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Harmonic interpolation based on Radon projections along

the sides of regular polygons

I. Georgieva∗ C. Hofreither† C. Koutschan‡ V. Pillwein§

T. Thanatipanonda¶

Abstract

Given information about a harmonic function in two variables, consisting of a �nite

number of values of its Radon projections, i.e., integrals along some chords of the unit

circle, we study the problem of interpolating these data by a harmonic polynomial.

With the help of symbolic summation techniques we show that this interpolation

problem has a unique solution in the case when the chords form a regular polygon.

Numerical experiments for this and more general cases are presented.

1 Introduction

The Radon transform, studied by Johann Radon in the early twentieth century, is the
theoretical foundation for tomography methods for shape reconstruction of objects with
non-homogeneous density. These methods were intensively studied in the 1960s and con-
tinue to �nd many applications in medicine, electronic microscopy, geology, plasma inves-
tigations, �nding defects in nuclear reactors, etc. From the mathematical point of view,
the problem is to recover a multivariate function using information based on line integrals
of the unknown function. Among the di�culties the recovery methods have to face are:
huge amount of data necessary to achieve high accuracy; impossibility to get enough data
due to technical reasons; incomplete projection data; measurement noise in the given data.
The employed methods may be loosely grouped into integral and algebraic type. The in-
tegral methods are based on the inverse Radon transform. Here all considerations are in
continuous form and they come to discretization immediately before the implementation of
the recovery algorithm. In the algebraic methods, discretization of the problem is carried
out immediately, and the problem is then reduced to solving a linear or nonlinear system
of equations.
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In the present work, we consider an algebraic method where the solution is sought
by means of an interpolation problem. More precisely, for given values of some Radon
projections, we seek a polynomial function which matches these data exactly.

An idea suggested by B. Bojanov is to incorporate additional knowledge about the
function to be recovered into approximation methods. It is to be expected that this can
improve the accuracy of the approximation while reducing the amount of input data re-
quired as well as the computational e�ort. In applications, such problem-speci�c knowledge
is often provided in the form of a partial di�erential equation which the unknown satis�es.

In the present work, we concern ourselves with the simple case when the unknown
is harmonic, i.e., satis�es the Laplace equation ∆u = 0. This elliptic partial di�erential
equation is important both as a model problem as well as in actual applications, like heat
transport, di�usion problems or Stokes �ow of incompressible �uids.

One natural tool for approximating harmonic functions are harmonic polynomials.
These polynomials belong to the class of holonomic functions, a class for which over the
past decades several symbolic algorithms have been developed to deal with, e.g., problems
of symbolic integration and/or summation. We use symbolic techniques, such as creative
telescoping and recurrence solving, to derive a closed form for Radon projections of the
harmonic basis functions. We then use this result to derive a class of regular interpolation
schemes for harmonic functions with Radon projections as given data.

2 Preliminaries and related work

Let I(θ, t) denote a chord of the unit circle at angle θ ∈ [0, 2π) and distance t ∈ (−1, 1)
from the origin (see Figure 1). The chord I(θ, t) is parameterized by

s 7→ (t cos θ − s sin θ, t sin θ + s cos θ)>, where s ∈ (−
√

1− t2,
√

1− t2). (1)

0

I t

t

1

Figure 1: The chord I(θ, t) of the unit circle.

De�nition 1. Let f(x, y) be a real-valued bivariate function in the unit disk in R2. The
Radon projection Rθ(f ; t) of f in direction θ is de�ned by the line integral

Rθ(f ; t) :=

∫
I(θ,t)

f(x) dx =

∫ √1−t2
−
√
1−t2

f(t cos θ − s sin θ, t sin θ + s cos θ) ds.

Johann Radon [24] showed in 1917 that a di�erentiable function f is uniquely deter-
mined by the values of its Radon transform,

f 7→
{
Rθ(f ; t) : −1 ≤ t ≤ 1, 0 ≤ θ < π

}
.
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In the following we formulate the problem of recovery of a polynomial from a �nite number
of values of its Radon transform. Essentially, this may be viewed as a bivariate interpolation
problem where the traditional point values are replaced by the means over chords of the
unit circle.

