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Abstract

This paper deals with conforming high-order finite element discretizations of the vector-
valued function space H(div) in 2 and 3 dimensions. A new set of hierarchic basis functions on
simplices with the following two main properties is introduced. Provided an affine simplicial
triangulation, first, the divergence of the basis functions is L2-orthogonal, and secondly, the
L2-inner product of the interior basis functions is sparse with respect to the polynomial order p.
The construction relies on a tensor-product based construction with properly weighted Jacobi
polynomials as well as an explicit splitting of the higher-order basis functions into solenoidal
and non-solenoidal ones. The basis is suited for fast assembling strategies. The general
proof of the sparsity result is done by the assistance of computer algebra software tools.
Several numerical experiments document the proved sparsity patterns and practically achieved
condition numbers for the parameter-dependent div-div problem. Even on curved elements
a tremendous improvement in condition numbers is observed. The precomputed mass and
stiffness matrix entries in general form are available online.

1 Introduction

In this paper, we investigate the space of vector-valued functions with square-integrable divergence

H(div,Ω) := {u ∈ L2(Ω)d : div u ∈ L2(Ω)} (1.1)

and conforming hp-finite element discretizations for open bounded Lipschitz-domains Ω ⊂ Rd with
d = 2, 3.
For more than twenty years, spectral methods, [20], as well as the p-version and the hp-version
of the finite element method, see e.g. [15], [13], [29], [32], and the references therein, have be-
come more and more popular. In the classical (h-version) finite element method, convergence of
a piecewise polynomial discrete solution (typically of fixed low degree) to the exact solution is
achieved by decreasing the mesh size h. In the p-version of the finite element method the mesh is
fixed and convergence is obtained by increasing the polynomial degree p. Combing both ideas, i.e.
allowing simultaneously for a mesh refinement in h as well as increasing the polynomial degree p,
yields the hp-version of the FEM [6]. By the proper combination of local h-refinement and local
p-enrichment the hp-version achieves tremendously faster convergence rates with respect to the
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number of unknowns in case of piecewise analytic solutions even in the presence of singularities,
see e.g. [29], [33].
But, a naive approach to high-order finite element methods in general suffers from dense element
matrices with up to O(p2d) nonzero entries. Moreover, when using standard numerical quadrature,
the calculation of each entry of the element matrix requires O(pd) operations; resulting in the total
cost of O(p3d) for assembling one element matrix. Hence, additionally to the question of fast and
efficient solvers, also fast assembling techniques, condition numbers (with respect to p) and sparsity
of the element matrices become an issue in spectral and high-order finite element methods.
The high-quadrature costs per matrix entry can be reduced by sum-factorization: using basis
functions which are constructed as (warped) tensor-products the costs for assembling the element
stiffness matrix can be reduced from O(p3d) to O(pd+1) in case of piecewise constant coefficients;
see [25], [20] for H1- and L2-conforming discretizations. In view of fast assembling and fast
matrix-vector multiplications one additionally heads for sparse element matrices with O(pd) non-
zero entries. The construction of basis functions which implies sparse element matrices for p- and
hp-FEM on simplicial meshes is by no means trivial and depends on the smoothness properties
of the underlying finite element space. The Dubiner basis, as initially proposed in [21, 17] for
triangles and generalized by [31] to tetrahedra, is a hierarchical set of L2-orthogonal polynomials
on simplices. The basis can be used for discontinuous (L2-conforming) FE discretizations and
implies diagonal mass matrices for piecewise constant coefficients and affine triangulations.
Conforming finite element discretization has to satisfy the smoothness properties of the underly-
ing function space, i.e. continuity across element-interfaces for H1-conformity, and respectively,
only normal continuity across element-interfaces to guarantee H(div)-conformity [12]. But by en-
forcing inter-element-continuity constraints one generally loses the L2-orthogonality of the basis
functions. For H1-conforming discretizations at least sparsity of the element mass and stiffness
matrix (for piecewise constant coefficients) can be regained. In [31], a new H1-conforming basis
for triangular and tetrahedral elements involving warped tensor-products of Legendre- and prop-
erly mixed-weighted Jacobi polynomials is introduced. Applying this basis in the discretization
of diffusion-type problems with piecewise constant coefficients sparse stiffness and mass matrices
are observed, see [30]. A further H1-conforming basis on simplices with proven sparsity of the
element stiffness and mass matrix, i.e. O(pd) non-zero entries, is proposed in [10], [8], respectively.
Compared to the basis suggested in [31], the bases in [10, 8] use increased weights of the Jacobi
polynomials in certain directions. For piecewise constant coefficients and affine element transfor-
mations each nonzero entry in the global matrix can be computed in O(1) operations. A rigorous
proof of the sparsity property for the basis of Karniadakis-Sherwin [31] followed in [9].

