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Abstract

In this paper, we present an example-based demonstration of our re-
cent results on the formal verification of programs written in the computer
algebra language (Mini)Maple (a slightly modified subset of Maple). The
main goal of this work is to develop a verification framework for behavioral
analysis of MiniMaple programs. For verification, we translate an anno-
tated MiniMaple program into the language Why3ML of the intermediate
verification tool Why3 developed at LRI, France. We generate verifica-
tion conditions by the corresponding component of Why3 and later prove
the correctness of these conditions by various supported by the Why3
back-end automatic and interactive theorem provers. We have used the
verification framework to verify some parts of the main test example of
our verification framework, the Maple package DifferenceDifferential de-
veloped at our institute to compute bivariate difference-differential poly-
nomials using relative Gröbner bases.

∗The research was funded by the Austrian Science Fund (FWF): W1214-N15, project
DK10.
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1 Introduction

We report on the progress of a project whose goal is to develop a verification
framework for the programs that are written in the language of the computer
algebra system Maple. Here, we are mainly interested to find behavioral errors
in Maple programs such as detection of type inconsistencies and violations of
methods preconditions: for this purpose, these programs need to be annotated
with the types of variables and methods contracts.

As presented earlier in [8] and [9], we started by defining MiniMaple as a
substantial subset of the computer algebra language Maple. We have formalized
a type system for MiniMaple and implemented a corresponding type checker.
The type checker has been applied to the main test example for our verifica-
tion framework, the Maple package DifferenceDifferential [3] developed at our
institute for the computation of bivariate difference-differential dimension poly-
nomials. Also we have defined a specification language to formally specify the
behavior of MiniMaple programs. Moreover, the formal semantics of MiniMaple
and its specification language has been defined as a pre-requisite for further for-
mal treatment.

In this paper, we report on new results concerning a verification framework
for MiniMaple. This framework employs Why3 [2] as an intermediate verifica-
tion tool for the generation of verification conditions and proving their correct-
ness by various automatic decision procedures and interactive theorem provers,
e.g. Z3 and Coq. For this purpose, we have defined the translation of annotated
MiniMaple into a semantically equivalent Why3ML program; the proof of sound-
ness of this translation is still an open goal. More details on project and all soft-
ware are free available from http://www.risc.jku.at/people/mtkhan/dk10/.

The rest of the paper is organized as follows: in Section 2, we briefly discuss
the formal specification of MiniMaple by an example. In Section 3, we demon-
strate our framework for the formal verification of MiniMaple by an example.
Section 4 presents conclusions and future work.

2 Formal Specification

Since type safety is a pre-requisite of program correctness, we have formalized
a type system for MiniMaple. Furthermore, to formally specify the behavior of
MiniMaple programs, we have defined a specification language for MiniMaple.
Listing 1 gives an example of a MiniMaple program which is type checked and
formally specified. We will use the same example in the following section for
the discussion of formal verification.

This example procedure takes a list of integers and floats and computes the
sum of the integers and the sum of the floats; it returns as a result a tuple of
both sums. The procedure may also terminate prematurely for certain inputs:
if an integer value 0 or a float value less than 0.5 is encountered in the list, the
procedure returns the sums computed so far.

The formal specification of the procedure states that the procedure has no
pre-condition (requires clause); a global variable status can be modified by the
body of the procedure (global clause). The behavior (post condition) of the
procedure is specified in the ensures clause. The loop of this example procedure
is specified by the user defined invariant (invariant clause) and the termination
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term (decreases clause).

1. status:=0;
(*@
requires true;
global status;
ensures
( status = -1 and RESULT[1] = add(e, e in l, type(e,integer))
and RESULT[2] = add(e, e in l, type(e,float))
and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],integer) implies l[i]<>0)
and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],float) implies l[i]>=0.5) )
or
( 1<=status and status<=nops(l)
and RESULT[1] = add(l[i], i=1..status-1, type(l[i],integer))
and RESULT[2] = add(l[i], i=1..status-1, type(l[i],float))
and ( (type(l[status],integer) and l[status]=0) or

(type(l[status],float) and l[status]<0.5) )
and forall(i::integer, 1<=i and i<status and type(l[i],integer) implies l[i]<>0)
and forall(i::integer, 1<=i and i<status and type(l[i],float) implies l[i]>=0.5) );

