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Computing smoothing rates of collective point
smoothers for optimal control problems using
symbolic computation

Veronika Pillwein, Stefan Takacs

Abstract The numerical treatment of systems of partial differential equations (PDEs)
is of great interest as many problems from applications belong to that class. Also
the optimality system of optimal control problems that is discussed in this work has
such a structure. These problems are not elliptic and therefore both the construction
of an efficient numerical solver and its analysis are hard.
Local Fourier analysis (or local mode analysis) is a widely-used tool to analyze
numerical methods for solving discretized systems of PDEs. The rates that can be
computed with local Fourier analysis are typically the supremum of some rational
function. In several publications this supremum was merely approximated numer-
ically by interpolation. We show that it can be resolved exactly using cylindrical
algebraic decomposition which is a well established method in symbolic computa-
tion.

1 Introduction

Local Fourier analysis (or local mode analysis) is a commonly used approach for
designing and analyzing convergence properties of multigrid methods. It provides
a framework to analyze various numerical methods with a unified approach that
gives quantitative statements on the methods under investigation, i.e., it leads to the
determination of sharp convergence rates. Other work on multigrid theory such as,
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e.g., [5], [1] or [8], typically just shows the fact of convergence and does not give
sharp or realistic bounds for convergence rates.

Local Fourier analysis can be justified rigorously only in special cases, e.g., on
rectangular domains with uniform grids and periodic boundary conditions. How-
ever, results obtained with local Fourier analysis can be carried over to more gen-
eral problems, see, e.g. [2]. In this sense it can be viewed as heuristic approach for
a wide class of applications.

Understanding local Fourier analysis as a machinery for analyzing a multigrid
method, we apply it in this paper to a model problem and some specific solvers.
Still, we keep in mind that this analysis can be carried over to a variety of other
problems and solvers. This type of generalization has been carried out, e.g., for
methods to solve optimal control problems that have been discussed in [12], [1] and
[7]. The method itself is explained in detail, e.g, in [13]. In [13] moreover the local
Fourier analysis software LFA is presented. This software can be configured using
a graphical user interface and allows to approximate (numerically) smoothing and
convergence rates based on local Fourier analysis approaches for various problems
and multigrid approaches.

The main goal of this paper is to show that the analysis can be carried out in
an entirely symbolic way and as such leads to sharp estimates on the smoothing
rate for a collective Jacobi relaxation and collective Gauss-Seidel iteration scheme.
For this purpose we restrict ourselves to the case of a one dimensional domain, i.e.,
an interval, and to piecewise linear ansatz functions (Courant elements). Aiming at
an audience from both numerical and symbolic mathematics we try to stay at an
elementary level and keep this note self-contained.

This paper is organized as follows. In subsection 1.1 we introduce a simple model
problem and in subsection 1.2 we propose a multigrid approach to solve the dis-
cretized optimality system which is related to this model problem. The local Fourier
analysis is introduced and carried out in sections 2 and 4, respectively. Section 3
gives a brief overview on quantifier elimination and cylindrical algebraic decom-
position, i.e., on the symbolic methods applied in order to resolve smoothing rates
symbolically.

1.1 Model problem

As a model problem we consider the following optimal control problem of tracking
type: Minimize

J(y,u) :=
1
2
‖y− yD‖2

L2(Ω)+
α

2
‖u‖L2(Ω),

subject to the elliptic boundary value problem (BVP)

−∆y = u in Ω and y = 0 on ∂Ω , (1)
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where y ∈ H1
0 (Ω) is the state variable and u ∈ L2(Ω) is the control variable. The

function yD ∈ L2(Ω) is given and α > 0 is some fixed regularization or cost param-
eter. Here, Ω is a given domain with boundary ∂Ω . The Banach space L2(Ω) is the
set of square integrable functions on Ω and the Sobolev space H1

0 (Ω) is the set of
L2-functions vanishing on the boundary with weak derivatives in L2(Ω).

