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A ROBUST FEM-BEM MINRES SOLVER
FOR DISTRIBUTED MULTIHARMONIC EDDY CURRENT

OPTIMAL CONTROL PROBLEMS IN UNBOUNDED DOMAINS

MICHAEL KOLMBAUER

Abstract. This work is devoted to distributed optimal control problems for
multiharmonic eddy current problems in unbounded domains. We apply a

multiharmonic approach to the optimality system and discretize in space by
means of a symmetrically coupled finite and boundary element method, taking

care of the different physical behavior in conducting and non-conducting sub-

domains, respectively. We construct and analyze a new preconditioned MinRes
solver for the system of frequency domain equations. We show that this solver

is robust with respect to the space discretization and time discretization pa-

rameters as well as the involved “bad” parameters like the conductivity and
the regularization parameters. Furthermore, we analyze the asymptotic be-

havior of the error in terms of the discretization parameters for our special

discretization scheme.

1. Introduction

The multiharmonic finite element method or harmonic-balanced finite element
method has been used by many authors in different applications (e.g. [4, 15, 17,
37, 45]). Switching from the time domain to the frequency domain allows us to
replace expensive time-integration procedures by the solution of a system of partial
differential equations for the amplitudes belonging to the sine- and to the cosine-
excitation. Following this strategy, Copeland et al. [11, 12], Bachinger et al. [5, 6],
and Kolmbauer and Langer [30] applied harmonic and multiharmonic approaches
to parabolic initial-boundary value problems and the eddy current problem.

Furthermore, the multiharmonic finite element method has been generalized to
multiharmonic parabolic and multiharmonic eddy current optimal control prob-
lems [28, 32]. Indeed, in [32] a MinRes solver for the solution of multiharmonic
eddy current optimal control problems is constructed, that is robust with respect
to the discretization parameter h and all involved parameters like frequency, con-
ductivity, reluctivity and the regularization parameter. This solver is based on a
pure finite element discretization of a bounded domain. Furthermore, in [31] the
results of [30] for the time-harmonic eddy current problem are extended to the case
of unbounded domains using a symmetric coupling of the Finite Element Method
(FEM) - Boundary Element Method (BEM) [24]. Even in this case, parameter-
robust block-diagonal preconditioners can be constructed.

The aim of this work is to generalize these ideas of combining the multiharmonic
approach and the FEM-BEM coupling method to multiharmonic eddy current op-
timal control problems:

min J(y,u), s.t. σ
∂y
∂t

+ curl(ν curl y) = u,

The author gratefully acknowledges the financial support by the Austrian Science Fund (FWF)
under the grants P19255 and W1214-N15, project DK04. I also thank the Austria Center of
Competence in Mechatronics (ACCM), which is a part of the COMET K2 program of the Austrian
Government, for supporting my work on eddy current problems.
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2 MICHAEL KOLMBAUER

with appropriate periodicity and boundary (radiation) conditions for y. The fast
solution of the corresponding large linear system of finite element equations is cru-
cial for the competitiveness of this method. Hence appropriate (parameter-robust)
preconditioning is an important issue. Deriving the optimality system of the opti-
mal control problem naturally results in a saddle point system. Due to the special
structure of the multiharmonic time-discretization and the finite element-boundary
element space discretization, we finally obtain a three-fold saddle point structure.
A new technique of parameter robust preconditioning of saddle point problems
was introduced by Zulehner in [46]. We explore this technique to construct a
parameter-robust preconditioned MinRes solver for our huge linear system of alge-
braic equations resulting from the multiharmonic finite element-boundary element
discretization.

The outline of this work is the following. In Section 2, we summarize some
results concerning the appropriate trace spaces [8, 9] and the framework of boundary
integral operators [24] for eddy current computations. In Section 3, we introduce
the model problem. Section 4 is devoted to the variational formulation of the
model problem. Therein we compute the optimality system and derive a space-time
variational formulation. In Section 5, we discretise the optimality system in time
and space in terms of a multiharmonic finite element-boundary element coupling
method. The construction of a parameter robust preconditioner for the discretized
problem is addressed in Section 6. Finally, the results presented in Section 7 prove
that the discretization scheme is convergent and provide the expected order of
convergence.

2. Preliminaries

Throughout this work, c is a generic constant, that is independent of any dis-
cretization (h, N) and model parameters (ω, σ, ν and λ). Furthermore, we use the
generic constant C, that is independent of h and N , but may depend on the other
parameters.

2.1. Differential operators and traces. Throughout this work, we use boldface
letters to denote vectors and vector-valued functions. In this section, Ω is a generic
bounded Lipschitz polyhedral domain of R3. We denote by Γ its boundary and by
n the unit outward normal to Ω. Let (·, ·)L2(Ω) be the inner product in L2(Ω) and
‖ · ‖L2(Ω) the corresponding norm. Furthermore, we denote the product space by
L2(Ω) := L2(Ω)3. The underlying Hilbert space is the space

H(curl,Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)} ,

endowed with the graph norm

‖v‖2H(curl,Ω) := ‖v‖2L2(Ω) + ‖ curl v‖2L2(Ω).

For the traces of a function u ∈ H(curl,Ω), we fix the following notations: Let
γD and γN denote the Dirichlet trace γDu := n× (u× n) and the Neumann trace
γNu := curl u × n on the interface Γ, respectively. For the definition of the ap-
propriate trace spaces, we use the definitions of the surface differential operators
gradΓ, curlΓ, curlΓ,divΓ (see e.g. [8, 9]). The appropriate trace spaces for polyhe-
dral domains have been introduced by Buffa and Ciarlet in [8, 9]. The space for
the Dirichlet trace γD and the Neumann trace γN are given by the spaces

H−
1
2
⊥ (curlΓ,Γ) := {λ ∈ H−

1
2
⊥ (Γ), curlΓλ ∈ H−

1
2 (Γ)} and

H−
1
2
‖ (divΓ,Γ) := {λ ∈ H−

1
2
‖ (Γ),divΓ λ ∈ H−

1
2 (Γ)},
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respectively. These spaces are equipped with the corresponding graph norms. Fur-
thermore, H−

1
2
⊥ (curlΓ,Γ) is the dual of H−

1
2
‖ (divΓ,Γ) and vice versa. The corre-

sponding duality product is the extension of the L2(Γ) duality product, and, in the
following, it will be denoted with subscript τ :

〈·, ·〉τ := 〈·, ·〉
H
− 1

2
‖ (divΓ,Γ)×H

− 1
2
⊥ (curlΓ,Γ)

.

We also need the space H−
1
2
‖ (divΓ 0,Γ) :=

{
λ ∈ H−

1
2
‖ (divΓ,Γ) : divΓ λ = 0

}
, that

turns out to be the correct space for the Neumann trace in our setting. For
u ∈ H(curl curl,R3\Ω) := {u ∈ H(curl,R3\Ω) : curl curl u ∈ L2(R3\Ω)} the
integration by parts formula for the exterior domain R3\Ω holds

(1) 〈γNu, γDv〉τ = −(curl u, curl v)L2(R3\Ω) + (curl curl u,v)L2(R3\Ω).

The Dirichlet and Neumann trace can be extended to continuous mappings:

Lemma 1 ([8, 9, 24]). The trace operators

γD : H(curl,Ω)→ H−
1
2
⊥ (curlΓ,Γ) and γN : H(curl curl,Ω)→ H−

1
2
‖ (divΓ,Γ)

are linear, continuous and surjective.

For more details, we refer the reader to [8, 9] for the precise definition of the

trace spaces H−
1
2
‖ (divΓ,Γ) and H−

1
2
⊥ (curlΓ,Γ) and the corresponding analytical

framework.