Let Π2
n =

{∑
i+j≤n αijx

iyj : αij ∈ R
}
denote the space of real bivariate polynomials

of total degree at most n. This space has dimension
(
n+2
2

)
. Assume that a set I ={

Im = I(θm, tm) : m = 1, . . . ,
(
n+2
2

)}
of chords of the unit circle is given. Furthermore, to

each chord I ∈ I a given value γI ∈ R is associated. Then, the aim is to �nd a polynomial
p ∈ Π2

n such that ∫
I
p(x) dx = γI ∀I ∈ I. (2)

If this interpolation problem has a unique solution for every choice of values {γI}, then
the scheme I of chords is called regular. The question of how to construct such regular
schemes has been extensively studied. The �rst general result was given by Marr [20] in
1974, who proved that the set of chords connecting n + 2 equally spaced points on the
unit circle is regular for Π2

n. A more general result for Rd and general convex domains was
published by Hakopian [14] in 1982. Applied to the unit disk in R2, it states that even the
chords connecting any n + 2 distinct points on the unit circle form a regular scheme for
Π2
n.
Another family of regular schemes was provided by Bojanov and Georgieva [2]. They

showed that a scheme consisting of
(
n+2
2

)
chords partitioned into n + 1 subsets such that

the k-th subset consists of k parallel chords is regular for Π2
n, provided that the distances t

satisfy some additional conditions. Particular choices of suitable distances t were later given
by Georgieva and Ismail [10] in terms of zeroes of Chebyshev polynomials of the second
kind, as well as Georgieva and Uluchev [11] in terms of zeroes of Jacobi polynomials.

Bojanov and Xu [5] proposed a regular scheme consisting of
(
n+2
2

)
chords partitioned

into 2b(n + 1)/2c + 1 equally spaced directions, such that in every direction there are
bn/2c+1 parallel chords. The distances t of the chords are zeroes of Chebyshev polynomials
of the second kind.

A mixed regular scheme which incorporates Radon projections and point evaluations
on the unit circle was given by Georgieva, Hofreither, and Uluchev [9].

Many other mathematicians have worked on problems with applications in the math-
ematical foundations of computer tomography, among them [16, 6, 7, 8, 15, 19, 21]. Re-
covery of polynomials in two variables based on Radon projections is also considered in
[1, 22, 3, 4, 12, 13].

3 Interpolation by harmonic polynomials

Assume that we know a priori that the function to be interpolated is harmonic. Then
it seems natural to work in the space Hn of real bivariate harmonic polynomials of total
degree at most n, which has dimension 2n + 1. Analogous to (2), we prescribe chords
I = {I1, I2, . . . , I2n+1} of the unit circle and associated given values {γI}, and wish to �nd
a harmonic polynomial p ∈ Hn such that∫

I
p(x) dx = γI ∀I ∈ I. (3)
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Again we call I regular if the interpolation problem (3) has a unique solution for all
given values {γI}. In the following, we show how to construct one class of such regular
schemes.

3.1 Harmonic basis

We use the basis of the harmonic polynomials

φ0(x, y) = 1, φk,1(x, y) = Re (x+ iy)k, φk,2(x, y) = Im (x+ iy)k.

An expansion of the polynomial p ∈ Hn is then given by

p(x, y) = p0 +

n∑
k=1

pk,1 φk,1(x, y) +

n∑
k=1

pk,2 φk,2(x, y),

with the coe�cient vector p = (p0, p1,1, p1,2, . . . , pn,1, pn,2)
T ∈ R2n+1. The interpolation

problem (3) results then in the system of linear equations

Ap = γ (4)

with

A =


∫
I1

1
∫
I1
φ1,1

∫
I1
φ1,2 . . .

∫
I1
φn,1

∫
I1
φn,2∫

I2
1

∫
I2
φ1,1

∫
I2
φ1,2 . . .

∫
I2
φn,1

∫
I2
φn,2

...
...

...
. . .

...
...∫

I2n+1
1
∫
I2n+1

φ1,1
∫
I2n+1

φ1,2 . . .
∫
I2n+1

φn,1
∫
I2n+1

φn,2

 .

The question whether the interpolation problem has a unique solution is thus equivalent
to the question whether the matrix A has non-zero determinant.

Using the binomial theorem, it is easy to obtain the representations

φk,1(x, y) =

bk/2c∑
`=0

(
k

2`

)
(−1)`xk−2`y2`, (5)

φk,2(x, y) =

bk/2c∑
`=0

(
k

2`+ 1

)
(−1)`xk−(2`+1)y2`+1, (6)

which give an expansion of the harmonic basis in terms of the monomial basis xiyj of the
polynomials. For Radon projections of monomials, we can obtain the following formula.