@*)
2. sum := proc(l::list(Or(integer,float)))::[integer,float];
3. global status;
4. local i, x::Or(integer,float), si::integer:=0, sf::float:=0.0;
5. for i from 1 by 1 to nops(l) do

(*@ invariant ...; decreases ...; @*)
6. x:=l[i]; status:=i;
7. if type(x,integer) then
8. if (x = 0) then return [si,sf]; end if ; si:=si+x;
9. elif type(x,float) then
10. if (x < 0.5) then return [si,sf]; end if ; sf:=sf+x;
11. end if ;
12. end do;
13. status:=-1;
14. return [si,sf];
15. end proc;

Listing 1: The example MiniMaple procedure

For further related technical details on the typing and formal specification
of above example, see [9]. The application of the type checker to our main
test example, the Maple package DifferenceDifferential, has identified some bad
code parts that can cause problems, e.g. variables that are declared but not
used (and therefore cannot be type-checked) and variables that have duplicate
(global and local) declarations. Also we have formally specified a substantial
part of DifferenceDifferential as the main test for the specification language.
We have specified the low-level (called by high-level) procedures of the test
package by low-level (concrete type based) specifications, while some of the
high-level (which call low-level) procedures are specified by abstract data type-
based specifications.
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3 Formal Verification

For the verification of an annotated MiniMaple program, we first need to gener-
ate verification conditions from the program and then to prove the correctness
of these conditions by some automatic decision procedure or interactive the-
orem prover. In principle, we could generate verification conditions either by
our own as in the RISC ProgramExplorer [10] or by some existing verification
frameworks, e.g. Why3 [2] developed at LRI, France or Boogie [1] developed by
Microsoft. Based on preliminary investigations, we decided to use Why3, which
is discussed in the following section.

3.1 Why3

Why3 is a verification tool for the programming language Why3ML whose core
is a verification condition generator as depicted in Figure 1. The generated
verification conditions are translated into a logical specification language called
Why for which translation to various back-end theorem provers is provided [4].

Figure 1: Overview of Why3

Why3 was developed as a generic intermediate verification platform support-
ing various front-end tools, e.g. Krakatoa (for Java programs) and Frama-C (for
C programs). Why3ML is a first order functional language influenced by ML
that supports pattern matching, inductive predicates, algebraic data types and
also supports typical imperative constructs (loops, sequence, exceptions etc.).
Why3 does support various automated provers (e.g. Z3 and CVC3) and proof
assistants (e.g. Coq). The wide range of proof support was one the reasons
why we chose Why3, as we are, e.g. dealing with non-linear arithmetic which
requires in general an interactive prover. The existence of a big-step operational
semantics of Why3ML [6, 5] is the other reason for choosing this system, be-
cause one can precisely argue whether the generated verification conditions are
sound with respect to the MiniMaple semantics.
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3.2 Translation

In this section we discuss the translation of annotated MiniMaple to Why3ML.
The goal here is to automatically translate a MiniMaple program into a seman-
tically equivalent Why3ML program such that verification conditions generated
by Why3 are sound w.r.t. MiniMaple semantics.

The formal definition of our translation has 40 valuation functions, approx.
50 auxiliary functions and predicates and contains 45 pages [7]. Some of the
main features of translation are as follows:

� MiniMaple supports a return statement which is not supported in Why3ML.
The return statement is translated with the help of the Why3ML exception-
handling mechanism: where-ever return statement occurs, we assign val-
ues to the corresponding exception-object and then raise an exception
which is caught by a corresponding handler in the program.

� In contrast to Why3ML, MiniMaple supports a multi-assignment com-
mand. We translate this statement by a nested local binding in Why3ML.

� Why3ML supports very limited data types, e.g. integers, reals, strings,
tuples and lists. We axiomatize all other MiniMaple types and their cor-
responding operations. For example, type set(T) is axiomatized with the
underlying Why3ML list representations where the elements of the set are
some permutation of the list elements.

� The union type Or(Tseq) is defined as an algebraic data type with one
constructor for each type in Tseq.

