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We present the concept of Gröbner reduction that is a Gröbner basis
technique on filtered free modules. It allows to compute the dimension
of a filtered free module viewn as a K-vector space. We apply the de-
veloped technique to the computation of a generalization of Hilbert-type
dimension polynomials in K[X] as well as in finitely generated difference-
differential modules. The latter allows us to determine a multivariate
dimension polynomial where we partition the set of derivations and the
set of automorphism in a difference-differential ring in an arbitrary way.

1 Introduction
In [ZW08], the authors investigate how the theory of Gröbner bases in polynomial ideal
theory can be exploited to solve problems in modules of difference-differential polynomials
over the ring of difference-differential operators D. The main ingredients are the notion
of reduction that is established by Gröbner bases. The developed Gröbner basis theory
is used to give an answer to the question of dimension in a D-module. [KLAV98] give a
detailed investigation of how to calculate difference and differential dimension polynomials,
as well as generalizing the notion of dimension to difference-differential modules. [ZW08]
introduced the notion of a bivariate difference-differential dimension polynomial, where they
make a natural split between the set of derivations and the set of automorphisms. Levin
investigated further, and partitioned the set of derivations in [Lev12, Lev13]. In this paper
we show in a very general setting, that filtrations of an arbitrary associative ring D are the
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key to get full information of a set of descriptors of a module. In particular we will find out,
that the partition of the basic sets is completely arbitrarily and therefore it is reasonable
to construct the theory on general filtered rings. After a theoretical introduction, we apply
the developed mechanism to polynomial ideals to give a general description of dimension,
including Hilbert polynomials as special cases. Afterwards, we extend the existing theory
of dimension in difference-differential modules to get information where we partition the set
of derivations and the set of automorphisms, and compute a multivariate generalization of
the bivariate dimension polynomial. This takes the work in [ZW07, ZW08, Lev12, Lev13]
as possible instances of our general algorithm. An account on applications of dimension
polynomials is given in [KLAV98, Chapter VII]. This paper is organized as follows: In
section 2 introduce the notion of filtered free module, and introduce monomial filtered
rings resp. monomial filtration on the polynomial ring and the ring of difference-differential
operators. We show, how a filtration on the ring D is inherited to a free module F and
how this connects to a general finitely generated module M . In section 3 this construction
is used for the concept of Gröbner reduction that is used to compute the dimension in a
filtered module. We show that relative reduction as introduced in [ZW08] is an instance of
Gröbner reduction w.r.t. a bivariate monomial filtration. The main Theorem 1. shows how
we can compute the dimension in a constructive way. In section 4 we apply the developed
mechanism to polynomial ideals and introduce a general version of Hilbert polynomials.
Finally we apply Gröbner reduction to the computation of multivariate difference-differential
dimension polynomials in finitely generated difference-differential modules. Section 5 holds
concluding remarks.

2 Filtered free modules
As a general setting throughout this report, we assume we are given a ring D with unit 1,
such that D contains the field K. Expressions in D shall be of the form

f ∈ D : f =
∑
λ∈Λ

aλλ, aλ ∈ K,Λ ⊆ D,

the product of field elements aλ with elements λ ∈ Λ not necessarily commutative. The
elements λ are called monomials. The set of terms of f ∈ D is denoted by

T (f) := { λ ∈ Λ | λ appears in f with a non-zero coefficient }.

Obviously for f, g ∈ D we have that T (f ± g) ⊆ T (f) ∪ T (g).

Next, we define a filtration on D by writing

(Dr), r := (r1, . . . , rn) ∈ Nn.

where Dr ⊆ D are additive subgroups such that

∪r∈NnDr = D

Dr1,...,ri,...,rn ⊆ Dr1,...,ri+1,...,rn

DrDs ⊆ Dr+s

1 ∈ D0,...,0 =: D0,
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holds for all r, s ∈ Nn. The ring D together with this filtration will be called a filtered ring.