Lemma 1. For arbitrary i, j ∈ N0 and an arbitrary chord I(θ, t) of the unit disk with angle

0 ≤ θ < 2π and distance to the origin t ∈ (−1, 1), we have

∫
I(θ,t)

xiyj dx =
i∑

p=0

j∑
q=0

(
i

p

)(
j

q

)
tp+q(cos θ)j+p−q(sin θ)i−(p−q) ×

× (−1)i−p

i+ j − p− q + 1
(1− t2)

1
2
(i+j−p−q+1)

(
1− (−1)i+j−p−q+1

)
.
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Proof. Making use of the parameterization (1), we get∫
I(θ,t)

xiyj dx =

∫ √1−t2
−
√
1−t2

(t cos θ − s sin θ)i(t sin θ + s cos θ)j ds.

The statement follows by applying the binomial theorem and simple integration.

Making use of the linearity of the Radon transform, we can combine the above formula
with (5) and (6) to get, for k ≥ 1,

∫
I(θ,t)

φk,1 =

bk/2c∑
`=0

(
k

2`

)
(−1)`

k−2`∑
p=0

2∑̀
q=0

(
k−2`

p

)(
2`

q

)
tp+q(cos θ)2`+p−q(sin θ)k−2`−(p−q)

× (−1)k−2`−p

k − p− q + 1
(1− t2)

1
2
(k−p−q+1)

(
1− (−1)k−p−q+1

)
(7)

and∫
I(θ,t)

φk,2 =

bk/2c∑
`=0

(
k

2`+1

)
(−1)`

k−2`−1∑
p=0

2`+1∑
q=0

(
k−2`−1

p

)(
2`+1

q

)
× tp+q(cos θ)2`+1+p−q(sin θ)k−2`−1−(p−q)

× (−1)k−2`−1−p

k − p− q + 1
(1− t2)

1
2
(k−p−q+1)

(
1− (−1)k−p−q+1

)
. (8)

In this work, for the most part, we restrict ourselves to the case where the chords I
form a regular (2n+ 1)-sided convex polygon inscribed in the unit circle (cf. Figure 2, �rst
picture), i.e., Im = I(θm, tm) with

θm =
2πm

2n+ 1
, tm = t = cos

π

2n+ 1
for m = 1, . . . , 2n+ 1. (9)

4 Symbolic Simpli�cations

We are now going to evaluate the complicated integrals, respectively sums (7) and (8).
While it may be a tedious job to simplify these expressions by hand, we employ computer
algebra methods which can be of great help in such tasks. These algorithms are designed to
work on the class of holonomic functions [25]; in short, these are functions and sequences
which satisfy �su�ciently many� linear di�erential equations and recurrence equations.
These equations, together with some initial values, are used as a data structure to represent
such functions. The set of holonomic functions is closed under many operations�such as
addition, multiplication, certain substitutions, de�nite summation and integration�which
can be executed algorithmically. Thus the strategy for tackling expressions (7) and (8) is
to use the above mentioned closure properties to derive a di�erence-di�erential equation
for the whole expression. Together with some initial values this may even give rise to a
closed-form solution. A more detailed introduction into the topic is given in [17], here we
only outline the basic ideas with a simple example. Consider the expression

fn(t) =
2n+1∑
k=0

sn,k(t) =

2n+1∑
k=0

(
2n+ 1

k

)
k2tk.
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For the following computations we make use of the Mathematica package
HolonomicFunctions1 [18] that has been developed by the third-named author. The de�n-
ing di�erence equations of the summand can be determined entirely automatically using
this package with the Annihilator command:

In[1]:= Annihilator[Binomial[2n + 1, k]k2tk, {S[k], S[n]}]

Out[1]= {(k − 2n− 3)(k − 2n− 2)Sn − 2(n+ 1)(2n+ 3), k2Sk + (k + 1)t(k − 2n− 1)}

Here S[µ] and, in the output, Sµ, denote the forward shift in the variable µ, i.e.,
Sµa(µ) = a(µ+ 1). The de�ning equations for the summand are relatively easy to obtain
since it is composed of very basic objects, like powers, binomials, and polynomials. The
same holds for the input (7) that we are interested in. Starting from the de�ning di�erence
equations for sn,k(t) a recurrence relation for the sum fn(t) can be computed by the method
of creative telescoping which was proposed by Zeilberger [26]. This method constructs a
recurrence for the summand which is of a special form, namely it consists of two parts with
the following properties. The �rst part contains only shifts in the main variable n and
coe�cients that are independent of the summation variable k. The second part is of the
form (Sk − 1) ·Q · sn,k(t), where Q is an operator with shifts in both n and k and rational
function coe�cients in n, k and t. Hence, in our example this relation may take the form