In the following we give an example of a command translation function,
which takes a MiniMaple command C, a MiniMaple type environment Envm,
a Why3 environment Envw, global declarations Declw and a theory Thryw and
returns the correspondingly translated Why3ML expression Expw, declarations
Declw and theory Thryw:

T [C]: Envm × Envw ×Declw × Thryw →
Expw × Envw ×Declw × Thryw

The definition of T for the case of C being a MiniMaple for-while loop is
as follows:

T[for I in E1 while E2 do Cseq end do](em, ew, dw, tw) =
(inWhy3 Exp(let I0 = ref 0 in

while I0 < op length(exp1w) & exp2w do
let I =op nth(I0, exp1w) in

exp3w; I0 :=!I0 + 1
done), e3w, d3w, t3w)

(exp1w, e1w, d1w, t1w) = T [E1](em, ew, dw, tw),
(exp2w, e2w, d2w, t2w) = T [E2](em, e1w, d1w, t1w),
(exp3w, e3w, d3w, t3w) = T [Cseq](em, e2w, d2w, t2w),
exp type1 = getExpType(exp1w, e1w),
op length = access(“length”, exp type1, e1w),
op nth = access(“select”, exp type1, e1w)
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The MiniMaple for-while loop checks at the start of every iteration both
loop conditions, i.e. I in E1 and E2; if any of them is false the body of the
loop is not executed. Moreover, the identifier I is used in the body of the loop
representing the ith (iteration) element of expression E1. For this semantically
equivalent translation we proceeded as follows:

1. Declare (locally bound) an auxiliary variable I0 to track the iteration
number and initialize it with value 0.

2. Translate the member-based loop condition, i.e. I in E1 into a correspond-
ing iteration-bounded condition I0 < op length(exp1w) and combine it
with the while-loop condition (exp2w) which we get from the translation
of the corresponding MiniMaple expression E2.

3. Declare I as a local variable and at the ith iteration (represented by I0)
assign it the ith value of the translated expression exp1w.

4. Increment I0 at the end of the iteration.

The generic operation access(op, exp type, ew) returns the name of the con-
crete operation op as generated by the translator for the type expression exp type
in the environment ew. In above example, the access function returns the
names of the concrete operations “length” and “select” of the expression type
exp type1.

Figure 2: MiniMaple to Why3 Translation

The translator is implemented in Java and contains approximately 80+
classes and 13K+ lines of code. Figure 2 sketches as an example (manually
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generated for readability) translation of the MiniMaple annotated program pre-
sented in Section 2 into a Why3ML program consisting of a theory and a module.
For further illustration, the various code parts of the translation are annotated
with Why3ML comments (* ... *).

In the theory, we declare the types used in the corresponding module respec-
tive MiniMaple program; e.g. the MiniMaple union type Or(integer, float)
is translated to an algebraic data type with two corresponding constructors for
integers and floats respectively. The module contains the declarations arising
from the translation of the MiniMaple procedure, a global variable status, the
auxiliary exception Break, and the translation of the procedure sum itself. This
procedure also contains a translation of MiniMaple for loop to a corresponding
Why3ML loop. The type tests of MiniMaple are translated using the pattern
matching feature of Why3ML: the match construct matches the ith element
of the list with the corresponding constructor of the type of the list elements.
The MiniMaple return statement is translated into an equivalent exception-
handling mechanism by an auxiliary exception object Break, i.e. we throw the
exception Break whereever the return statement occurred and then catch this
exception in the corresponding handler as shown in the with construct. Finally,
in the handler, we return the value of the corresponding result tuple.

As an application of our translator, we have translated a substantial part of
the DifferenceDifferential package to Why3ML.

3.3 Example Verification

In this section we discuss the verification of the example program, which was
generated by the translator in the previous section. For this purpose, we use the
GUI-based interface of Why3 to generate verification conditions and to prove
them as shown in Figure 3.

The Why3 GUI displays three columns:

1. The left column lists the configured theorem provers.

2. The middle column shows the verification conditions generated (respec-
tively required to be proved correct).

3. The right column shows the contents of the goals (verification conditions).
Actually, the right column has two parts, the upper part shows the cor-
responding Why contents of the selected goals, while the lower part high-
lights the corresponding Why3ML code from which the selected goal is
generated.

In our example, the proof of the correctness of the procedure results in the
following four goals as shown in the middle column of Figure 3:

1. a normal postcondition,

2. the for-loop (invariant) initialization,

3. the for-loop (invariant) preservation and

4. a normal postcondition.
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Figure 3: Verification of Example Program

The first and the last goal are about proving the correctness of postcondi-
tions. The first goal is to prove the postcondition when the loop body is not
executed, while the last goal is to prove the postcondition when the loop body
is executed, which requires invariant-based reasoning.