2.2. Boundary integral operators and Calderon projection. In order to deal
with the expression on the interface Γ between the bounded and unbounded do-
mains, we use the framework of symmetric FEM-BEM coupling for eddy current
problems (see [24]). The boundary integral equations for the exterior problem
emerge from a representation formula. In the case of Maxwell’s equations, this
is the Stratton-Chu formula for the exterior domain. Taking into account that
curl curl u = 0 and div u = 0 in the exterior domain the solution is given by

u(x) =
∫

Γ

(n× curl u)(y)E(x,y) dSy − curlx

∫
Γ

(n× u)(y)E(x,y) dSy

+∇x

∫
Γ

(n · u)(y)E(x,y) dSy,

where E(·, ·) is the fundamental solution of the Laplacian in three dimensions, given
by the expression

E(x,y) :=
1

4π
1

|x− y|
, x,y ∈ R3,x 6= y.

By introducing the notations

ψA(u)(x) :=
∫

Γ

u(y)E(x,y) dSy, ψV (n · u)(x) :=
∫

Γ

(n · u)(y)E(x,y) dSy

and ψM (n× u)(x) := curlx

∫
Γ

(n× u)(y)E(x,y) dSy,

we can rewrite the representation formula as

(2) u = ψM [γDu]−ψA[γNu]−∇ψV [γnu].

Taking the Dirichlet and the Neumann trace in the representation formula (2) and
deriving a variational framework, allows to state a Calderon mapping in a weak
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Figure 1. Decomposition of the computational domain Ω = R3.

setting:

(3)

 〈µ, γDu〉τ = 〈µ,C(γDu)〉τ − 〈µ,A(γNu)〉τ , ∀µ ∈ H−
1
2
‖ (divΓ 0,Γ),

〈γNu,θ〉τ = 〈N(γDu),θ〉τ − 〈B(γNu),θ〉τ , ∀θ ∈ H−
1
2
⊥ (curlΓ,Γ),

where the well known boundary integral operators are given by

Aλ := γDψA(λ), Bλ := γNψA(λ, )

Cµ := γDψM(µ), Nµ := γNψM(µ).

In the following we collect several useful results (see [24]). The mappings

A : H−
1
2
‖ (divΓ,Γ)→ H−

1
2
⊥ (curlΓ,Γ),

B : H−
1
2
‖ (divΓ,Γ)→ H−

1
2
‖ (divΓ,Γ),

C : H−
1
2
⊥ (curlΓ,Γ)→ H−

1
2
⊥ (curlΓ,Γ),

N : H−
1
2
⊥ (curlΓ,Γ)→ H−

1
2
‖ (divΓ,Γ)

are linear and bounded. The bilinear form on H−
1
2
‖ (divΓ 0,Γ) induced by the oper-

ator A is symmetric and positive definite, i.e.

〈λ,Aλ〉τ ≥ cA1 ‖λ‖2
H
− 1

2
‖ (divΓ,Γ)

, ∀λ ∈ H−
1
2
‖ (divΓ 0,Γ).

The bilinear form on H−
1
2
⊥ (curlΓ,Γ) induced by the operator N is symmetric and

negative semi-definite, i.e.

−〈Nµ,µ〉τ ≥ cN1 ‖curlΓµ‖2
H−

1
2 (Γ)

, ∀µ ∈ H−
1
2
⊥ (curlΓ,Γ).

We have the symmetry property

〈B(µ),λ〉τ = 〈µ, (C− Id)(λ)〉τ , ∀µ ∈ H−
1
2
‖ (divΓ 0,Γ),λ ∈ H−

1
2
⊥ (curlΓ,Γ).

3. The model problem

In this work we consider an optimal control problem with distributed control of
the form: Find the state y and the control u that minimizes the cost functional

(4) J(y,u) =
1
2

∫
Ω1×(0,T )

|y − yd|2dx dt+
λ

2

∫
Ω1×(0,T )

|u|2dx dt,
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subject to the state equation

(5)



σ ∂y∂t + curl (ν curl y) = u, in Ω1 × (0, T ),
curl (curl y) = 0 in Ω2 × (0, T ),

div y = 0 in Ω2 × (0, T ),
y = O(|x|−1) for |x| → ∞,

curl y = O(|x|−1) for |x| → ∞,
y(0) = y(T ) in Ω1,

y1 × n = y2 × n on Γ× (0, T ),
ν curl y1 × n = curl y2 × n on Γ× (0, T ).

Here yd ∈ L2((0, T ),L2(Ω1)) is the given desired state and assumed to be multi-
harmonic. The regularization parameter λ is supposed to be positive. The com-
putational domain Ω = R3 is split into a conducting subdomain Ω1 an into its
non-conducting complement Ω2. The conducting domain Ω1 is assumed to be a
simply connected Lipschitz polyhedron, whereas the non-conducting domain Ω2 is
the complement of Ω1 in R3, i.e R3\Ω1. Furthermore, we denote by Γ the interface
of the two subdomains, i.e. Γ = Ω1 ∩Ω2. The exterior unit normal vector of Ω1 on
Γ is denoted by n, i.e. n points from Ω1 to Ω2 (see Figure 1).

The reluctivity ν = ν(x) is supposed to be uniformly positive and independent of
| curl u|, i.e. we assume the eddy current problem (5) to be linear. Due to scaling
arguments, it can always be achieved that ν = 1 in Ω2. The conductivity σ is zero
in the non-conducting domain Ω2 and piecewise constant and uniformly positive in
the conductor Ω1, i.e.

(6)
σ ≥ σ(x) ≥ σ > 0 a.e. in Ω1 and σ(x) = 0 a.e. in Ω2,

ν ≥ ν(x) ≥ ν > 0 a.e. in Ω1 and ν(x) = 1 a.e. in Ω2.

Existence and uniqueness results for linear and non-linear eddy current problems in
unbounded domains are provided in [29]. Therein the space of weakly divergence
free functions V is introduced as a subspace of H(curl,Ω1). Furthermore, it is
shown, that the state equation (5) has a unique solution y ∈ L2((0, T ),V) with
a weak derivative ∂y/∂t ∈ L2((0, T ),V∗). An other approach to the proof of
existence and uniqueness is given by Arnold and Harrach [2]. Due to the unique
solvability of the state equation (5), the existence of a solution operator S, mapping
u to y, i.e. S(u) = y, is guaranteed. By standard arguments (see, e.g. [43])
it follows that the unconstrained minimization problem: Find the control u ∈
L2((0, T ),L2(Ω)) that minimizes the cost functional

1
2

∫
Ω1×(0,T )

|S(u)− yd|2dx dt+
λ

2

∫
Ω1×(0,T )

|u|2dx dt

is also uniquely solvable.

4. The variational formulation

In order to solve our minimization problem, we formulate the optimality system,
also called Karush-Kuhn-Tucker system (see e.g. [43]). Therefore, we formally
consider the Lagrangian functional

L(y,u,p) := J (y,u) +
∫

Ω×(0,T )

(
σ
∂y
∂t

+ curl(ν curl y)− u
)
· p dx dt.

Deriving the necessary optimality conditions

Find y,u,p :


∇pL(y,u,p) = 0

∇yL(y,u,p) = 0

∇uL(y,u,p) = 0
,
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yields a system of partial differential equations. We observe that u = λ−1p in
Ω1 × (0, T ), and hence we can eliminate the control. Therefore, we end up with
the following reduced optimality system: Find the state y and the co-state p, such
that

(7)



σ
∂

∂t
y + curl(ν curl y)− λ−1p = 0, in Ω1 × (0, T ),

curl (curl y) = 0 in Ω2 × (0, T ),

div y = 0 in Ω2 × (0, T ),

−σ ∂
∂t

p + curl(ν curl p) + y − yd = 0, in Ω1 × (0, T ),

curl (curl p) = 0 in Ω2 × (0, T ),

div p = 0 in Ω2 × (0, T ),

p = O(|x|−1), y = O(|x|−1) for |x| → ∞,
curl p = O(|x|−1), curl y = O(|x|−1) for |x| → ∞,

p(0) = p(T ), y(0) = y(T ), in Ω1.