(2n+ 1)(2nt+ t+ 1)sn+1,k(t)− (2n+ 3)(1 + t)2(2nt+ 3t+ 1)sn,k(t)

+ (Sk − 1) ·
(
c1(n, k, t)sn,k(t) + c2(n, k, t)sn,k+1(t) + c3(n, k, t)sn+1,k(t)

)
= 0.

Since in this example the quotients sn,k+1(t)/sn,k(t) and sn+1,k(t)/sn,k(t) are rational func-
tions, we can actually get c2 = c3 = 0 here. Summing over this di�erence equation with
respect to k yields a recurrence relation for fn(t) from the �rst part of the operator. The
second part is easily evaluated by telescoping, i.e., by

k1∑
k=k0

(a(k + 1)− a(k)) = a(k1 + 1)− a(k0).

In many cases in practice this part simply telescopes to zero as in our example. Thus we
end up with the following recurrence and initial value:

(2n+ 1)(2nt+ t+ 1)fn+1(t)− (2n+ 3)(t+ 1)2(2nt+ 3t+ 1)fn(t) = 0, f0(t) = t.

Using HolonomicFunctions this recurrence could also be obtained by merely plugging in
the sum symbolically in Mathematica notation, i.e.,

In[2]:= Annihilator[Sum[Binomial[2n + 1, k]k2tk, {k, 0, 2n + 1}], {S[n]}]

Out[2]= {(2n+ 1)(2nt+ t+ 1)Sn − (2n+ 3)(t+ 1)2(2nt+ 3t+ 1)}

Having a recurrence relation at hand it might even be possible to derive a closed form
solution using a recurrence solver. In our example the solution is easily determined to be

fn(t) = (2n+ 1)(2nt+ t+ 1)t(1 + t)2n−1,

1freely available for download at http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/
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under appropriate assumptions on the range of t. This algorithm can be extended to
multiple sums (such as (7) and (8)) and integrals, but still proceeds by the same ideas that
were demonstrated above (for doing symbolic integration, the shifts need to be replaced
by partial derivatives).

Coming back to the integral over φk,1 expanded as a triple sum in (7): the de�ning
equations for the summand are again easy to obtain since it is composed of very basic ob-
jects, like powers, binomials, and polynomials. Applying the method of creative telescoping
as outlined above delivers the following recurrence relation for the integrals:

(k + 5)F (k + 4)− 4t cos(θ)(k + 4)F (k + 3) + 2(k + 3)(2 cos2(θ) + 2t2 − 1)F (k + 2)

− 4t cos(θ)(k + 2)F (k + 1) + (k + 1)F (k) = 0,

where F (k) =
∫
I(θ,t) φk,1. Similarly it is found that

∫
I(θ,t) φk,2 satis�es the same recurrence

(with di�erent initial values). Since our software can deal with integrations equally well,
we can also evaluate the de�nite integral that is obtained from the parametrization (1) and
by plugging in the representations (5) and (6); the result is exactly the same fourth-order
recurrence that is displayed above.

Next, Petkov²ek's algorithm Hyper [23] is used to compute a basis of hypergeometric
solutions to this recurrence. Since its order is 4, there are at most four such solutions, but
it is very likely that some or even all solutions are not hypergeometric, in which case the
algorithm returns fewer solutions. However, in our examples we are lucky and obtain all
four solutions, one of which is

1

k + 1

(
t cos(θ) +

√
sin2(θ)(t2 − 1) +

√
cos2(θ)(2t2 − 1)− t2 + 2t cos(θ)

√
sin2(θ)(t2 − 1)

)k−1
(the others di�er by signs only).

Comparing initial values yields (quite complicated) closed-form representations of the
integrals (7) and (8), which are linear combinations of the four basis solutions. Further
algebraic simpli�cations, using the assumption of a regular convex polygon (9), lead to the
following evaluation of the matrix entries.