Definition 1 (Monomially filtered ring). A filtration (Dr)r∈Nn on D is said to be monomial
if and only if

• D0 = K

• whenever f is in Dr then all terms λ that occur in f with a non-zero coefficient are
also contained in Dr

Hence, if
f =

∑
λ∈Λ

aλλ ∈ Dr =⇒ ∀ λ ∈ T (f) : λ ∈ Dr,

or what is equivalent
f ∈ Dr =⇒ T (f) ⊆ Dr.

We call D equipped with such a filtration a monomially filtered ring over the field K.

Example 1. Consider the polynomial ring D := K[x, y, z] over a field K. Monomials λ ∈ Λ
are power products xryszt, polynomials its K-linear combinations

f =
∑

r∈N3

arxr ∈ K[x, y, z], T (f) = { xr | ar 6= 0 }.

On monomials λ we define

|λ|1 := degx(λ), |λ|2 := degy(λ), |λ|3 := degz(λ).

For ring elements f ∈ D, we set

|f |k := max{ |λ|k | λ ∈ T (f) }, 1 ≤ k ≤ 3.

Then the filtration Dr given by

Dr,s,t := { f ∈ D | |f |1 ≤ r ∧ |f |2 ≤ s ∧ |f |3 ≤ t },

defines a monomial filtration on K[x, y, z].

Example 2 (Monomial Filtration as in [ZW08]). Consider a field K together with a set of
derivations resp. automorphisms

∆ := { δ1, . . . , δn}, Σ := { σ1, . . . , σm }.

Let D be the ring of difference-differential operators over K. The monomials in Λ consist
of expressions of the form

λ := δk1
1 . . . δkn

n σl11 . . . σ
lm
m , (k1, . . . , kn) ∈ Nn, (l1, . . . , lm) ∈ Zm,

we set
|λ|1 := k1 + . . .+ kn, |λ|2 := |l1|+ . . .+ |lm|.
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For the operator
f =

∑
λ∈Λ

aλλ ∈ D,

we define the order by

|f |1 := max{ |λ|1 | aλ 6= 0 }, and |f |2 := max{ |λ|2 | aλ 6= 0 }.

For r, s ∈ N let
Dr,s := { f ∈ D | |f |1 ≤ r ∧ |f |2 ≤ s }.

Then (Dr,s)(r,s)∈N2 is a (bivariate) monomial filtration. We call it the standard filtration of
D.

Let M be a finitely generated left D-module, where D is a filtered ring. A filtration of
M w.r.t. the filtered ring D is a family of additive subgroups Mr ⊆ M such that for all
r, s ∈ Nn we have that:

∪r∈NnMr = M

Mr1,...,ri,...,rn ⊆Mr1,...,ri+1,...,rn

DrMs ⊆Mr+s.

What we call a filtered module over a filtered ring appears in the literature as multi-filtered
module over a multi-filtered ring, see e.g. [Tor99].

Definition 2 (Morphism of filtered modules). A D-homomorphism ϕ : M −→ N between
filtered D-modules is called a morphism of filtered D-modules or shortly a morphism if and
only if

ϕ(Mr) ⊆ Nr, r ∈ Nn.

Obviously each Mr is a D0-module and a morphism ϕ : M −→ N induces D0-linear maps
Mr −→ Nr for r ∈ Nn.

Lemma 1. Let M,N be left D-modules, ϕ : M −→ N be a morphism of modules.

1. If M is a filtered D-module then ϕ(M) is filtered by setting ϕ(M)r := ϕ (Mr). The
map ϕ is then a morphism M −→ ϕ(M).

2. If N is a filtered D-module, then M is filtered by setting Mr := ϕ−1(Nr). ϕ is then a
morphism M −→ N .

Let now
F = D · e1 ⊕ . . . ⊕ D · em

be the free D-module of rank m that is generated by E := { e1, . . . , em }. The filtration of
D extends naturally to a filtration on F by

Fr := Dr · e1 ⊕ . . . ⊕ Dr · em, r ∈ Nn.