In the usual manner we derive a space-time variational formulation. Multiply-
ing (7) by space and time dependent test functions (v,w) = (v(x, t),w(x, t)) ∈
L2((0, T ),W2) and integrating over the space-time domain Ω× (0, T ), we arrive at
the following variational form: Find (y,p) ∈ H1((0, T ),W1), such that
(8)

∫ T

0

(
σ
∂y
∂t
,v
)

L2(Ω1)

dt+
∫ T

0

(ν curl y, curl v)L2(Ω1) dt

−
∫ T

0

(ν curl y, curl v)L2(Ω2) dt− 1
λ

∫ T

0

(p,v)L2(Ω1) dt = 0,

−
∫ T

0

(
σ
∂p
∂t
,w
)

L2(Ω1)

dt+
∫ T

0

(ν curl p, curl w)L2(Ω1) dt

−
∫ T

0

(ν curl p, curl w)L2(Ω2) dt+
∫ T

0

(y,w)L2(Ω1) dt =
∫ T

0

(yd,w)L2(Ω1) dt,

with the appropriate decay and periodicity conditions of (7). Here W1 and W2

are appropriate weighted Sobolev spaces on R3, cf. [24].

5. Discretization scheme

The space-time variational formulation (8) is the starting point of our discretiza-
tion in time and space. We discretize in time in terms of a multiharmonic approach.
For the resulting system of frequency domain equations, a symmetric coupling
method is applied to both, the state variable and the co-state variable, of each
mode k. This coupling method allows us to reduce the unbounded exterior do-
main Ω2 to the boundary Γ. The resulting variational formulation is discretized by
standard finite and boundary elements.

5.1. Reduction of the exterior domain to the boundary. Applying the in-
tegration by parts formula (1) in the exterior domain Ω2 and using the fact, that
there holds curl curl y = 0 and curl curl p = 0, allows us to reduce the variational
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problem to one, that is just living on the closure of the conductivity domain Ω1:

(9)



∫ T

0

(
σ
∂y
∂t
,v
)

L2(Ω1)

dt+
∫ T

0

(ν curl y, curl v)L2(Ω1) dt

−
∫ T

0

〈γNy, γDv〉τdt− 1
λ

∫ T

0

(p,v)L2(Ω1) dt = 0,

−
∫ T

0

(
σ
∂p
∂t
,w
)

L2(Ω1)

dt+
∫ T

0

(ν curl p, curl w)L2(Ω1) dt

−
∫ T

0

〈γNp, γDw〉τdt+
∫ T

0

(y,w)L2(Ω1) dt =
∫ T

0

(yd,w)L2(Ω1) dt.

Later, the expressions on the interface Γ are dealt with in terms of a symmetrical
coupling method [13].

5.2. Multiharmonic discretization. Let us assume, that the desired state yd is
multiharmonic, i.e. yd has the form

(10) yd =
N∑
k=0

yc
d,k cos(kωt) + ys

d,k sin(kωt),

where the Fourier coefficients are given by the formulas

yc
d,k =

2
T

∫ T

0

yd cos(kωt)dt and ys
d,k =

2
T

∫ T

0

yd sin(kωt)dt.

We mention that the multiharmonic representation (10) can also be seen as an
approximation of a time-periodic desired state yd by a truncated Fourier series.
Due to the linearity of the optimality system (7) the state y and the co-state p
are multiharmonic as well and therefore also have a representation in terms of a
truncated Fourier series, i.e.
(11)

y =
N∑
k=0

yc
k cos(kωt) + ys

k sin(kωt) and p =
N∑
k=0

pc
k cos(kωt) + ps

k sin(kωt),

with unknown coefficients (yc
k,y

s
k) and (pc

k,p
s
k). Using the multiharmonic repre-

sentation (11), we can state the optimality system (9) in the frequency domain.
Consequently, the problem that we deal with reads as follows: For each mode
k = 0, 1, . . . , N , find the Fourier coefficients (yc

k,y
s
k,p

c
k,p

s
k) ∈ H(curl,Ω1)4, such

that
(12)

kω(σys
k,v

c
k)L2(Ω1) + (ν curl yc

k, curl vc
k)L2(Ω1)

−〈γNyc
k, γDvc

k〉τ − λ
−1(pc

k,v
c
k)L2(Ω1) = 0,

−kω(σyc
k,v

s
k)L2(Ω1) + (ν curl ys

k, curl vs
k)L2(Ω1)

−〈γNys
k, γDvs

k〉τ − λ
−1(ps

k,v
s
k)L2(Ω1) = 0,

−kω(σps
k,w

c
k)L2(Ω1) + (ν curl pc

k, curl wc
k)L2(Ω1)

−〈γNpc
k, γDwc

k〉τ + (yc
k,w

c
k)L2(Ω1) = (yc

d,k,w
c
k)L2(Ω1),

kω(σpc
k,w

s
k)L2(Ω1) + (ν curl ps

k, curl ws
k)L2(Ω1)

−〈γNps
k, γDws

k〉τ + (ys
k,w

s
k)L2(Ω1) = (ys

d,k,w
s
k)L2(Ω1),

for all test functions (vc
k,v

s
k,w

c
k,w

s
k) ∈ H(curl,Ω1)4. Note, that the mode k = 0

has to be treated seperately. Clearly we don’t have to solve for the ps
0 and ys

0,
since sin(0ωt) = 0, and therefore for k = 0, (12), reduces to a 2 × 2 system for
determining the Fourier coefficients pc

0 and yc
0. Due to the L2(0, T ) orthogonality of
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the sine and cosine functions, we obtain a total decoupling of the Fourier coefficients
with respect to the modes k. Therefore, for solving purpose, it is sufficient, to
have a look at a time-harmonic approximation, i.e. yd = yc

d cos(ωt) + ys
d sin(ωt).

Consequently, in the next sections, we analyze the following variational problem:
Find (yc,ys,pc,ps) ∈ H(curl,Ω1)4, such that

(13)



ω(σys,vc)L2(Ω1) + (ν curl yc, curl vc)L2(Ω1)

−〈γNyc, γDvc〉τ − λ−1(pc,vc)L2(Ω1) = 0,

−ω(σyc,vs)L2(Ω1) + (ν curl ys, curl vs)L2(Ω1)

−〈γNys, γDvs〉τ − λ−1(ps,vs)L2(Ω1) = 0,

−ω(σps,wc)L2(Ω1) + (ν curl pc, curl wc)L2(Ω1)

−〈γNpc, γDwc〉τ + (yc,wc)L2(Ω1) = (yc
d,w

c)L2(Ω1),

ω(σpc,ws)L2(Ω1) + (ν curl ps, curl ws)L2(Ω1)

−〈γNps, γDws〉τ + (ys,ws)L2(Ω1) = (ys
d,w

s)L2(Ω1),

for all test functions (vc,vs,wc,ws) ∈ H(curl,Ω1)4.

5.3. Symmetric coupling method. We are now in a position to state the coupled
variational problem, following the approach of Hiptmair in [24]. Using the Calderon
map (3) and introducing the Neumann data as additional unknowns, i.e.