Lemma 2. For the case when the chords I form a regular convex polygon, see (9), the
matrix entries admit the closed form∫

Im

φ0 = α0,

∫
Im

φk,1 = αk cos(kθm),

∫
Im

φk,2 = αk sin(kθm),

where

αk =
2

k + 1
sin

(k + 1)π

2n+ 1
> 0 for k = 0, . . . , n.

Proof. We have already outlined above how the result of this lemma can be obtained (and
proven!) by computer algebra methods. The drawback of such methods is that often the
intermediate results and the certi�cates which constitute the proof are way too large to be
printed in a paper. However, the interested reader can �nd the details of our proof in the
supplementary electronic material2 which is given as a Mathematica notebook.

2http://www.risc.jku.at/people/ckoutsch/material/RadonProjectionsElectronicMaterial.nb
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5 Main result

Theorem 3. Let the chords I form a regular convex polygon as in (9). Then the interpo-

lation problem (3) has a unique solution in Hn for any given data γ.

Proof. Lemma 2 gives a closed form for the matrix entries in the system of linear equations
(4). Using linearity of the determinant in every column, we take out the factors αk and
get

detA = α0

n∏
k=1

α2
k detB

with

B =


1 cos(θ1) sin(θ1) . . . cos(nθ1) sin(nθ1)
1 cos(θ2) sin(θ2) . . . cos(nθ2) sin(nθ2)
...

...
...

. . .
...

...
1 cos(θ2n) sin(θ2n) . . . cos(nθ2n) sin(nθ2n)
1 cos(θ2n+1) sin(θ2n+1) . . . cos(nθ2n+1) sin(nθ2n+1)

 .

The columns of B consist of evaluations of the functions 1, cos(x), sin(x), cos(2x), sin(2x),
. . . , cos(nx), sin(nx) at the points θ1, . . . , θ2n+1. These functions form a basis of the
trigonometric polynomials of degree at most n. It is a classical result that detB 6= 0
for distinct 0 ≤ θ1 < θ2 < . . . < θ2n+1 < 2π, which concludes the proof together with
αk > 0 ∀k.

Remark. In the proof of Lemma 2, a very speci�c choice for the θm and tm was assumed.
However, it can be shown that the result holds for general angles, 0 ≤ θ1 < θ2 < . . . <
θ2n+1 < 2π, of the chords while the distances tm = t to the origin are constant and t is not
a zero of any Chebyshev polynomial U1, . . . , Un. An analytic proof of this more general
result will be the subject of a forthcoming paper. Some regular schemes according to this
generalization are shown in Figure 2, and numerical results using such schemes are given
in Section 6.

Figure 2: Regular schemes according to Remark 5.

6 Numerical examples

6.1 Example 1

We approximate the harmonic function

u(x, y) = exp(x) cos(y)
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Figure 3: Example 1, n = 12: function u, interpolant p, error u− p

4 6 8 10 12 14

10
-10

10
-7

10
-4

0.1

Figure 4: Example 1: errors. x-axis: degree of interpolating polynomial. y-axis: relative
L2-error

by a harmonic polynomial p ∈ Hn given 2n + 1 values of its Radon projections taken
along the edges of a regular (2n + 1)-sided convex polygon (Figure 2, �rst picture), i.e.,
θm and tm are chosen according to (9). In Figure 3, we display the function u as well
as its interpolating polynomial of degree 12 (using information from 25 chords) and the
resulting error. For Figure 4, we vary the degree of the interpolating polynomial and plot
the resulting relative L2-errors. We see that the error decreases exponentially with n,
indicating that the smooth function u is being approximated with optimal order.

6.2 Example 2

We approximate the harmonic function

u(x, y) = log
√

(x− 1)2 + (y − 1)2

by a harmonic polynomial p ∈ Hn given the Radon projections along two families of
chords: �rst, using a regular (2n + 1)-sided convex polygon as in the previous example,
and second, using a star-like scheme as shown in Figure 2, second and third picture. The
latter family of chords is constructed using the same equidistant points on the unit circle,

9



Figure 5: Example 2, n = 12: function u, interpolant p, error u− p
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Figure 6: Example 2: errors. x-axis: degree of interpolating polynomial. y-axis: relative
L2-error
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Figure 7: Example 2: relative L2-error for regular stars with ` = 1, . . . , 23 (47 chords).
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say {x1, . . . , x2n+1}, but now instead of joining the pairs of points (xm, xm+1) for any
m, we join the pairs of points (xm, xm+`) for some ` ∈ N. Here indices which exceed
2n+ 1 are implicitly assumed to wrap back into the range {1, . . . , 2n+ 1}. Note that when
` = 1, we again get a regular convex polygon (Figure 2, �rst picture), which corresponds
to the shortest possible chords given the points {x1, . . . , x2n+1}, while the choice ` = n
joins points which are �almost opposite� of each other, creating the longest possible chords
(Figure 2, third picture).