Note that for this setting the boundary value problem is (in weak sense) uniquely
solvable in y for every given control u. At first we rewrite the BVP (1) in variational
form: Find y ∈ H1

0 (Ω) such that

(y, p)H1(Ω) = (u, p)L2(Ω)

holds for all p ∈H1
0 (Ω). Here ( f ,g)L2(Ω) =

∫
Ω

f (x) g(x) dx is the standard L2-inner
product and ( f ,g)H1(Ω) = (∇ f ,∇g)L2(Ω) denotes the H1-inner product.

Solving the model problem is equivalent to finding a saddle point of the Lagrange
functional which leads to the first order optimality conditions (the Karush-Kuhn-
Tucker system or, in short, KKT system), given by: Find (y,u, p)∈H1

0 (Ω)×L2(Ω)×
H1

0 (Ω) such that

(y, ỹ)L2(Ω) + (p, ỹ)H1(Ω) = (yD, ỹ)L2(Ω)

α (u, ũ)L2(Ω) − (p, ũ)L2(Ω) = 0
(y, p̃)H1(Ω) − (u, p̃)L2(Ω) = 0

holds for all (ỹ, ũ, p̃)∈H1
0 (Ω)×L2(Ω)×H1

0 (Ω). The second equation immediately
implies that u = α−1 p, which allows a reduction to the following system (2×2 for-
mulation of the KKT system): Find (y, p) ∈ X := V ×V := H1

0 (Ω)×H1
0 (Ω) such

that
(y, ỹ)L2(Ω) + (p, ỹ)H1(Ω) = (yD, ỹ)L2(Ω)

(y, p̃)H1(Ω) − α−1(y, p̃)L2(Ω) = 0

holds for all (ỹ, p̃) ∈ X .
For finding the approximate solution to this problem we use finite element meth-

ods (FEM). Therefore we assume to have a sequence of grids partitioning the given
domain Ω starting from an initial (coarse) grid on grid level k = 0. The grids on grid
levels k = 1,2, . . . are constructed by refinement, i.e., the grid points of level k− 1
are also grid points of level k. Using standard finite element techniques (Courant ele-
ments), we can construct finite dimensional subsets Vk ⊂V , where the dimension Nk
depends on the grid level k. By Galerkin principle, the finite element approximation
(yk, pk) ∈ Xk :=Vk×Vk fulfills

(yk, ỹk)L2(Ω) + (pk, ỹk)H1(Ω) = (yD, ỹk)L2(Ω)

(yk, p̃k)H1(Ω) − α−1(yk, p̃k)L2(Ω) = 0 (2)

for all (ỹk, p̃k) ∈ Xk.
Assuming to have a (nodal) basis Φk := (ϕk,i)

Nk
i=1 for Vk, we can rewrite the opti-

mality system (2) in matrix-vector notation as follows:
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Mk Kk
Kk −α−1Mk

)
︸ ︷︷ ︸

Ak:=

(
yk
pk

)
︸ ︷︷ ︸

xk:=

=

(
gk
0

)
︸ ︷︷ ︸

f k:=

,

where the mass matrix Mk and the stiffness matrix Kk are given by

Mk := ((ϕk, j,ϕk,i)L2(Ω))
Nk
i, j=1 and Kk := ((ϕk, j,ϕk,i)H1(Ω))

Nk
i, j=1,

respectively, and the right hand side vector gk is given by

gk := ((yD,ϕk,i)L2(Ω))
Nk
i=1.

The symbols yk and pk denote the coordinate vectors of the corresponding functions
yk and pk with respect to the nodal basis Φk.

1.2 Multigrid methods and collective point smoothers

In this section we briefly introduce the multigrid framework that we analyze in this
paper. Starting from an initial approximation x(0)k one step of the multigrid method
with ν1 +ν2 smoothing steps for solving a discretized equation Ak xk = f

k
on grid

level k is given by:

• Apply ν1 (pre-)smoothing steps

x(0,m)
k := x(0,m−1)

k + τ ˆA −1
k ( f

k
−Ak x(0,m−1)

k ) for m = 1, . . . ,ν1 (3)

with x(0,0)k := x(0)k , where the choice of the damping parameter τ and the precon-
ditioner ˆAk is discussed below.

