximating A−1

n via MinRes, we use zero initial
guess and a reduction of the initial residuum by 10−4. In Table 4, we report on the single
core computation time of the MG algorithm to setup the data-structures and solve the
system via the MG iteration. The setup time includes the LU factorizations, but not the
assembling of the matrices. For the MG iteration, we use zero initial guess and a reduction
of the initial residuum by 10−8. We choose θ = 0.01, |tn− tn+1| = 0.1 and the polynomial
degree by p = 3 for both space and time direction. Moreover, we fix the number of dofs
in time direction of a time slab, but increase the number of time slabs. The MG method
uses coarsening in space as well as in time.

We observe that the LU factorization of An needs a quite large amount of time, whereas
the setup time is almost negligible for the three preconditioners proposed. The little in-
crease in the solution time definitely pays off by the small setup time. In addition, the
Real-Schur decomposition almost provides the same solution time as the direct solver.
Due to the complex arithmetic of the Diagonalization or the Complex-Schur decompo-
sition, their computational effort doubles, which we observe also in the numerical test.
Finally, due to the quite accurate approximation of A−1

n (up to 10−4), we do not observe
a deterioration of the MG iteration numbers. It took around 12 iterations to reach the
desired tolerance of 10−4.

5 Conclusions

In this work, we presented a decomposition of a non-symmetric linear system arising from
a space-time formulation into a series of symmetric linear systems, which are easier to
solve. These problems are part of the time-parallel MG method introduced in [25]. They
correspond to spatial problems. They are either symmetric and positive definite or have
a symmetric saddle point structure. For the latter, we presented robust preconditioners
motivated by operator interpolation theory. The runtime performance is already very
promising, even when using direct solvers, and can further be reduced by using robust
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#dofs ref #slaps MG-It Direct Diag
x t Setup Solving Setup Solving

15950 2 3 2 7 1.9 0.7 0.04 2.3
97020 3 3 4 7 38.6 8.5 0.3 19.4
665720 4 3 8 7 1008 94.6 3.7 183.8
#dofs ref #slaps MG-It C-Schur R-Schur
15950 2 3 2 7 0.05 2.4 0.04 1.3
97020 3 3 4 7 0.5 19.9 0.3 11.1
665720 4 3 8 7 5.4 187.3 3.7 108.0

Table 4. Comparison of the Diagonalization as well as the Complex Schur and Real Schur
decompositions with a sparse direct solver used for approximating A−1

n . All timings are
given in seconds.

IgA multigrid or IgA domain decomposition approaches as proposed, e.g., in [10,11,12] or
[14,15], respectively. The advantage of the decompositions proposed consists in the avail-
ability of well-established preconditioners for symmetric and positive definite problems.
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2017-10 A. Jiménez-Pastor, V. Pillwein: A Computable Extension for Holonomic Functions: DD-

Finite Functions December 2017. Eds.: P. Paule, M. Kauers
2017-11 D. Dominici: Mehler-Heine Type Formulas for Charlier and Meixner Polynomials II. Higher

Order Terms December 2017. Eds.: P. Paule, M. Kauers
2017-12 D. Dominici: Orthogonality of the Dickson Polynomials of the (k + 1)-th Kind December

2017. Eds.: P. Paule, M. Kauers

The complete list since 2009 can be found at
https://www.dk-compmath.jku.at/publications/



Doctoral Program

“Computational Mathematics”

Director:
Dr. Veronika Pillwein
Research Institute for Symbolic Computation

Deputy Director:
Prof. Dr. Bert Jüttler
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