In terms of the angles and distances of the chords, Im = I(θm, tm), such a star is
described by the formulae

θm =
π(2m+ `− 1)

2n+ 1
, tm = t = cos

`π

2n+ 1
for m = 1, . . . , 2n+ 1,

which simplify to (9) for the choice ` = 1. In order to ensure that t is not a zero of any of
U1, . . . , Un (as required by Remark 5), it is necessary and su�cient for 2n+ 1 and ` to be
relatively prime.

In Figure 5, we display the function u as well as its interpolating polynomial of degree
12 (using information from 25 chords) for the case ` = 1, i.e., the convex polygon case,
and the resulting error. For varying interpolation degree n, we plot the relative L2-errors
in Figure 6. Again, convergence is exponential in n, although the errors are now larger as
compared to Example 1 due to the singularity of u close to the unit disk.

In order to compare the results for di�erent star schemes with the same degree of
interpolating polynomial, we choose now n = 23, such that 2n+ 1 is a prime number and
thus all stars ` = 1, . . . , n are admissible. The relative L2-errors for ` = 1, . . . , n are plotted
in Figure 7. The largest and smallest errors appear to be of the same order, di�ering at
most by a factor of approximately 4.

6.3 Example 3

In order to study the behavior of the method for functions with less smoothness, we
construct the harmonic extension of the boundary function g(θ) = θ2 on the unit circle in
radial coordinates, where the argument θ is chosen in the interval [−π, π]. This function is

Figure 8: Example 3, n = ` = 6: function u, interpolant p, error u− p
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n L∞-error for polygon L∞-error for star
6 0.725384 0.407932
12 0.386227 0.218432
24 0.199268 0.112529
48 0.101209 0.057036
96 0.0510027 0.0287025
192 0.0256015 0.0143112
384 0.0128259 0.00716828
768 0.00641923 0.00358654
1536 0.00321119 0.00180385
3072 0.00160599 0.000874311

Table 1: Example 3: comparison of the relative L∞-errors for ` = 1 and ` = n.

only C0 on the unit circle, but analytic within the unit disk. By expanding the boundary
data g into its Fourier series, it can be shown that the corresponding harmonic function
has the representation

u(x, y) = Re

(
π2

3
+ 2(Li2(−x− iy) + Li2(−x+ iy))

)
,

where

Li2(z) =
∞∑
k=1

zk

k2

is the dilogarithm or Spence's function.
This function is approximated by a harmonic polynomial p ∈ Hn, again comparing the

convex polygon and the star cases. In Figure 8, we display the function u as well as its
interpolating polynomial of degree 6 (using information from 13 chords) for the case ` = 6,
i.e., the star with the longest possible sides (cf. Figure 2, third picture), and the resulting
error. In Table 1, a comparison of the L∞-errors using the convex polygon (` = 1) and a
star (` = n) is presented, varying the interpolation degree n = 6 × 2k, k = 1, . . . , 10. In
both cases, the error decays linearly in n, and the errors for the two schemes are within a
factor of less than 2 of each other.

7 Conclusion and outlook

We have stated an interpolation problem for harmonic functions in the unit disk given cer-
tain values of its Radon projections and have shown that this problem is uniquely solvable
in the case when the Radon projections are taken along the sides of a regular polygon.
Methods of computer algebra were used heavily in the proof. Finally we presented numer-
ical examples for several possible con�gurations of chords and demonstrated convergence
rates for functions of varying smoothness.

The formula for the matrix entries obtained by symbolic methods has served as a
valuable starting point for the analytic derivation of a more general formula, allowing
general choices for both θ and t. In future work, we plan to exploit this general result in
order to show regularity of a larger family of schemes.
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For many problems, allowing the interpolation of functions satisfying an inhomogeneous
partial di�erential equation of the form ∆u = f would be highly useful and is a possible
subject of further work. Furthermore, noting the relation of the present work to the
inversion of the Radon transform, a well-known ill-posed problem, problems with noisy data
might prove interesting. Preliminary numerical experiments on this topic show promising
results.
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