By Lemma 1. each finitely generated D-module

M = D · h1 ⊕ . . . ⊕ D · hm
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inherits a filtration Mr := π(Fr) where π : F −→ M . Of course, this filtration depends on
the choice of the generators h1, . . . , hm, that is, on the epimorphism π.

Remark. The notation of T (f), where f ∈ D, carries over to filtered free modules T (h)
where h ∈ Fr. The monomials in a filtered free module are of the form λ · ek where λ ∈ Λ
and ek ∈ E.

3 Gröbner Reduction
Let the free D-module F = Dm be equipped with extended filtration from D. We consider
a reduction relation −→†⊆ F × F , we write

f −→† h, f, h ∈ F, f 6= h,

to indicate that (f, h) ∈−→† and say that f reduces to h. The set of irreducible elements
of F is denoted by

I† :=
{
x ∈ F | ¬

(
∃y ∈ F : x 6= y ∧ x −→† y

) }
.

Definition 3 (Gröbner reduction). The relation −→† is called a Gröbner reduction for the
submodule N ⊆ F provided that

• f −→† h =⇒ f ≡ h (mod N)

• −→† is noetherian (i.e. every sequence f1 −→† f2 −→† . . . terminates)

• I† is a monomial K-linear subspace of F , i.e. I† is a vector space and for all f ∈ F

f ∈ I† =⇒ T (f) ⊆ I†.

• For all r ∈ Nn and for all f, h ∈ F we have

f −→† h ∧ f ∈ Fr =⇒ h ∈ Fr. (1)

• I† ∩ N = {0}, i.e. every nonzero element in N is reducible
Remark. Condition (1) ensures that the reduction relation and the given filtration work
together. We express this by saying that the reduction and the filtration are compatible.
Example 3 (Polynomial reduction is not a Gröbner reduction). Let D = K[x, y] and
consider the univariate filtration

Dk := { f ∈ D | deg(f) ≤ k }.

Then D is monomially filtered. However, this filtration is not compatible to arbitrary term
orders. If we equip D with a lexicographic order ≺:= lex(x > y), and consider the ideal

N := D〈x− y2〉ED,

then the polynomial f := x2 ∈ D2 reduces by means of the Gröbner basisG := { g := x−y2 }
like

f −→ h :⇐⇒ h = f − x · g = x2 − (x2 − xy2) = xy2 ∈ D3,

violating condition (1).

5



Notation. If � is a term order on ΛE, λ ∈ Λ and f ∈ F , we will write f � λ for lt(f) � λ.
Thus

f � λ⇐⇒ ∀t ∈ T (f) : t � λ.

Example 4 (Relative Reduction as in [ZW08]).
In [ZW08] the following situation is considered: Let the order relations ≺ and ≺′ be defined
as follows: Given the elements

λei = δk1
1 . . . δkn

n σl11 . . . σ
lm
m ei, µej = δr1

1 . . . δrn
n σ

s1
1 . . . σsm

m ej ,

we define

λei ≺ µej :⇐⇒ (|λ|2, |λ|1, ei, k1, . . . , kn, |l1|, . . . , |lm|, l1, . . . , lm)
<lex

(|µ|2, |µ|1, ej , r1, . . . , rn, |s1|, . . . , |sm|, s1, . . . , sm),

respectively

λei ≺′ µej :⇐⇒ (|λ|1, |λ|2, ei, k1, . . . , kn, |l1|, . . . , |lm|, l1, . . . , lm)
<lex

(|µ|1, |µ|2, ej , r1, . . . , rm, |s1|, . . . , |sm|, s1, . . . , sm).

Let f, h ∈ F and g ∈ G. Then

f −→rel
g h :⇐⇒ f −→g h ∧ lt

≺′
(λg) �′ lt

≺′
(f)

This reduction is a special case of our concept: Let

Dr,s := { u ∈ D | |u|1 ≤ r ∧ |u|2 ≤ s }.