The function space H(div) and conforming finite element discretizations The vector-
valued function space H(div) occurs in many applications, e.g. in electromagnetics, elasticity, fluid
dynamics, as well as in dual or mixed formulations of diffusion-type problems. The analysis of
H(div)-problems and their conforming discretizations are governed by the mapping properties of
the divergence-operator, as clarified in many works e.g. [18, 11, 13, 14, 5]. Namely, the kernel and
range of the div-operator are

{v ∈ H(div) : div v = 0} = curl
(
H(curl,Ω)

)
, and div

(
H(div,Ω)

)
= L2(Ω) (1.2)

for simply connected domains Ω with connected boundary (cf. the exactness of the de Rham
Sequence [11, 18]). If Ω lacks the latter topological properties the kernel and range spaces in
(1.2) have to be extended by finite dimensional cohomology spaces (see [11]). H(div)-conformity
requires normal continuity towards element interfaces. For a detailed introduction to classical
(h-version) H(div)-conforming finite element discretizations we refer to the pioneering works [23,
24, 27] and the textbooks [12, 18]. H(div)-conforming finite element methods suited for p- and
hp-discretizations were heavily investigated in the last decade.
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To guarantee stability and convergence of H(div)-conforming FE methods mapping properties
analogue to (1.2) have to be valid also on the discrete level, see e.g. [11, 16, 5]. Approximation
results for hp-discretization can be obtained in the course of the de Rham diagram, as done in [14].
A first general construction strategy for hierarchical H(div)-conforming (normal continuous facet-
cell-based) basis functions of arbitrary polynomial degrees on simplicial meshes was introduced by
Ainsworth-Coyle in [2]. In [35], a new construction technique for H(div)-conforming basis functions
based on first, a hierarchic construction using warped tensor-products of orthogonal polynomials
and secondly, on an explicit splitting of the set of higher-order basis functions into divergence-
free functions and non-divergence-free completion functions, is introduced. This splitting implies
e.g. the (local) exactness of the de Rham sequence for arbitrary varying polynomial degrees
by construction as well as parameter-robustness even for simple preconditioning techniques (see
[35],[28]).

Sparsity for H(div)-conforming discretizations To the knowledge of the authors works
investigating and improving the sparsity of H(div)-conforming elements as available for L2- and
H1-conforming high-order discretizations are still an open problem in the literature. Nevertheless,
the H(div)-conforming basis functions on affine quadrilaterals and hexahedra presented in [35]
yield sparse element matrices with O(pd) nonzero matrix entries for affine linear transformations
and piecewise constant coefficients. Moreover, by using Legendre-type polynomials the divergence
of the higher order basis functions are L2-orthogonal on affine tensor product elements.
In this work we generalize this property to affine, possibly unstructured simplicial meshes. We
introduce a new set of basis functions for H(div)-conforming hp-finite element spaces, which yields
an optimal sparsity pattern for system matrices derived from the discretization of the bilinear form

a(u, v) := (εdivu,divv) + (κu, v) (1.3)

for piecewise constant parameters ε, κ and (·, ·) denoting the L2(Ω)-inner product. In fact we obtain
a set of higher-order basis functions such that the according fluxes {div ψi}Ni=1 are L2-orthogonal
(provided an affine element transformation).
The construction of the basis functions rely on the construction principles suggested in [35] in
combination with the ideas of [31, 17]. These construction principles can be summarized as follows:

1. As common, the basis [Ψ(0)] of the low-order space are chosen by the classical Raviart-Thomas
elements [23] of zero-th order.

2. The set of divergence-free basis functions [Ψ(1)] are chosen as the curl of the hierarchic
H(curl)-conforming completion functions as presented in [35]. But in this work, we rely
on products of mixed-weighted Jacobi-polynomials (instead of Legendre-type polynomials),
where the weights are chosen in analogy to the H1-conforming basis suggested in [10, 8].

3. The set of cell-based basis functions [Ψ(2)] spanning the non-divergence-free subspace are
chosen such that [div(Ψ(2))] coincides with the Dubiner basis (modulo constants).