• Apply coarse-grid correction

– Compute the defect and restrict to the coarser grid
– Solve the problem on the coarser grid
– Prolongate and add the result

If the problem on the coarser grid is solved exactly (two-grid method), then we
obtain

x(1,−ν2)
k := x(0,ν1)

k + Ik
k−1A

−1
k−1Ik−1

k ( f
k
−Ak x(0,ν1)

k ).

• Apply ν2 (post-)smoothing steps

x(1,m)
k := x(1,m−1)

k + τ ˆA −1
k ( f

k
−Ak x(1,m−1)

k ) for m =−ν2 +1, . . . ,0

to obtain the next iterate x(1)k := x(1,0)k .
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The smoothing steps are applied in order to reduce the high-frequency error,
whereas the coarse-grid correction takes care of the low-frequent parts of the over-
all defect. In practice the problem on grid level k− 1 is handled by applying one
(V-cycle) or two (W-cycle) steps of the proposed method, recursively, and just on
the coarse grid level k = 0 the problem is solved exactly. The convergence of the
two-grid method implies the convergence of the W-cycle multigrid method under
mild assumptions, so we restrict ourselves to the analysis of the two-grid method
only.

The intergrid-transfer operators Ik
k−1 and Ik−1

k are chosen in a canonical way: we
use the canonical embedding for the prolongation operator Ik

k−1 and its adjoint as
restriction operator Ik−1

k .
Next we need to specify the smoothing procedure (3). The preconditioning ma-

trix ˆAk is typically some easy-to-invert approximation of the matrix Ak. In case of
positive definite matrices (which may result from discretizing elliptic scalar BVPs),
the preconditioning matrix can be composed in an either additive or multiplicative
Schwarz manner based on local problems which live on patches, boxes or, which is
the easiest case, just on points. The two main pointwise methods are Jacobi relax-
ation (additive Schwarz method) and Gauss-Seidel iteration (multiplicative Schwarz
method).

We extend these methods to block-systems by combining (again in an additive or
multiplicative Schwarz manner) local problems which involve the complete system
of BVPs. Based on this idea, we can introduce the collective Jacobi relaxation with
preconditioning matrix ˆA

( jac)
k , given by

ˆA
( jac)

k :=

(
M̂( jac)

k K̂( jac)
k

K̂( jac)
k −α−1M̂( jac)

k

)
:=
(

diag Mk diag Kk
diag Kk −α−1diag Mk

)
,

where the damping parameter τ is chosen to be in (0,1). Here, M̂( jac)
k and K̂( jac)

k
are the preconditioning matrices that are used if Jacobi iteration is applied to linear
systems with system matrices Mk and Kk, respectively.

The preconditioning matrix of the collective Gauss-Seidel iteration is given by

ˆA
(gs)

k :=

(
M̂(gs)

k K̂(gs)
k

K̂(gs)
k −α−1M̂(gs)

k

)
,

where M̂(gs)
k and K̂(gs)

k are the lower left triangular parts (including the diagonals)

of Mk and Kk, respectively. Again with this choice, M̂(gs)
k and K̂(gs)

k are the precon-
ditioning matrices that represent classical Gauss-Seidel iteration for linear systems
with system matrices Mk and Kk, respectively. The damping parameter τ is chosen
to be 1 in case of collective Gauss-Seidel iteration.

Numerical examples show good behavior of multigrid methods using such itera-
tions as smoothing procedures and have been discussed in, e.g., [1] or [7].
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We want to stress that in either case the multiplication with the preconditioning
matrix ˆAk can be realized efficiently if the iteration is implemented analogously to
standard Jacobi or Gauss-Seidel iteration. For this in every step the corresponding
components of yk and pk are collected to vectors in R2. Accordingly one has to
collect the corresponding entries of the matrices Ak, Bk and Ck to 2× 2 matrices.
Executing the algorithm then only vectors in R2 need to be multiplied with 2×
2 matrices and 2×2 linear systems need to be solved. For more detailed information
how to implement collective iteration schemes see, e.g., [7].