This gives a monomial filtration of D = ∪(r,s)∈N2 Dr,s. The designation

Fr,s := Dr,s × . . .×Dr,s

establishes a monomial filtration on F w.r.t. the monomial filtration (Dr,s).

Lemma 2.
f −→rel

g h and f ∈ Fr,s =⇒ h ∈ Fr,s,

that is, ≺-reduction relative to ≺′ is compatible with the filtration Fr,s.

Proof. Assume that f −→rel
g h and f ∈ Fr,s. Thus, let |f |1 ≤ r and |f |2 ≤ s and let

u := lt
≺

(f) = lt
≺

(λg), au = lc
≺

(f), au′ = lc
≺′

(f)

u′ := lt
≺′

(f), bu = lc
≺

(λg)

We can sort f and λg w.r.t. ≺ and ≺′ as follows:

f = auu+ ϕ = au′u
′ + ϕ′

λg = buu+ ψ
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From the assumption of −→rel reduction, we obtain that λg �′ u′ and

h = f − lc(f)
lc(λg)λg = ϕ− au

bu
ψ.

Therefore
T (h) ⊆ T (ϕ) ∪ T (ψ) = (T (f) ∪ T (λg))\{u}.

Take µ ∈ T (h). If µ ∈ T (f) then |µ|1 ≤ r and |µ|2 ≤ s. If µ ∈ T (λg) then we have λg �′ u′
and we get

|µ|1 ≤ |u′|1 ≤ r.

Because u = lt(λg) we obtain µ ≺ u and thus |µ|2 ≤ |u′|2 ≤ s.

So in any case we obtain |µ|1 ≤ r and |µ|2 ≤ s, which implies |h|1 ≤ r ∧ |h|2 ≤ s. Therefore
h ∈ Fr,s, hence −→rel is compatible with the filtration.

Now consider a left module M

M = D · h1 + . . . +D · hm

of finite rank m over the monomially filtered ring D, and a free presentation

{0} −→ N −→ F
π−→ M −→ {0},

with F = Dm. Assume we are given a Gröbner reduction −→† for N . In particular, N is
represented as a Gröbner basis for ker(π). Let the moduleM be equipped with the filtration

Mr = π (Fr) , r ∈ Nn.

Let Ur ⊆ Fr be the set of irreducible monomials in the filter space Fr.

Theorem 1. For all r ∈ Nn the set π (Ur) comprises a K-vector space basis for the space
Mr. In particular we get

dim(Mr) = |π(Ur)|, r ∈ Nn.

The map π restricted on the irreducible elements I† is injective, hence the map π is actual
a bijection making

dim(Mr) = |π(Ur)| = |Ur|.

Proof. First, we note that the set of irreducible monomials Ur w.r.t. −→† in the filter space
Fr is given by

Ur = I† ∩ ΛE ∩ Fr,

their union over the n-fold integers is⋃
r∈Nn

Ur = I† ∩ ΛE ∩ ( ∪r∈NnFr) = I† ∩ ΛE ∩ F = I† ∩ ΛE,

which are the irreducible monomials in F w.r.t. −→†. To show, that π restricted on I† is
injective, consider elements f, h ∈ I† such that π(f) = π(h). Recall that N is a Gröbner
basis of ker(π). We get

π(f) = π(h) =⇒ π(f − h) = 0 =⇒ f − h ∈ ker(π) =⇒ f − h ∈ N ∩ I† = {0}.
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The restriction of π on the set Ur is injective follows by Ur ⊆ I†.

To prove that π
(
I† ∩ ΛE

)
is K-linearly independent. Assume

a1π(u1) + . . . + alπ(ul) = 0, ai ∈ K,uj ∈ ΛE.

This implies
l∑

j=1
aiui ∈ N ∩ I† = 0 =⇒ a1 = . . . = al = 0.

The set π (Ur) is K-linearly independent follows by Ur ⊆ I† ∩ ΛE.