This construction implies L2-orthogonality of the fluxes of the basis functions (up to the low-order
shape functions). The proof of the sparsity of the mass matrix requires the assistance of a computer
algebra system as done for H1(Ω) in [9]. Despite assuming affine element transformations and
piecewise constant coefficients, the reader should keep in mind that the introduced finite element
basis [Ψ(0),Ψ(1),Ψ(2)] form a hierarchical set of H(div)-conforming basis functions and hence are
applicable also in general settings on unstructured (curved) simplicial meshes. Moreover, the new
finite element basis provides the same robust preconditioning properties as the basis in [35].
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Applications of the bilinear form The bilinear form (1.3) arises e.g. in the dual formulations
of diffusion problems as follows. For simplicity of presentation, we investigate the diffusion-reaction
problem with homogenous boundary conditions:

Find φ ∈ H1
0,Γ1

(Ω) = {φ ∈ H1(Ω) : φ = 0 on Γ1}, such that

(ε∇φ,∇ψ) + (κφ, ψ) = (f, ψ) ∀ψ ∈ H1
0,Γ1

(Ω) (1.4)

with Γ1 ∩ Γ2 = ∅ and Γ1 ∪ Γ2 = ∂Ω and parameters 0 < ε, κ almost everywhere. The dual mixed
formulation of this problem reads, [12]:

Find u ∈ H0,Γ2(div,Ω) = {v ∈ H(div,Ω) : v · n = 0 on Γ2} and φ ∈ L2(Ω) such that

(ε−1u, v) + (φ,div v) = 0 ∀v ∈ H0,Γ2(div,Ω), (1.5)
(div u, ψ)− (κφ, ψ) = −(f, ρ) ∀ψ ∈ L2(Ω),

where n denotes the outer normal vector on ∂Ω. Eliminating the primal variable φ yields the dual
formulation:

Find u ∈ H0,Γ2(div) := {v ∈ H(div) : v · n = 0 on Γ2} such that

(ε div u,div v) + (κ u, v) = −(ε f,div v) =: 〈F, v〉Ω ∀v ∈ H0,Γ2(div) (1.6)

involving the bilinear form (1.3).

Overview This manuscript is organized as follows. In section 2, we summarize all properties of
Jacobi polynomials and their primitives which are required in the sequel. In section 3, the new set
of shape functions on general affine triangles are defined. The sparsity of the element mass matrix
is proven for a reference element. Section 4 includes the 3 dimensional setting, as there is the
definition of shape functions on general tetrahedra and a proof of the sparsity of the element mass
matrix for reference tetrahedra. Assuming affine element transformations the sparsity of the global
system matrix discretizing bilinear form (1.3) is verified for piecewise constant coefficients ε and κ
in section 5. Computational properties and numerical experiments are summarized in section 6.

2 Properties of Jacobi polynomials with weight (1− x)α

For the definition of our basis functions on the reference element, Jacobi polynomials are required.
In this section, we summarize the most important properties of Jacobi polynomials. We refer the
reader to the books of Abramowitz and Stegun, [1], Andrews, Askey and Roy, [3], and Tricomi,
[34], for more details.
Let

P (α,β)
n (x) =

1
2nn!(1− x)α(1 + x)β

dn

dxn
(
(1− x)α(1 + x)β(x2 − 1)n

)
n ∈ N0, α, β > −1 (2.1)

be the nth Jacobi polynomial with respect to the weight function (1− x)α(1 + x)β . The function
P

(α,β)
n (x) is a polynomial of degree n, i.e. P (α,β)

n (x) ∈ Pn((−1, 1)), where Pn(I) is the space of all
polynomials of degree n on the interval I. In the special case α = β = 0, the functions P (0,0)

n (x)
are called Legendre polynomials. Moreover, let

P̂ (α,β)
n (x) =

∫ x

−1

P
(α,β)
n−1 (y) dy n ≥ 1, P̂

(α,β)
0 (x) = 1 (2.2)
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be the nth integrated Jacobi polynomial.
We would like to mention that the integrated Jacobi polynomial (2.2) can be expressed as Jacobi
polynomial (2.1) with modified weights, i.e.

P̂ (α,β)
n (x) =

2
n+ α+ β − 1

[
P (α−1,β−1)
n (x)− P (α−1,β−1)

n (−1)
]
, (2.3)

for α > 0 or β > 0. This is easy to be seen, since the derivatives of Jacobi polynomials are again
Jacobi polynomials with shifted parameters, i.e.

d
dx
pα,βn (x) =

n+ α+ β + 1
2

P
(α+1,β+1)
n−1 (x),

see [3].
In the following, we use only the Jacobi and integrated Jacobi polynomials with weight (1−x)α, i.e.
β = 0. Therefore, we omit the second index β in (2.1), (2.2) and use the notation P (α,0)

n (x) = pαn(x)
and P̂

(α,0)
n (x) = p̂αn(x), respectively. In this case, relation (2.3) simplifies to

p̂αn(x) =
2

n+ α− 1
P (α−1,−1)
n (x).