2 Local Fourier analysis

Convergence properties of multigrid methods for the model problem have been in-
vestigated in a wide range of papers. In this paper we want to concentrate on an anal-
ysis, where symbolic computation can contribute significantly. For the time being,
we complete the first step by analyzing the smoothing iteration. As mentioned ear-
lier, we restrict the smoothing analysis to the case of a one dimensional domain Ω .
While the proposed numerical method can be applied also to higher dimensions, the
analysis of this case as well as the analysis of the full two-grid cycle is ongoing
work.

For the analysis of the smoothing procedure introduced in the last section, we
define the iteration matrix of the smoothing step by

Sk := I− τ ˆA −1
k Ak,

which represents the modification of the error effected by the smoothing procedure,
i.e.,

x(0,m)
k − x∗k = Sk(x

(0,m−1)
k − x∗k),

where x∗k := A −1
k f

k
denotes the exact solution to the system.

Certainly, if it can be shown that the spectral radius of the iteration matrix or,
even better, its norm, are smaller than 1, then this yields convergence of the iterative
scheme. At present time, we do not aim at proving convergence, but at showing
that it is a good smoother. In other words, we want to show that it reduces the high
frequency error terms which we do using local Fourier analysis that is introduced
next.

2.1 Local Fourier analysis framework

Since for local Fourier analysis the boundary is neglected by assuming periodic
boundary conditions that allow to extend a bounded domain Ω to the entire space
R, see [2], from now on we assume that Ω = R. Let us repeat that good conver-
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gence and smoothing rates computed using local Fourier analysis for simple cases,
typically also indicate good behavior of the analyzed methods in more general cases.

On this domain Ω = R, we assume to have on each grid level k = 0,1,2, . . . a
uniform grid with nodes

xk,n := n hk for n ∈ Z,

where the uniform grid size is given by hk = 2−k. The functions in Vk are assumed
to be continuous on the domain and to be linear between two nodes (Courant ele-
ments). This way the discretized function can be specified by prescribing the values
on the nodes only.

The first step of local Fourier analysis consists of constructing Fourier vectors
that diagonalize both mass and stiffness matrix. For every θ ∈ Θ := [−π,π) and
every grid level k, we can define a Fourier vector ϕk(θ) ∈ RZ as follows:

ϕk(θ) := (eiθxk,n/hk)n∈Z.

The Fourier vectors are the coordinate vectors of the Fourier functions with re-
spect to the nodal basis Φk. So, the Fourier functions are those functions in Vk whose
values on the grid points xk,n equal to the corresponding entries of the Fourier vector.
Thus the Fourier function are the piecewise linear functions given by

ϕk(θ)(x) = t eiθxk,n/hk +(1− t) eiθxk,n+1/hk ,

where n and t ∈ [0,1) are chosen such that x = t xk,n +(1− t) xk,n+1.
It is easy to see that every vector in RZ can be expressed as linear combination of

countable infinitely many Fourier vectors. Therefore also every function in Vk can
be expressed as linear combination of countable infinitely many Fourier functions.
In case of a bounded domain, just finitely many Fourier vectors or functions would
be necessary. Nonetheless for the analysis, all θ ∈Θ = [−π,π) are considered.

2.2 Operators in local Fourier space

The Fourier vectors defined in the preceding subsection diagonalize the blocks of
our system matrix. Since we consider grids with uniform mesh-size hk, the (in-
finitely large) mass matrix Mk and the (infinitely large) stiffness matrix Kk can be
computed explicitly:

Mk =
hk

6


. . . . . . . . .

1 4 1
1 4 1

. . . . . . . . .

 and Kk =
1
hk


. . . . . . . . .
−1 2 −1
−1 2 −1

. . . . . . . . .

 .
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It is easy to see that the multiplication of one of these matrices with the vector
ϕk(θ) equals the multiplication of this vector with the symbol of the matrix, where
the symbols are given by:

Mk ϕk(θ) =
(4+ eiθ + e−iθ )hk

6︸ ︷︷ ︸
Mk(θ):=

ϕk(θ) and Kk ϕk(θ) =
2− eiθ − e−iθ

hk︸ ︷︷ ︸
Kk(θ):=

ϕk(θ).