λc := γNyc and λs := γNys and ηc := γNpc and ηs := γNps,

allows us to state the eddy current problem in a framework, that is suited for a
FEM-BEM discretization. For simplicity, we introduce the abbreviation

Υ := (yc,λc,ys,λs) and Ψ := (pc,ηc,ps,ηs),

Φ := (wc,ρc,ws,ρs) and Θ := (vc,µc,vs,µs).

We mention, that Υ represents the variables corresponding to the state y, Ψ rep-
resents the variables corresponding to the adjoint state p and Φ and Θ are the
corresponding test functions. According to the definition of Υ and Ψ, we introduce
the appropriate product space

W := H(curl,Ω1)×H−
1
2
‖ (divΓ 0,Γ)×H(curl,Ω1)×H−

1
2
‖ (divΓ 0,Γ).

Therefore, we end up with the weak formulation of the reduced symmetric coupled
optimality system: Find (Υ,Ψ) ∈ W2, such that

ω(σys,vc)L2(Ω1) + (ν curl yc, curl vc)L2(Ω1) − λ−1(pc,vc)L2(Ω1)

−〈N(γDyc), γDvc〉τ + 〈B(λc), γDvc〉τ = 0,

〈µc, (C− Id)(γDyc)〉τ − 〈µ
c,A(λc)〉τ = 0,

−ω(σyc,vs)L2(Ω1) + (ν curl ys, curl vs)L2(Ω1) − λ−1(ps,vs)L2(Ω1)

−〈N(γDys), γDvs〉τ + 〈B(λs), γDvs〉τ = 0,

〈µs, (C− Id)(γDys)〉τ − 〈µ
s,A(λs)〉τ = 0,

−ω(σps,wc)L2(Ω1) + (ν curl pc, curl wc)L2(Ω1) + (yc,wc)L2(Ω1)

−〈N(γDpc), γDwc〉τ + 〈B(ηc), γDwc〉τ = (yc
d,w

c)L2(Ω1),

〈ρc, (C− Id)(γDpc)〉τ − 〈ρ
c,A(ηc)〉τ = 0,

ω(σpc,ws)L2(Ω1) + (ν curl ps, curl ws)L2(Ω1) + (ys,ws)L2(Ω1)

−〈N(γDps), γDws〉τ + 〈B(ηs), γDws〉τ = (ys
d,w

s)L2(Ω1),

〈ρs, (C− Id)(γDps)〉τ − 〈ρ
s,A(ηs)〉τ = 0,
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for all test functions (Φ,Θ) ∈ W2. For simplicity, we introduce the bilinear form
A, representing the latter variational problem by

A((Υ,Ψ), (Φ,Θ)) := a(Υ,Φ) + b(Φ,Ψ) + b(Υ,Θ)− c(Ψ,Θ),

where the bilinear forms a, b and c are given by

a(Υ,Φ) = (yc,wc)L2(Ω1) + (ys,ws)L2(Ω1),

b(Υ,Θ) = ω(σys,vc)L2(Ω1) − ω(σyc,vs)L2(Ω1) +
∑

j∈{c,s}

(ν curl yj, curl vj)L2(Ω1)

−〈N(γDyj), γDvj〉τ + 〈B(λj), γDvj〉τ +
〈
µj, (C− Id)(γDyj)

〉
τ
−
〈
µj,A(λj)

〉
τ
,

c(Ψ,Θ) = λ−1(pc,vc)L2(Ω1) + λ−1(ps,vs)L2(Ω1).

Using this notation, we can state (14) in the abstract form: Find (Υ,Ψ) ∈ W2,
such that

(14) A((Υ,Ψ), (Φ,Θ)) =
∑

j∈{c,s}

(yj
d,w

j)L2(Ω1),

for all (Φ,Θ) ∈ W2. Indeed, the bilinear form A is symmetric and indefinite. Well-
posedness of the variational problem (14) will be shown in the next section, using
the Theorem of Babuška-Aziz [3]. The variational formulation (14) is the starting
point of the discretization in space.

Remark 1. In the multiharmonic setting, the variational problem reads as: Find
(Υ,Ψ) ∈ W2N , with Υ = (Υ0, . . . ,ΥN ) and Ψ = (Ψ0, . . . ,ΨN ), such that

(15) AN ((Υ,Ψ), (Φ,Θ)) =
N∑
k=0

∑
j∈{c,s}

(yj
d,k,w

j)L2(Ω1),

for (Φ,Θ) ∈ W2N . Here the big bilinear form AN is given by

AN ((Υ,Ψ), (Φ,Θ)) :=
N∑
k=0

Ak((Υk,Ψk), (Φk,Θk)),

where Ak denotes A, with ω formally replaced by kω.

5.4. Discretization in space. We now use a quasi-uniform and shape-regular
triangulation Th with mesh size h > 0 of the domain Ω1 with tetrahedral elements.
Th induces a mesh Kh of triangles on the boundary Γ = ∂Ω1. On these meshes we
consider Nédélec basis functions of order 1 ND1(Th) [34, 35], a conforming finite
element subspace of H(curl,Ω1). Further, we use the space of divergence free
Raviart-Thomas [38] basis functions RT 0

0(Kh) := {λh ∈ RT 0(Kh),divΓ λh = 0},
a conforming finite element subspace of H−

1
2
‖ (divΓ 0,Γ). Furthermore, the discrete

FE-BE subspace Wh of W is given by

Wh := ND1(Th)×RT 0
0(Kh)×ND1(Th)×RT 0

0(Kh).

The corresponding discrete variational problem is given by: Find (Υh,Ψh) ∈ W2
h,

such that

(16) A((Υh,Ψh), (Φh,Θh)) =
∑

j∈{c,s}

(yj
d,w

j
h)L2(Ω1),

for (Φh,Θh) ∈ W2
h.
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6. Preconditioning and implementation

This section is devoted to the fast solution of the variational problem (16). After
recalling an abstract well-posedness and preconditioning result [46], we use this the-
ory to construct a parameter-robust preconditioner for our problem. Additionally,
we address the practical realization of this theoretical preconditioner.

6.1. Abstract preconditioning theory. In this subsection we briefly recall an
abstract result of Zulehner [46]. Let V and Q be Hilbert spaces with the inner
products (·, ·)V and (·, ·)Q. The associated norms are given by ‖ ·‖V =

√
(·, ·)V and

‖ · ‖Q =
√

(·, ·)Q. Furthermore, let X be the product space X = V ×Q, equipped
with the inner product ((v, q), (w, r))X = (v, w)V +(q, r)Q and the associated norm
‖(v, q)‖X =

√
((v, q), (v, q))X . Consider a mixed variational problem in the product

space X = V ×Q: Find z = (w, r) ∈ X, such that

A(z, y) = F(y), for all y ∈ X,
with

A(z, y) = a(w, v) + b(v, r) + b(w, q)− c(r, q), and F(y) = f(v) + g(q),

for y = (v, q) and z = (w, r). We introduce B ∈ L(V,Q∗) and its adjoint B∗ ∈
L(Q,V ∗) by

〈Bw, q〉 = b(w, q) and 〈B∗r, v〉 = 〈Bv, r〉.
Furthermore, we denote by A ∈ L(X,X∗) the operator induced by

〈Ax, y〉 = A(x, y).

The next theorem provides necessary and sufficient conditions for providing param-
eter independent bounds and can be found in Zulehner [46].

Theorem 1 ([46, Theorem 2.6]). If there are constants cw, cr, cw, cr > 0, such
that

(17) cw‖w‖2V ≤ a(w,w) + ‖Bw‖2Q∗ ≤ cw‖w‖2V , for all w ∈ V
and

(18) cr‖r‖2Q ≤ c(r, r) + ‖B∗r‖2V ∗ ≤ cr‖r‖2Q, for all r ∈ Q,
then

(19) c‖z‖X ≤ ‖Ax‖X∗ ≤ c‖z‖X , for all z ∈ X
is satisfied with constants c, c > 0 that depend only on cw, cw, cr, cr.