By using the axioms from the Definition of Gröbner reduction, one can reduce any f ∈ F
until an irreducible element h ∈ I† is reached. The compatibility of the reduction −→† with
the filtration implies for all r ∈ Nn that for all f ∈ Fr there exists some h ∈ I† ∩ Fr with
the property π(f) = π(h).

Finally we want to prove that any element m ∈Mr can be represented as K-linear combina-
tion of elements in π (Ur). For this element m there exists f ∈ Fr such that m = π(f). Take
the element h ∈ I† ∩ Fr, with the property π(h) = π(f), whose existence was established
before, and represent it as

h =
s∑
j=1

ajuj , aj ∈ K,uj ∈ ΛE.

Because Fr is monomial, all uj ∈ Fr and since h ∈ I†, all terms of h must be in I†. Therefore

uj ∈ Fr ∩ ΛE ∩ I† = Ur, for all j.

Consequently

m = π(h) =
s∑
j=1

ajπ(uj) ∈ K〈π (Ur)〉,

hence, π(Ur) is a K-basis.

4 Applications
4.1 Generalized Hilbert Polynomials
Theorem 2. Let G := {g1, . . . , gt} ∈ K[X] be a Gröbner basis of

〈G〉 = a = K[X]〈f1, . . . , fs〉 EK[X] =: D,

w.r.t. the term order ≺. Define a filtration on D by

Dr = { f ∈ D | ∀ m ∈ T (f) : m � xr }, r = (r1, . . . , rn) ∈ Nn.

Then, polynomial reduction −→ is a Gröbner reduction.
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Example 5. Suppose, we are working over the bivariate polynomial ring K[x, y] =: D, and
consider the ideal

a := D〈 f1 := x4y3, f2 := x2y5, f3 := 2x5y2 − 4x3y5〉ED

The elements
G := { g1 := x4y3, g2 := x2y5, g3 := y2x5 }

provide a Gröbner basis for a w.r.t. the graded lexicographic order ≺:= glex(x > y). We
consider the filtration

Dr,s = { f ∈ D | degx(f) ≤ r ∧ degy(f) ≤ s }.

Plugging in values (r, s)� (0, 0), we can count the number of irreducible monomials. This
value can be interpolated as bivariate polynomial by:

# of irred. monomials in Dr,s : p2(r, s) = 2s+ 2r + 7 ∈ K[r, s], (r, s) ≥ (4, 4).

From that, we see that the growth of elements is linear by increasing the degree in one
direction. Moreover p2 is symmetric (p2(r, s) = p2(s, r)) indicating that the growth of
dimension is the same in x and y direction.
Filled circles are the irreducible elements of a, circles that are not filled are contained in a

m

n

Figure 1: (m,n) 7→ xmyn

and are reducible by polynomial reduction with elements in G. The red line indicates the
index of regularity, from where on the generalized Hilbert polynomial coincides with the no.
of irreducible elements. The blue line indicates the index of regularity for a total degree
orderings. The number of irreducible terms in

Dk = { f ∈ D | deg(f) ≤ k}

is given by

k 7 8 9 10 11 12
no. of irred. terms 33 37 41 45 49 53

9



For example, there are
(8+2

2
)

= 45 monomials in 2 variables of total degree 8. From this 45
monomials, there are 37 monomials irreducible, leaving 8 reducible elements w.r.t. polyno-
mial reduction with graded lexicographic order. They are given by:

D8\ I† = {x5y2, x6y2, x4y3, y3x5, x4y4, x2y5, x3y5, x2y6}.

From the 8 elements D8\ I† there are 3 elements of degree 7, hence, in two variables, there
are in total

(7+2
2
)

= 36 monomials of degree 7, 3 of them reducible modulo G, giving us
the value 33. The degree of the Hilbert polynomial is bounded by the number of variables,
allowing us to deduce that the Hilbert polynomial is given by p1(k) = 4k+5 (where k ≥ 7).
An obvious relation between Dr,s and Dr+s is

∀ (r, s) ∈ N2 : Dr,s ⊆ Dr+s.