Thus indeed the Fourier vectors are the eigenvectors with eigenvalues Mk(θ) and
Kk(θ), respectively. The analogous holds for the preconditioning matrices. For the
collective Jacobi relaxation, the preconditioning matrix itself is a diagonal matrix,
therefore

M̂( jac)
k ϕk(θ) =

2hk

3︸︷︷︸
M̂( jac)

k (θ):=

ϕk(θ) and K̂( jac)
k ϕk(θ) =

2
hk︸︷︷︸

K̂( jac)
k (θ):=

ϕk(θ)

holds. As the block matrices Ak and ˆAk are built from such matrices, we can con-
clude that for all θ ∈Θ ,

span
{(

ϕk(θ)

0

)
,

(
0

ϕk(θ)

)}
is invariant under the action of those block-matrices. Hence it suffices to consider
only the symbol of the block matrix Ak, given by

Ak(θ) :=
(

Mk(θ) Kk(θ)
Kk(θ) −α−1Mk(θ)

)
,

and the symbol ˆA
( jac)

k (θ) defined analogously.
As mentioned earlier, the smoothing iteration shall reduce the high-frequent parts

of the error. To measure this phenomenon, we introduce the smoothing rate

q(τ) := sup
θ∈Θ (high)

sup
hk>0

sup
α>0

σ(θ ,hk,α,τ), (4)

where Θ (high) := [−π,π)\[−π

2 ,
π

2 ) is the set of high frequencies and σ is defined as
the spectral radius of the Fourier-transformed smoothing operator given by

σ(θ ,hk,α,τ) := ρ
(

I− τ

(
ˆA (θ)

)−1
A (θ)︸ ︷︷ ︸

Sk(θ):=

)
. (5)

In (4) the supremum is not only taken over all θ ∈Θ (high), but also over all grid sizes
hk > 0 and choices of the parameter α > 0. Therefore, we compute an upper bound
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for the smoothing rate which is independent of hk (which allows to show optimal
convergence) and the parameter α (which allows to show robust convergence). For
obvious reasons, the supremum is not taken with respect to the damping parameter
τ , but is adjusted within the method such that the smoothing rate is optimal for
Jacobi relaxation.

In principle it would be necessary to analyze the norm of the iteration matrix
in (5) rather than analyzing the spectral radius. The spectral radius, however, equals
the infimum over all matrix norms, which implies that for every ε > 0 there is a
matrix norm such that

‖Sk(θ)‖ ≤ (1+ ε) ρ(Sk(θ)),

see [6]. For the model problem and both proposed smoothing procedures (collective
Jacobi relaxation and collective Gauss-Seidel iteration) straight-forward computa-
tions show that the spectral radius of the symbol of the smoothing operator ρ(Sk(θ))
is equal to its norm ‖Sk(θ)‖X̂ , if the matrix-norm is chosen as

‖M ‖X̂ :=

∥∥∥∥∥
(

α1/2

1

)
M

(
α1/2

1

)−1
∥∥∥∥∥
`2

, (6)

where ‖ ·‖`2 denotes the Euclidean norm. Observe that the scaling of the state y and
the adjoined state p to each other in this norm equals to the scaling in the norm ‖·‖X
in classical theory that can be found in [8].

An equivalent formulation for the definition of the smoothing rate (4) using quan-
tifiers is: Determine λ such that

∀ θ ∈Θ
(high) ∀ hk > 0 ∀ α > 0 : σ

2(θ ,hk,α,τ)≤ λ (7)

holds. Then for every τ ∈ (0,1) the value of q(τ) is the smallest such λ .
The computation of σ(θ ,hk,α,τ) is straight forward, but the computation of

q(τ) is non-trivial. This is where symbolic computation enters our analysis. In order
to determine q (that is either a polynomial in τ or a constant) we invoke quantifier
elimination using cylindrical algebraic decomposition (CAD) that is introduced in
the next section. Note that for both preconditioners under consideration, (7) is a
quantified formula on trigonometric polynomials (after clearing denominators). For
the case of a collective Jacobi relaxation σ is given by

σ
2(θ ,hk,α,τ) =

h4
k((cosθ +2)τ−2)2 +36α((cosθ −1)τ +1)2

4
(
h4

k +9α
) .