Indeed, in addition to the qualitative result for c and c, Theorem 1 also provides
a quantitative estimate of c and c in terms of cw, cw, cr, cr. Tracking back the proof
of the previous theorem in [46], the constants c and c fulfill the rough estimate

(20)
c ≥ −

(
−3 +

√
5
) (
c2r min

(
1
2 , cr

)2 + c2w min
(

1
2 , cw

)2)
4 max

(√
cr max(1, cr),

√
cw max(1, cw)

) ,

c ≤
√

2 max
(√

cr max(1, cr),
√
cw max(1, wr)

)
.

We mention, that these estimates are not sharp. As exposed in [46], an immediate
consequence of (19) is an estimate of the condition number κ(A):

κ(A) = ‖A‖L(X,X∗)‖A−1‖L(X∗,X) ≤
c

c
.

Therefore, robust estimates of the form (19), imply a robust estimate for the con-
dition number. More precisely, (19) means, that solving the discrete variational
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problem connected with the inner product in X will supply a good preconditioner
for A.

6.2. Well-posedness in non-standard norms: a constructive approach. In
[32] Kolmbauer and Langer state a parameter-robust well-posedness result for the
FEM discretization of the eddy current optimal control problem in a bounded do-
main. Using the technique of space interpolation, they introduce a parameter-
dependent non-standard norm in H(curl,Ω1)4 and show, that the inf-sup and
sup-sup conditions that appear in the theorem of Babuška-Aziz are fulfilled with
constants independent of any discretization and model parameters. Indeed we re-
use this result for the FEM-discretized domain Ω1. Furthermore,we have to take
into account the different parameter setting in the conducting domain Ω1 and the
non-conducting domain Ω2 (cf. (6)). Since the exterior domain Ω2 is reduced to
the boundary, we incorporate the boundary integral operators in terms of a Schur
complement approach. Consequently, for the Ω1-part, we define the non-standard
norm

‖y‖2FI
:= (ν curl y, curl y)L2(Ω1) + ω(σy,y)L2(Ω1) +

1√
λ

(y,y)L2(Ω1)

− 〈NγDy, γDy〉τ + sup
λ∈H

− 1
2
‖ (divΓ 0,Γ)

〈Bλ, γDy〉2τ
〈Aλ,λ〉τ

.

For the interface part, we just use the single layer potential A, that induces a norm
on H−

1
2
‖ (divΓ 0,Γ):

‖λ‖2B := 〈Aλ,λ〉τ .

These definitions give rise to a norm in the product space W2

(21) ‖(Υ,Ψ)‖2CI
:=

∑
j∈{c,s}

(√
λ
[
‖yj‖2FI

+ ‖λj‖2B
]

+
1√
λ

[
‖pj‖2FI

+ ‖ηj‖2B
])

.

The main result is summarized in the following lemma, that claims that an inf-
sup condition and a sup-sup condition are fulfilled with the parameter-independent
constants 1√

5
and 2.

Lemma 2. We have

1√
5
‖(Υ,Ψ)‖CI

≤ sup
(Φ,Θ)∈W2

A((Υ,Ψ), (Φ,Θ))
‖(Φ,Θ)‖CI

≤ 2‖(Υ,Ψ)‖CI
,

for all (Υ,Ψ) ∈ W2.

Proof. This proof follows the same strategy as the proof in [32] for the Ω1 part. We
directly verify the inf-sup and sup-sup condition. By an appropriate distribution
of the regularization parameter λ and application of Cauchy’s inequality several
times, the sup-sup condition follows with constant 2. For the special choice of the
test function

(Φ,Θ) = (Φ1,Θ1) + 2(Φ2,Θ2) + (Φ3,Θ3) + (Φ4,Θ4),
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given by

(Φ1,Θ1) := (Υ,−Ψ),

(Φ2,Θ2) :=
(

1√
λ

pc,− 1√
λ
ηc,

1√
λ

ps,− 1√
λ
ηs,
√
λyc,

√
λλc,

√
λys,

√
λλs

)
,

(Φ3,Θ3) :=
(
− 1√

λ
ps,− 1√

λ
ηs,

1√
λ

pc,
1√
λ
ηc,
√
λys,

√
λλs,−

√
λyc,−

√
λλc

)
,

(Φ4,Θ4) :=
(

0,
1√
λ
λc,0,

1√
λ
λs,0,

√
ληc,0,

√
ληs

)
,

the inf-sup condition follows with constant 1√
5
. �

So far, we obtained a well-posedness result for our problem with the nice pa-
rameter independent constants 1√

5
and 2. For applications, one has to know how

to deal with the individual parts of the norm ‖ · ‖CI
. Especially, the contribution

from the interface

−〈NγDy, γDy〉τ + sup
λ∈H

− 1
2
‖ (divΓ 0,Γ)

〈Bλ, γDy〉2τ
〈Aλ,λ〉τ

,

is difficult to deal with. In the next subsections, we investigate how to avoid the
contributions from the interface to the norm ‖ · ‖FI

and to preserve good constants
in the well-posedness results at the same time. Therefore, we introduce a slightly
modified norm, that still involves the contribution from the boundary and preserves
parameter-robust constants in the well-posedness result. The important point is,
that this slight modification allows us to get rid of the boundary contribution later
on.

6.3. Well-posedness in non-standard norms: a useful generalization. A
simply observation yields, that for fixed parameters ω, σ and ν, the problem (16)
is well conditioned for λ ≥ 1. Therefore, the additional λ scaling in (21) is not
necessary for this parameter set. This is taken into account by introducing the
shortcut λ̃ = min(1, λ) and the definition of a new norm for the Ω1-part.

‖y‖2F := (ν curl y, curl y)L2(Ω1) + ω(σy,y)L2(Ω1) +
1√
λ̃

(y,y)L2(Ω1)

− 〈NγDy, γDy〉τ + sup
λ∈H

− 1
2
‖ (divΓ 0,Γ)

〈Bλ, γDy〉2τ
〈Aλ,λ〉τ

.

Indeed, this means, that for the case 0 < λ ≤ 1 we re-use the parameter-robust norm
‖ · ‖FI

and for the case λ ≥ 1, we just drop the λ-scaling. This small modification
will be essential to derive an easy computable preconditioner in the next section.
Consequently, we can define a new norm in the product space W2:

‖(Υ,Ψ)‖2C :=
∑

j∈{c,s}

(√
λ̃
[
‖yj‖2F + ‖λj‖2B

]
+

1√
λ̃

[
‖pj‖2F + ‖ηj‖2B

])
.

Furthermore, this decomposition directly gives rise to the splitting

‖(Υ,Ψ)‖2C =: ‖Υ‖2C1 +
1
λ̃
‖Ψ‖2C1 ,

with

‖Υ‖2C1 :=
∑

j∈{c,s}

(√
λ̃
[
‖yj‖2F + ‖λj‖2B

])
.
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Indeed, this splitting is of importance, since according to the notation of Theorem 1,
we have the following correspondence: ‖·‖2V = ‖·‖2C1 and ‖·‖2Q = 1

λ̃
‖·‖2C1 . The main

result is summarized in the following lemma, that claims that an inf-sup condition
and a sup-sup condition are fulfilled with parameter-independent constants.

Lemma 3. We have

c‖(Υ,Ψ)‖C ≤ sup
(Φ,Θ)∈W2

A((Υ,Ψ), (Φ,Θ))
‖(Φ,Θ)‖C

≤ c‖(Υ,Ψ)‖C ,

for all (Υ,Ψ) ∈ W2, where c and c are generic constants, independent of any
involved discretization or model parameters.