A less obvious connection is that for k ≥ 1:

irred. elements in Dk,k = p2(k, k) = 4k + 7
≤ 8k + 5 = p1(k + k) = irred. elements in Dk+k.

4.2 Multivariate Difference-Differential Dimension Polynomials
Suppose, we are given a Difference-Differential field (K,+, ·) with basic sets

∆ := {δ1, . . . , δn}, Σ := {σ1, . . . , σm}.

Let D denote the ring of difference-differential operators. Now, we make a partition of the
sets of derivations ∆ and the set of automorphisms Σ into p respectively q pairwise disjoint
subsets,

∆ :=
p⋃
i=1

∆i, Σ :=
q⋃
j=1

Σj , (2)

where

∆1 := {δ1, . . . , δn1},
∆k := {δn1+1+...+nk−1 , . . . , δn1+...+nk

}, (2 ≤ k ≤ p),

and n1 + . . .+ np = n, and similar for Σ:

Σ1 := {σ1, . . . , σm1},
Σk := {σm1+1+...+mk−1 , . . . , σm1+...+mk

}, (2 ≤ k ≤ q),

where m1 + . . .+mq = m.

Definition 4 (Order with respect to a partition).
Suppose we have given a difference-differential operator λ := δk1

1 . . . δkn
n σl11 . . . σ

lm
m ∈ Λ, and

a partition of the sets ∆ and Σ of the form (2). We define

|λ|∆j
:=

∑
δi∈∆j

ki, |λ|Σj :=
∑
σi∈Σj

|li|.
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For a difference-differential operator

u =
∑
λ∈Λ

aλλ ∈ D, aλ ∈ K,

we define

|u|Φ := max{ |λ|Φ | λ ∈ T (u) }, Φ ∈ {∆1, . . . ,∆p,Σ1, . . . ,Σq}.

We consider D as filtered ring

(Dr) , r = (r1, . . . , rp+q) ∈ Np+q,

where

Dr := { u ∈ D | 1 ≤ i ≤ p : |u|∆i
≤ ri and 1 ≤ i ≤ q : |u|Σi ≤ rp+i } ⊆ D. (3)

for r ∈ Np+q.

The multivariate difference-differential polynomial of a difference-differential module Mr is
a numerical polynomial. The precise statement is:

Definition 5 (Multivariate dimension polynomial). Multivariate dimension polynomial
A polynomial p in Q[t1, . . . , ts] is call s-variate numerical if and only if p(ξ1, . . . , ξs) ∈ Z
for all (ξ1, . . . , ξs) ∈ Ns large enough. Let M be a difference-differential module over a
difference-differential field with m derivations and n automorphisms, partitioned as given
in (2). The numerical polynomial p(t1, . . . , ts) is called s-variate difference-differential di-
mension polynomial associated to M , if

1. 1 ≤ s ≤ m+ n

2. deg(p) ≤ m+ n

3. p(r1, . . . , rs) = dimKMr1,...,rs for all (r1, . . . , rs) ∈ Ns large enough.

By a change of the vector space basis of polynomials of degree less equal s, to the Newton
basis{

1 =
(
t

0

)
,

(
t+ 1

1

)
,

(
t+ 2

2

)
, . . . ,

(
t+ s

s

)}
⊆ Πs := { p(t) ∈ K[t] | deg(p(t)) ≤ s },

then p admits a canonical representation of the form
n1∑
i1=0

n2∑
i2=0

. . .
ns∑
is=0

ai1,i2,...,is

(
t1 + i1
i1

)(
t2 + i2
i2

)
. . .