CAD, as we detail in the next section, accepts as input only polynomial (or more
general rational) inequalities over the reals. This is a complication that is easily
resolved by replacing cosθ by a real variable c ∈ [−1,1] and, if necessary, sinθ by
a real variable s ∈ [−1,1] together with Pythagoras’ identity s2 + c2 = 1.
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3 Quantifier elimination using cylindrical algebraic
decomposition

So far we have reformulated the task of determining the smoothing rate for our
multigrid methods to the problem of resolving a quantified polynomial inequality.
That is, the given statement is of the form

Q1 x1 . . .Qn xn : A(x1, . . . ,xn,y1, . . . ,ym),

where Qi denote quantifiers (either ∀ or ∃) and A(x1, . . . ,xn,y1, . . . ,ym) is a boolean
combination of polynomial inequalities. The problem of finding an equivalent, quan-
tifier free formula B(y1, . . . ,ym) consisting of a boolean combination of polynomial
inequalities depending only on the free variables is called quantifier elimination.
The first algorithm to solve this problem over the reals was given by A. Tarski [11]
in the early 1950s. His method, however, was practically not efficient. Nowadays
modern implementations [3, 9, 10] of G. Collins’ cylindrical algebraic decomposi-
tion [4] make it possible to carry out nontrivial computations in a reasonable amount
of time.

A simple example is given by: Determine a bound B = B(z) for 0 < z < 1 such
that

∀ 0 < x < 1 ∀ 0 < y < 1 :
x

y+ z
+

y
x+ z

≤ B.

A CAD-computation quickly yields that B(z)≥ 1
z . In cases where no free variables

appear in the input, B is one of the logical constants True or False. Applied to a
quantifier free formula the result of a CAD-computation is an equivalent formula
that is normalized in a certain sense.

The formula for σ as stated above is a rational function in the given indetermi-
nates. Adding the necessary constraints on the denominators (which is commonly
handled internally by the implementations), this is still a valid input for a CAD-
computation.

A major issue is the runtime complexity of CAD that depends heavily on the
input parameters such as number of polynomial inequalities, polynomial degrees
and number of variables. In the worst case it is doubly exponential in the number of
variables and this worst case bound is not only met in theory, but often experienced
in practice. As we will see below, already for the one dimensional analysis suitable
substitutions of the variables are applied in order to speed up the computations.
These substitutions aim at reducing the number of variables on the one hand and
lowering the polynomial degrees on the other hand.

For the forthcoming analysis of two (or even three) dimensional case, further
simplifications will be necessary, since even though termination of the algorithm is
proven, the actual computations might last longer than the expected life-time of the
authors. Although it might seem a high price to pay, the gain is an optimal bound for
the given formula that is determined by a proving procedure that is not approximate
in any way.
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4 Computing the smoothing rate

Now we are in the position to state the main results of this paper, the smoothing
rates for collective Jacobi relaxation and collective Gauss-Seidel iteration.

4.1 Smoothing property - collective Jacobi relaxation

In the smoothing step we are concerned with the high-frequent parts of the error.
Consequently, if we replace cosθ by a real variable c, then the condition θ ∈Θ (high)

translates to −1≤ c≤ 0.
With this substitution in the case of a collective Jacobi relaxation σ is given by

σ(θ ,hk,α,τ) = σ̃(cosθ ,hk,α,τ), where

σ̃
2(c,hk,α,τ) :=

h4
k((c+2)τ−2)2 +36α((c−1)τ +1)2

4
(
h4

k +9α
) .

With this rewriting the definition (7) has become a purely polynomial inequal-
ity and can invoke CAD to determine q(τ). For this purpose we used the CAD-
implementation in Mathematica. The subscript 2 for σ below indicates that we are
dealing with the square of the actual expression.