The second goal is to prove that the loop invariant holds at the start of
the execution of the loop. The third goal is to prove that the loop invariant
is preserved by the execution of the loop and must also hold when the loop
terminates.

To run through the prove of these generated verification conditions, it was
required to add some lemmas manually (at Why3 level) because the function def-
initions generated by the translator from the corresponding numeric quantifiers
(add) appearing in the MiniMaple procedure specification were not adequate
for this proof. These lemmas introduce the facts that the translated addition
functions (add int and add real over lists) correctly handle the integers and
reals in the list; e.g. the lemma of integers for integer-addition function add int
is as follows:

lemma add int right :
∀ e : list or integer float, j : int.
0 ≤ j < length e→ ∀n : int.
nth j e= Some (Integer n)

→ add int e (j + 1) = add int e j + n

By the introduction of these lemmas, all of the verification conditions could
be proved with the automatic decision procedures Alt-Ergo and Z3. On the
other hand, we had to prove these lemmas manually by induction using the
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interactive theorem prover Coq. In the future, we will generate these lemmas
automatically as axioms: then the proof of the aforementioned generated veri-
fication conditions is automatic.

Using our verification framework we have verified a substantial part of our
test package DifferenceDifferential that mainly involves the low-level (called by
high-level) procedures with concrete data type based specifications. In fact,
the verification required some pre-processing where we analyzed and partially
revised the corresponding parts of the package such that the formalism was
adequate enough to perform the proofs for the correctness of the generated
verification conditions.

4 Conclusions and Future Work

Currently we are in the process of verifying some higher-level procedures (which
call low-level procedures) of the Maple package DifferenceDifferential which
involve abstract data type-based specifications. To verify these procedures, we
have, based on a simpler example, experimented with adequate formulations
and proof strategies for the verification of such specifications. The challenge is
to prove the correctness of the behavior of higher-level procedures, which have

� on the one hand an implementation based on concrete data types (e.g.
the difference-differential operator is implemented as a list of its terms as
tuples) and

� on the other hand are specified by abstract data types (e.g. the difference-
differential operator is specified by an abstract data type “addo” with
corresponding operations and mathematical properties).

To address this challenge, we have defined a general logical formulation for any
such formally specified procedure as follows:

1. An abstract model defines an abstract (data type-based) object A and
specifies its associated operations and properties.

2. A concrete type representation C is defined, which is used as the under-
lying implementation of the abstract object A.

3. A mapping function “abstract : C → A” maps a concrete representation
to the corresponding abstract type.

4. A concretization predicate “concrete ⊆ C × A” defines a relationship
between a concrete type representation C and its corresponding abstract
type representation A.

5. An invariant predicate “invariant ⊆ C” holds only for those elements of
C that can be created by the corresponding constructor operations.

6. A lemma states that for all the valid representations c of concrete type C,
if we abstract the concrete representation c to a, then the concretization
relation holds between c and a. The lemma can be formulated as

∀c : C, a : A, invariant(c)⇒ (a = abstract(c)⇔ concrete(a, c))

This lemma makes the subsequent proof easier.
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7. The specification of an implementation based on concrete type C employs
the abstract type A by applying the map function abstract to the concrete
argument/result values.

The translation of MiniMaple to Why3ML must be sound w.r.t. the for-
mal semantics of MiniMaple and Why3ML; we can formulate a corresponding
soundness statement for the translation of expressions as follows:

∀ E ∈ Expressionm, s1, s2 ∈ Statem, e ∈ Envm, v ∈ Valuem, v1 ∈ Valuew, ... :
[E](e)(s1, s2, v)⇔ 〈 T[s1](e), T[E](e, ...) 〉w ⇓ 〈 T[s2](e), v1 〉w ⇒ v ≡ v1

This statement means that if the evaluation of a MiniMaple expression E
in a given environment e and a pre-state s1 yields a value v and results in
a post-state s2 then, it is equivalent to the evaluation of a translated Why3
expression T[E](e, ...) in a translated pre-state T[s1](e) that yields a value v1
and results in a translated post-state T[s2](e) and the result values v and v1
are semantically equivalent. The proof of this statement is planned as a next
goal.
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