(
ts + is
is

)
, ai1,i2,...,is ∈ Z,

the dimension polynomial whose existence is established in [Lev12, Lev13].
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Theorem 3. Let (K,+, ·) be a difference-differential field with basic sets

∆ := {δ1, . . . , δn}, Σ := {σ1, . . . , σm},

the sets partitioned as in (2), the ring of difference-differential operators D filtrated by (3).
Let M be a finitely generated difference-differential module, generated by {h1, . . . , hs}. We
define F to be the free difference-differential module with generating set E := {e1, . . . , es}.
The epimorphism π is defined by:

π : F −→M

ei 7−→ π(ei) := hi (1 ≤ i ≤ s).

For the submodule N := kerπ of F , let

G := {g1, . . . , gt} ⊆ N

be a ≺-Gröbner basis of N computed with a Gröbner reduction. We define

Ur := { λe ∈ ΛE ∩ Fr | λ ∈ Λ for all g ∈ G, for all µ ∈ Λ
such that there exists one of i, j : 1 ≤ i ≤ p, 1 ≤ j ≤ q :

λe = lt
≺

(µg) =⇒ ( |µg|∆i
> ri ∨ |µg|Σj > rp+j ) }.

Then the (p+ q)-variate difference-differential dimension polynomial associated to M is the
cardinality of U , i.e.

dimKMr = |Ur|, r = (r1, . . . , rp+q) ∈ Np+q.

Proof. By Theorem 1 we know that dimKMr is given by |Ur|, where Ur are the irreducible
monomials in ΛE w.r.t. Gröbner reduction in Fr. The monomial λe is reducible w.r.t.
Gröbner reduction if and only if it is reducible in the classic sense and additionally for all
∆i resp. Σj :

1 ≤ i ≤ p : |λe|∆i
≤ ri, 1 ≤ j ≤ q : |λe|Σj ≤ rp+j ,

hence it is irreducible if for all reducible elements there exists some i or some j such that

1 ≤ i ≤ p : |λe|∆i
> ri, 1 ≤ j ≤ q : |λe|Σj > rp+i.

5 Conclusion
We have introduced the new concept of Gröbner reduction and used it to make statements
about the dimension of free modules over filtered rings. The formulation is rather abstract
and later on specialized to concrete instances like the ring of polynomials to generalize the
notion of Hilbert polynomials with respect to a certain filtration of the underlying ring. The
second major application is the computation of difference-differential dimension polynomials
for modules of difference-differential operators. This extends the work appearing in [ZW08,
Lev12, Lev13]. Dönch [Dön13] has shown that the computation of relative Gröbner bases
might not terminate in all cases. A current research perspective is, that Gröbner reduction
provides a terminating algorithm for the computation of relative Gröbner bases, and extends
this concept to arbitrary n-fold filtration.
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2014-03 M.T. Khan: On the Soundness of the Translation of MiniMaple to Why3ML February 2014.

Eds.: W. Schreiner, F. Winkler
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Applications to Gröbner Bases May 2013. Eds.: B. Buchberger, M. Kauers

2013-05 G. Grasegger: A procedure for solving autonomous AODEs June 2013. Eds.: F. Winkler,

M. Kauers

2013-06 M.T. Khan On the Formal Verification of Maple Programs June 2013. Eds.: W. Schreiner,

F. Winkler

2013-07 P. Gangl, U. Langer: Topology Optimization of Electric Machines based on Topological Sen-
sitivity Analysis August 2013. Eds.: R. Ramlau, V. Pillwein

2013-08 D. Gerth, R. Ramlau: A stochastic convergence analysis for Tikhonov regularization with
sparsity constraints October 2013. Eds.: U. Langer, W. Zulehner

2013-09 W. Krendl, V. Simoncini, W. Zulehner: Efficient preconditioning for an optimal control
problem with the time-periodic Stokes equations November 2013. Eds.: U. Langer, V. Pillwein

The complete list since 2009 can be found at

https://www.dk-compmath.jku.at/publications/



Doctoral Program

“Computational Mathematics”

Director:
Prof. Dr. Peter Paule
Research Institute for Symbolic Computation

Deputy Director:
Prof. Dr. Bert Jüttler
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