In[1]= σ2 =
h4((c+2)τ−2)2 +36α((c−1)τ +1)2

4(h4 +9α)
;

In[2]= Resolve[ForAll[c,−1≤ c≤ 0,ForAll[h,h > 0,ForAll[α,α > 0,σ2 ≤ λ ]]],{τ,λ},Reals]

Out[2]=
(
τ ≤ 0&&λ ≥ 4τ

2−4τ +1
)
‖
(

0 < τ ≤ 4
5

&&λ ≥ 1
4
(
τ

2−4τ +4
))
‖(

τ >
4
5

&&λ ≥ 4τ
2−4τ +1

)

The computation takes about one second and the result is a quantifier-free for-
mula equivalent to the quantified formula given in (7). Note also that this is again
a statement formulated in terms of polynomial inequalities. It is normalized in the
sense that the parameter τ is assumed to be on the bottom level, which is indicated
by the order of variables within the “Resolve”-command. Thus the output is sorted
in a way that the conditions on τ are inequalities comparing to (algebraic) numbers,
whereas the conditions on λ on the next higher level are formulated in terms of τ .

So for every τ the function value q2(τ) is the smallest λ fulfilling Out[2]. For
instance, if we plug τ = 1

2 into Out[2], the formula reduces to:

False∨
(

True∧λ ≥ 3
4

)
∨False.

As q2
( 1

2

)
is the smallest λ fulfilling the inequality, we have q2

( 1
2

)
= 3

4 . Guided by
this example we read off the general form for q2(τ) which is a piecewise quadratic
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function given by

q2(τ) =


4τ2−4τ +1 for τ ≤ 0
1
4

(
τ2−4τ +4

)
for 0 < τ ≤ 4

5
4τ2−4τ +1 for 4

5 < τ

. (8)

Summarizing we have determined the supremum in (4) and therefore the smoothing
rate q(τ). If we take the square root of (8) and restrict ourselves to the relevant range
τ ∈ [0,1], we obtain the smoothing rates for the collective Jacobi relaxation:

q(τ) =
{ 1

2 (2− τ) for 0 ≤ τ ≤ 4
5

2τ−1 for 4
5 < τ ≤ 1

.

Since our method gives an equivalent reformulation, we know that these bounds on
the smoothing rate are sharp. The graph of the function q can be seen in figure 1.
From this we see that q(τ) takes its minimum for τ = 4

5 with value q
( 4

5

)
= 3

5 . For
the canonical choice τ = 1

2 , we obtain q
( 1

2

)
= 3

4 .

0.0 0.2 0.4 0.6 0.8 1.0
Τ

0.2

0.4

0.6

0.8

1.0

qSM

Fig. 1 Smoothing factor depending on damping parameter τ

4.2 Smoothing property - collective Gauss-Seidel iteration

In this subsection we carry over the smoothing analysis which we have done for the
collective Jacobi relaxation to the collective Gauss-Seidel iteration. Again we can
determine the symbol of the involved preconditioning matrices:

M̂(gs)
k ϕk(θ) =

(4+ e−iθ )hk

6︸ ︷︷ ︸
M̂(gs)

k (θ):=

ϕk(θ) and K̂(gs)
k ϕk(θ) =

2− e−iθ

hk︸ ︷︷ ︸
K̂(gs)

k (θ):=

ϕk(θ).
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The procedure for determining σ(θ ,h,α) (which now is independent of τ) is com-
pletely analogous to the previous case. Again, by our choice of matrix norm ‖ · ‖X̂ ,
the same value for σ is obtained no matter whether we consider the spectral radius
or the norm.

In order to have a purely polynomial input for the CAD computations, we sim-
plify the formula for σ : the occurrences of cosθ and sinθ are replaced by c and s,
respectively. Moreover we expand numerator and denominator and replace all oc-
currences of s2 by 1−c2 thus arriving at numerator and denominator being linear in
s. After these simple rewriting steps we obtain σ(θ ,hk,α) = σ̃(sinθ ,cosθ ,hk,α),
where

σ̃
2(s,c,hk,α) :=

(
h4

k +36α
)(

(17+8c)h4
k +72h2

kα1/2|s|+36(5−4c)α
)

(17+8c)2h8
k +72(40c2−28c+13)h4

kα +1296(5−4c)2α2
.