Proof. In order to show the inf-sup and sup-sup condition for A, we use Theorem 1.
We start by showing an inf-sup and a sup-sup condition for b(·, ·). Using Cauchy’s
inequality several times immediately yields

sup
Θ∈W

b(Υ,Θ)2

1
λ̃
‖Θ‖2C1

≤ 4‖Υ‖2C1 .

For the special choice of the test function Θ = Θ1 + 2Θ2 + Θ3, given by

Θ1 = (−ys,−λs,yc,λc), Θ2 = (yc,−λc,ys,−λs), Θ3 = (0,µc,0,µs),

we obtain (
‖Υ‖2C1 −

∑
j∈{c,s} ‖yj‖2L2(Ω)

)2

4‖Υ‖2C1
≤ sup

Θ∈W

b(Υ,Θ)2

1
λ̃
‖Θ‖2C1

.

By definition, we have

a(Υ,Υ) =
∑

j∈{c,s}

‖yj‖2L2(Ω1).

Using the trivial inequality a2 + 1
4b

2 ≥ 1
4 (a2 +b2) ≥ 1

8 (a+b)2, we obtain the inf-sup
bound

a(Υ,Υ) + sup
Θ∈W

b(Υ,Θ)2

1
λ̃
‖Θ‖2C1

≥

(∑
j∈{c,s} ‖yj‖2L2(Ω1)

)2

‖Υ‖2C1
+

(
‖Υ‖2C1 −

∑
j∈{c,s} ‖yj‖2L2(Ω)

)2

4‖Υ‖2C1
≥ 1

8
‖Υ‖2C1 ,

and the sup-sup bound

a(Υ,Υ) + sup
Θ∈W

b(Υ,Θ)2

1
λ̃
‖Θ‖2C1

≤ 4‖Υ‖2C1 , ∀Υ ∈ W.

For the second estimate, again an inf-sup and a sup-sup condition for b can be
derived in the same manner. The following estimates are the second ingredient:

λ̃

λ

 1
λ̃

∑
j∈{c,s}

‖pj‖2L2(Ω1)

 ≤ c(Ψ,Ψ) ≤ 1
λ̃

∑
j∈{c,s}

‖pj‖2L2(Ω1).
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Thus, we have the inf-sup bound

c(Ψ,Ψ) + sup
Θ∈W

b(Φ,Ψ)2

‖Φ‖2C1

≥ λ̃

λ

(∑
j∈{c,s}

1
λ̃
‖pj‖2L2(Ω1)

)2

1
λ̃
‖Ψ‖2C1

+

(
1
λ̃
‖Ψ‖2C1 −

∑
j∈{c,s}

1
λ̃
‖yj‖2L2(Ω)

)2

4 1
λ̃
‖Ψ‖2C1

≥ 1
2

min

(
λ̃

λ
,

1
4

)
1
λ̃
‖Ψ‖2C1 ,

and the sup-sup bound

c(Ψ,Ψ) + sup
Θ∈W

b(Φ,Ψ)2

‖Φ‖2C1
≤ 4

1
λ̃
‖Ψ‖2C1 , ∀Ψ ∈ W.

Summarizing, we have cw = 1/8, cw = 4, cr = 1
2 min

(
λ̃
λ ,

1
4

)
and cr = 4. Combining

the estimates according to (20), we obtain the final estimate

c >

{
3−
√

5
32768 λ ≤ 4
(3−
√

5)(256+λ4)
65536λ4 λ > 4

and c ≤ 2
√

4.

It is easy to verify, that c is uniformly bounded from below by a constant inde-
pendent of λ. Consequently, the lower and upper bound are independent of any
involved parameters. �

In general, an inf-sup bound for W2 does not imply such a lower bound on a
subspace W2

h ⊂ W2. However, in this case, the same result holds for the finite
element subspace W2

h ⊂ W2, since the proof can be repeated for the finite element
functions step by step.

Lemma 4. We have

c‖(Υh,Ψh)‖C ≤ sup
(Φh,Θh)∈W2

h

A((Υh,Ψh), (Φh,Θh))
‖(Φh,Θh)‖C

≤ c‖(Υh,Ψh)‖C ,

for all (Υh,Ψh) ∈ W2
h, where c and c are generic constants, independent of any

involved discretization or model parameters.

From Lemma 3 and Lemma 4 in combination with the Theorem of Babuška-Aziz,
we immediately conclude that there exists a unique solution of the corresponding
variational problems (14) and (16), and that the solution continuously depends on
the data, uniformly in all involved parameters.

6.4. A canonical preconditioner.

6.4.1. Ω1-part. Indeed, for practical applications, we want to get rid of the interface
Schur complement contribution to the ‖ · ‖F norm. Here the λ̃-scaling is essential
to show an equivalence to an easier norm, where the equivalence constants are
independent of ω, λ and σ. Consequently, we can get rid of the additional expression
involving the boundary integral operators and can use

‖y‖2F̃ := (ν curl y, curl y)L2(Ω1) + ω(σy,y)L2(Ω1) +
1√

min(1, λ)
(y,y)L2(Ω1).

In order to get this easier norm ‖y‖F̃ , we have to pay the price, that the norm
equivalence depends on the minimal value of the reluctivity ν, i.e.

(22) ‖y‖2F̃ ≤ ‖y‖
2
F ≤ c max(1, ν−1)‖y‖2F̃ .
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Here c depends on the norm bounds for the boundary integral operators B and N,
the ellipticity constant for A and the constant in the trace theorem (1), but not on
h, N , λ, ω, σ and ν. Note, that this type of equivalence (22) is not available for
the ‖ · ‖FI

norm.

6.4.2. Interface part. In the following, we also need the finite element space S1(Kh),
the space of scalar, continuous and piecewise linear finite element functions on the
interface Kh. Using the identity (e.g. [14])

〈A curlΓ φh, curlΓ ψh〉τ = 〈Dφh, ψh〉H1/2(Γ), ∀φh, ψh ∈ S1(Kh),

where D : H1/2(Γ) → H−1/2(Γ) is the hyper singular operator for the Laplacian,
allows to use tools from the Galerkin boundary element methods for Laplace prob-
lems. In order to construct a basis for the finite element space RT 0

0 (Kh), we use
the identity

RT 0
0 (Kh) = curlΓ S1(Kh),

that is true for a simply connected interface Kh. Indeed, in the following we use
the following semi-norm

‖φ‖2B̃ := 〈Dφ, φ〉H1/2(Γ)

for the boundary element part. This semi-norm is a norm in the finite element
space S0

1 (Kh) = S1(Kh)\R, characterized by

S0
1 (Kh) := {φh ∈ S1(Kh) :

∫
Kh

φh(x)dSx = 0}.

Indeed, we enforce the average zero by adding the equation

P(φh, ψh) :=
∫
Kh

φh(x)dSx

∫
Kh

ψh(x)dSx = 0

for all relevant functions φch, φsh, ψch and ψsh to our variational problem.

6.4.3. Final estimate. Now we take advantage of the fact, that curlΓ : S0
1 (Kh) →

RT 0
0(Kh) is an isomorphism and therefore allows to introduce new variables

λjh = curlΓ φ
j
h, and ηjh = curlΓ ψ

j
h with φjh, ψ

j
h ∈ S

0
1 (Kh),

ρjh = curlΓ ζ
j
h, and µjh = curlΓ ξ

j
h with ζjh, ξ

j
h ∈ S

0
1 (Kh),

for j ∈ {c, s}. Using these new variables gives rise to the following definition:

Υ̃h := (yc
h, φ

c
h,y

s
h, φ

s
h) and Φ̃h := (wc

h, ζ
c
h,w

s
h, ζ

s
h)

Ψ̃h := (pc
h, ψ

c
h,p

s
h, ψ

s
h) and Θ̃h := (vc

h, ξ
c
h,v

s
h, ξ

s
h).