The smoothing rate q is again the supremum over all high frequencies, grid sizes
and choices of the parameter α and is given by

q2 = sup
(s,c)∈D

sup
hk>0

sup
α>0

σ̃
2(s,c,hk,α),

where D := {(s,c) ∈ R2 : s2 + c2 = 1, c≤ 0}.
Note that in this definition above still a term α1/2 occurs. Before we can invoke

CAD-computations, we have to rewrite σ̃ as rational function. A first simplification
is that as σ̃ does not depend on the sign of s, we can restrict ourselves to assuming
only non-negative values and thus replace |s| by s≥ 0. To eliminate also

√
α in the

numerator, we replace α by α̃2, where α̃ > 0. Having completed these rewritings
the final formula for q reads as

q2 = sup
(s,c)∈D̃

sup
hk>0

sup
α̃>0

(
h4

k +36α̃2
)(

(17+8c)h4
k +72h2

kα̃s+36(5−4c)α̃2
)

(17+8c)2h8
k +72(40c2−28c+13)h4

kα̃2 +1296(5−4c)2α̃4
,

where D̃ := {(s,c) ∈ R2 : s2 + c2 = 1, c ≤ 0, s ≥ 0}. We can again rewrite the
supremum as quantified expression where the quantifiers can be eliminated with the
help of a CAD computation. With Mathematica’s quantifier elimination algorithm,
we obtain the smoothing rate for the collective Gauss-Seidel iteration after about
twenty minutes:

q = 1
7 (3+

√
2)≈ 0.63.

Even though twenty minutes are not a very long time to wait for a result that needs
to be obtained only once, it still seems too long for such a simple formula. We can
speed up the calculation significantly by reducing both the number of variables and
the degrees of the polynomials by introducing a new variable η := h2

k/α̃ > 0. This
substitution reduces the formula for q to

q2 = sup
(s,c)∈D̃

sup
η>0

(
η2 +36

)(
(17+8c)η2 +72ηs+36(5−4c)

)
(17+8c)2η4 +72(40c2−28c+13)η2 +1296(5−4c)2 .
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Based on this representation Mathematica’s quantifier elimination algorithm is able
to derive q within about twenty seconds.

5 Concluding remarks

In this paper we have shown a strategy to compute the smoothing rate for a multi-
grid method using collective Jacobi relaxation or Gauss-Seidel iteration by means
of symbolic computation in an entirely automatic manner. The proposed strategy
strongly relies on the fact that local Fourier analysis is a systematic machinery which
is applied to the problem and the given numerical method. Typically this approach
leads to determining the supremum of an explicitly given term.

On the one hand, the smoothing rates we obtained this way may be viewed as an
interesting result on their own. On the other hand, these rates will also enter a full
two- or multigrid analysis which again can be done using local Fourier analysis.

Also for the full analysis, or the extension to higher dimensional cases, Fourier
analysis leads to an expression that in the first step is a rational function in the mesh
size hk, the regularization parameter α , the damping parameter τ , and trigonometric
expressions of the frequencies θ . This is in particular the case for the model problem
described in this paper for the above mentioned generalizations.

Theoretical results guarantee that also these problems can be solved with the
methods applied in this work. To obtain the full results in reasonable time, it is
necessary to apply proper strategies to reduce the complexity of the problems in the
formulation of the input which is ongoing work.
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2010-08 C. Koukouvinos, V. Pillwein, D.E. Simos, Z. Zafeirakopoulos: A Note on the Average Com-
plexity Analysis of the Computation of Periodic and Aperiodic Ternary Complementary Pairs
October 2010. Eds.: P. Paule, J. Schicho

2010-09 V. Pillwein, S. Takacs: Computing smoothing rates of collective point smoothers for optimal
control problems using symbolic computation October 2010. Eds.: U. Langer, P. Paule

The complete list since 2009 can be found at
https://www.dk-compmath.jku.at/publications/



Doctoral Program

“Computational Mathematics”

Director:
Prof. Dr. Peter Paule
Research Institute for Symbolic Computation

Deputy Director:
Prof. Dr. Bert Jüttler
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