Therefore, the bilinear form of the new variational problem related to (15) is given
by Ã, defined by

Ã((Υ̃h, Ψ̃h), (Φ̃h, Θ̃h) := A((Υh,Ψh), (Φh,Θh))−
∑

j∈{c,s}

[
P(φjh, ζ

j
h) + P(ψjh, ξ

j
h)
]
.

Using the new finite element product space

Uh := ND1(Th)× S1(Kh)×ND1(Th)× S1(Kh),

equipped with the norm

‖(Υ̃, Ψ̃)‖2C̃ :=
∑

j∈{c,s}

(√
λ̃
[
‖yj‖2F̃ + ‖φj‖2B̃

]
+

1√
λ̃

[
‖pj‖2F̃ + ‖ψj‖2B̃

])
,

gives rise to the following result:
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Theorem 2. We have

c‖(Υ̃h, Ψ̃h)‖C̃ ≤ sup
(Φ̃h,Θ̃h)∈U2

h

Ã((Υ̃h, Ψ̃h), (Φ̃h, Θ̃h))
‖(Φ̃h, Θ̃h)‖C̃

≤ c
√

max(1, ν−1)‖(Υ̃h, Ψ̃h)‖C̃ ,

where c and c are generic constants, independent of any involved discretization or
model parameters.

Proof. The proof follows from Lemma 4, the norm equivalence (22) and the change
of the variables described in this subsection. �

6.5. A practical preconditioner. We have to solve the discrete variational prob-
lems connected with the norm C̃. The solution of the variational problem connected
with ‖ · ‖C̃ supplies a good preconditioner for the variational problem associated
with the bilinear form Ã. In large-scale computations, the individual parts of the
norm and/or preconditioner C̃ have to be replaced by easy “invertible” and ro-
bust symmetric and positive definite norms and/or preconditioners, such that the
spectral equivalence inequalities

cF̃‖yh‖2F̃p
≤ ‖yh‖2F̃ ≤ cF̃‖yh‖2F̃p

and cB̃‖φh‖
2
B̃p
≤ ‖ϕh‖2B̃ ≤ cB̃‖φh‖

2
B̃p
,

are valid with positive constant cF̃ , cF̃ , cB̃ and cB̃, which should be independent of
the involved parameters σ, ω and λ and may only depend polylogarithmically on
the space discretization parameter h.

The finite element part corresponding to the F̃-norm requires the solution of the
variational problem

(ν curl yh, curl vh)L2(Ω1) + ω(σyh,vh)L2(Ω1) +
1√
λ̃

(yh,vh)L2(Ω1) = (f ,vh)L2(Ω1).

Depending on the parameter setting (ν, σ, ω, λ), candidates for robust and (almost)
optimal preconditioners or solvers are multigrid preconditioners [1, 23], auxiliary
space preconditioners [25, 44], and domain decomposition preconditioners [40, 26,
41].

The boundary element part corresponding to the B̃-norm requires the solution
of the variational problem

〈Dφh, ψh〉H1/2(Γ) = 〈ρ, ψh〉H1/2(Γ), ∀ψh ∈ S0
1 (Kh).

This problem can be tackled by domain decomposition or multilevel methods [42,
21], purely algebraic approaches like H-matrices approximations [18, 19] and ACA-
methods [7] or alternative techniques like [39].

These practical preconditioners can be used to accelerate the Minimal Residual
method [36] applied to the symmetric and indefinite linear system with system
matrix0BBBBBBBBBB@

M · · · Kν −N B −Mσ,ω ·
· · · · BT −(A + P) · ·
· · M · Mσ,ω · Kν −N B

· · · · · · BT −(A + P)

Kν −N B Mσ,ω · −λ−1M · · ·
BT −(A + P) · · · · · ·

−Mσ,ω · Kν −N B · · −λ−1M ·
· · BT −(A + P) · · · ·

1CCCCCCCCCCA
| {z }

=:Ãh

.

The finite element matrices M, Mσ,ω and Kν and the boundary element matrices
A, B and N arise from the discretization of Ã in a straightforward manner.

Combining the previous results, we obtain, that the condition number of the
preconditioned system can be estimated by a constant cν , that is independent of
the meshsize h and all involved parameters λ, k, ω and σ i.e.

(23) κC̃h
(C̃−1
h Ãh) := ‖C̃−1

h Ãh‖C̃h
‖Ã−1

h C̃h‖C̃h
≤ cmax(1, ν−1) = cν .
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Combining the canonical preconditioner with special choices of the practical pre-
conditioners yields the preconditioner C̃h,p, and we obtain the final bound for the
condition number of the preconditioned system

(24) κC̃h,p
(C̃−1
h,pÃh) ≤ cν

max(cF̃ , cB̃)
min(cF̃ , cB̃)

.

Using the convergence rate estimate of the MinRes method (e.g. [16]), we finally
arrive at the following theorem.

Theorem 3. The MinRes method applied to the preconditioned system converges.
At the m-th iteration, the preconditioned residual rm = C̃−1

h,pfh − C̃
−1
h,pÃhwm is

bounded as∥∥r2m
∥∥
C̃h,p
≤ 2qm

1 + q2m

∥∥r0
∥∥
C̃h,p

where q =
κC̃h,p

(C̃−1
h,pÃh)− 1

κC̃h,p
(C̃−1
h,pÃh) + 1

.

Remark 2. So far, from Lemma 2, we obtain a qualitative estimate for the condi-
tion number κC̃h

(C̃−1
h Ãh), where the value cν is overestimated and can be very large.

Anyhow, from Lemma 2 we obtain, that for the practical relevant case 0 < λ < 1,
we have the following quantitative estimate of the condition number

κC̃h,p
(C̃−1
h,pÃh) ≤ 2

√
5 max(1, ν−1)

max(cF̃ , cB̃)
min(cF̃ , cB̃)

.

Therefore, we expect also for the “well-conditioned“ case λ ≥ 1, that the constant
cν is of acceptable size.

7. Discretization error analysis

In this section, we give a complete estimate of the error depending on the dis-
cretization parameter h. Since we assume the desired state to have a multiharmonic
representation, we do not introduce a discretization error in time. Furthermore, the
discretization error is analyzed for the time-harmonic case, since for the multihar-
monic case, the same estimates are valid by summing over all modes k = 0, . . . , N .
We obtain an optimal estimation of the discretization error in terms of the approx-
imation error in the non-standard norm ‖ · ‖C .

‖(Υ,Ψ)− (Υh,Ψh)‖C ≤ c inf
(Φh,Θh)∈W2

h

‖(Υ,Ψ)− (Φh,Θh)‖C ,

with the constant c only depending on the geometry, independent of the mesh width
h, the involved parameter ω, k, σ, ν and λ, and the solution (Υ,Ψ). Due to the
norm equivalence of the standard graph norm ‖ · ‖W2 of the product space W2,
given by

‖(Υ,Ψ)‖W2 :=
∑

j∈{c,s}

[
‖yj‖2H(curl,Ω1) + ‖λj‖2

H
− 1

2
‖ (divΓ,Γ)

+ ‖pj‖2H(curl,Ω1) + ‖ηj‖2
H
− 1

2
‖ (divΓ,Γ)

]
,

to the non-standard norm ‖ · ‖C , i.e.

C‖(Υ,Ψ)‖W2 ≤ ‖(Υ,Ψ)‖2C ≤ C‖(Υ,Ψ)‖W2 ,

we obtain the Cea-type estimate in norm of the product space W2 as well, i.e.

(25) ‖(Υ,Ψ)− (Υh,Ψh)‖W2 ≤ C inf
(Φh,Θh)∈W2

h

‖(Υ,Ψ)− (Φh,Θh)‖W2 ,

with a constant C, that is independent of the mesh width h and the solution (Υ,Ψ).
Therefore it remains to estimate the approximation error, for both the Ω1-part and
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the interface part. We start by recalling a well-known result for estimating the
approximation error in terms of the interpolation error. Let Π be the canonical
interpolation operator for the finite element space ND1(Th). Then the following
interpolation error estimate is valid:

Lemma 5. For u ∈ Hs, s > 1
2 , the interpolation error can be estimated by

‖u−Πu‖H(curl,Ω1) ≤ Chmin(1,s)
(
‖u‖Hs(Ω1) + ‖ curl u‖Hs(Ω1)

)
,

where the constant C is independent of the mesh size h.

Proof. See [10]. �

In order to give a bound for the approximation error on the boundary, we use
the fact, that we are estimating Neumann traces of the interior functions.

Lemma 6. For λ = γNy ∈ H−
1
2
‖ (divΓ 0,Γ), the approximation error can be esti-

mated by

inf
λh∈RT 0

0(Kh)
‖λ− λh‖

H
− 1

2
‖ (divΓ,Γ)

≤ C‖ curl y −Π curl y‖H(curl,Ω1),

where the constant C is independent of the mesh size h.

Proof. See [24, Theorem 8.1]. �

The main result of the space discretization error analysis for the time-harmonic
eddy current optimal control problem is summarized in the next theorem.

Theorem 4. Let the solution (uc,us,pc,ps) of the eddy current optimal control
problem be as regular as

yj ∈ Hs(Ω1),yj ∈ Hs(curl,Ω1), curl curl yj ∈ Hs(Ω1), j ∈ {c, s},

pj ∈ Hs(Ω1),pj ∈ Hs(curl,Ω1), curl curl pj ∈ Hs(Ω1), j ∈ {c, s},

for some s > 1
2 . Then the following estimate holds:

‖(Υ,Ψ)− (Υh,Ψh)‖W2 ≤ Chmin(1,s)

( ∑
j∈{c,s}

‖yj‖Hs(Ω1) + ‖ curl yj‖Hs(Ω1)

+ ‖ curl curl yj‖Hs(Ω1) + ‖pj‖Hs(Ω1) + ‖ curl pj‖Hs(Ω1) + ‖ curl curl pj‖Hs(Ω1)

)
,

where the constant C is independent of the mesh size h.

Proof. The key tools of this proof are the the Cea-type estimate (25) in combination
with the approximation properties in Lemma 5 and Lemma 6. Indeed, we have

inf
λh∈RT 0

0(Kh)
‖λ− λh‖

H
− 1

2
‖ (divΓ,Γ)

≤ C‖ curl y −Π curl y‖H(curl,Ω1)

≤ Chmin(1,s)
(
‖ curl u‖Hs(Ω1) + ‖ curl curl u‖Hs(Ω1)

)
,

and

inf
yh∈ND1(Th)

‖y − yh‖H(curl,Ω1) ≤ ‖y −Πu‖H(curl,Ω1)

≤ Chmin(1,s)
(
‖y‖Hs(Ω1) + ‖ curl y‖Hs(Ω1)

)
.

By applying the previous two estimates to each component of the product space
W2, the desired result follows. �

Of course the previous result also holds for all modes k = 0, . . . , N , and therefore
also for the multiharmonic case by summing over all modes k = 0, . . . , N .
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8. Conclusion

The method developed in this work shows great potential for solving distributed
optimal control problems for multiharmonic eddy current problems in an efficient
and optimal way. The key points of our method are the usage of a non-standard time
discretization technique in terms of a truncated Fourier series, a space discretization
in terms of a symmetric FEM-BEM coupling method, and the construction of
parameter-independent solvers for the resulting system of equations in the frequency
domain. The theory developed in this paper establishes a theoretical estimate of
the convergence rate of MinRes as a solver when our proposed preconditioner is
applied. Due to the natural decoupling of the frequency domain equations, an
efficient parallel implementation of the solution procedure is straight-forward.

Indeed, the theory developed in this paper shows two possibilities to construct
efficient and parameter-robust solvers:

• If the theoretical preconditioner corresponding to the norm ‖ · ‖CI
can be

replaced by an efficient and parameter-robust practical preconditioner, we
obtain a fully parameter-robust solver. This issue is subject to future re-
search.

• Otherwise, we can use the canonical preconditioner corresponding to the
simpler norm ‖ · ‖F̃ . This preconditioner can be realized by standard pre-
conditioners, but we have to pay the price, that we loose robustness with
respect to the reluctivity ν.

In some applications, it is reasonable to add so-called box constraints in the
conducting domain Ω1 for the control u or/and the state y to an optimal control
problem like (4)-(5). In the standard approach, these constraints can be handled by
a simple projection to the box [33] leading to a non-linear optimality system that
can be solved by superlinearly convergent, semi-smooth Newton methods [22, 27].
Unfortunately, in the multiharmonic approach, box constraints for u or/and y
cannot be handled in such an easy way. However, box constraints for their Fourier
coefficients can be treated by such a projection. Indeed, using the framework of
[20] and the preconditioners constructed in our work, efficient solvers for the Jacobi-
systems, that arise at each step of the semi-smooth Newton method applied to the
latter mentioned constrained optimization problems, can be constructed, that are
at least robust in the discretization parameters h and N , cf. [28].

A general time-periodic desired state yd can be approximated in terms of a
truncated Fourier series, i.e. a multiharmonic representation. Therefore we intro-
duce a time-discretization error due to the truncation of the Fourier series. Let
us assume, that the solution of the interior problem be as regular as (y,p) ∈
Hr((0, T ),H(curl,Ω1)2)∩H2r((0, T ),L2(Ω1)2) for some r ≥ 1

2 and (y(·, t),p(·, t)) ∈
Hs(curl curl,Ω1)2 for some s > 1

2 . Then an a-priori error estimate for the space
and time discretization error of order O(hmin(1,s) +N−r) can be shown. Therefore
for smooth desired states, we obtain a higher order of convergence.

Anyway, the preconditioners proposed and analyzed in this paper can be useful
for all these cases too. The application of our solver to practical problems, including
different control and observation domains or the presence of control or/and state
constraints, will be presented in a subsequent paper.
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2011-04 S.K. Kleiss, B. Jüttler, W. Zulehner: Enhancing Isogeometric Analysis by a Finite Element-
Based Local Refinement Strategy April 2011. Eds.: U. Langer, J. Schicho

2011-05 M.T. Khan: A Type Checker for MiniMaple April 2011. Eds.: W. Schreiner, F. Winkler
2011-06 M. Kolmbauer: Existence and Uniqueness of Eddy current problems in bounded and un-

bounded domains May 2011. Eds.: U. Langer, V. Pillwein
2011-07 M. Kolmbauer, U. Langer: A Robust Preconditioned-MinRes-Solver for Distributed Time-

Periodic Eddy Current Optimal Control Problems May 2011. Eds.: R. Ramlau, W. Zulehner
2011-08 M.Wiesinger-Widi: Sylvester Matrix and GCD for Several Univariate Polynomials May 2011.

Eds.: B. Buchberger, V. Pillwein
2011-09 M. Wiesinger-Widi: Towards Computing a Gröbner Basis of a Polynomial Ideal over a Field
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