There are several relations between the Jacobi polynomials (2.1) and the integrated Jacobi poly-
nomials (2.2) which only hold in the special case of β = 0 in (2.1), (2.2). These relations have
been proved in [10], [8] and [9]. In the present paper the main relations required for proving the
orthogonality of our basis function in H(div) are∫ 1

−1

(1− x)αpαj (x)pαl (x) dx = ραj δjl, where ραj =
2α+1

2j + α+ 1
, (2.4)

(α− 1)p̂αj (y) = (1− y)pαj−1(y) + 2pα−2
j (y), α > 1, j ≥ 1. (2.5)

For the proof of the sparsity of the mass matrix we will need additional relations which are proven
in [10, 8, 9] and summarized in the appendix A. Jacobi- and integrated Jacobi-type polynomials
can be evaluated efficiently by three term recurrences as summarized in the appendix.

3 The element stiffness matrix on triangles

In this section we define the shape functions on a general triangle, which are appropriate for
H(div)-conforming (i.e. normal continuous) discretizations and imply sparse element stiffness and
mass matrices. In view of varying polynomial order and normal continuity of the basis functions
we rely on the common edge-cell-based construction, see e.g. [13, 2]. Hence, in general, the
polynomial degree can vary on each edge and the interior (cell) of the element. Nevertheless, for
ease of notation we assume a uniform polynomial order denoted by the parameter p, since the
generalization to varying polynomial degrees should be obvious.

3.1 Definition of H(div)-conforming shape functions on 2d simplices

Let ∆ denote an arbitrary non-degenerated simplex ∆ ⊂ R2 defined as the convex hull of the
three vertices V = {V1, V2, V3} with Vi ∈ R2, and λ1, λ2, λ3 ∈ P 1(∆) its barycentric coordinates
which are uniquely defined by λi(Vj) = δij . For functions v : R2 → R we define the vector-valued

curl-operator Curl(v) =
(
∂v
∂y ,−

∂v
∂x

)>
. Following [35], we construct the following hierarchical set

of shape functions on the triangle ∆ using an explicit edge-cell-based basis of the higher-order
divergence-free functions and a cell-based basis for the higher-order non-divergence-free completion
functions.
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Edge-based shape functions For each edge [e1, e2], running from vertex Ve1 to Ve2 , we define
the Raviart-Thomas function of order zero, [23, 11], in barycentric coordinates as

ψ
[e1,e2]
0 := Curl(λe1)λe2 − λe1 Curl(λe2). (3.1)

The higher-order edge-based shape functions are defined as the vector curl of appropriate edge
based scalar fields, namely

ψ
[e1,e2]
i := Curl

(
p̂0
i

(
λe2−λe1
λe1+λe2

)
(λe1 + λe2)i

)
, for 2 ≤ i ≤ p+ 1. (3.2)

Let [Ψ0] :=
[
ψ

[1,2]
0 , ψ

[2,3]
0 , ψ

[3,1]
0

]
denote the set of low-order basis functions and [Ψ[e1,e2]] :=[

ψ
[e1,e2]
i

]p
i=2

be the row vector of the higher-order edge based basis functions of one fixed edge, and

[ΨE ] =
[

[Ψ[1,2]] [Ψ[2,3]] [Ψ[3,1]]
]

(3.3)

denote the row vector of all higher-order edge-based basis functions. The edge-based functions
(3.3) are chosen such that their normal trace span P p([Vα, Vβ ]) on the associated edge, the one
running from Vα to Vβ , while identically vanishing on all other edges.

Interior (cell-based) shape functions The cell-based basis functions are constructed in two
types. First, we define the divergence-free shape functions

ψ
(1)
ij (x, y) := Curl (ui(x, y) vij(x, y)) for i ≥ 2, j ≥ 1, i+ j ≤ p+ 1 (3.4)

and complete the basis by the non-divergence-free interior shape functions

ψ
(2)
1j (x, y) := 2ψ[1,2]

0 (x, y) p̂3
j (2λ3 − 1) for 1 ≤ j ≤ p− 1, (3.5)

ψ
(2)
ij (x, y) := (Curlui(x, y)) vij(x, y) for i ≥ 2, j ≥ 1, i+ j ≤ p+ 1, (3.6)

where ψ[1,2]
0 (x, y) denotes the Raviart-Thomas function (3.1). In addition, the auxiliary functions

ui and vij are chosen by

ui(x, y) := p̂0
i

(
λ2−λ1
λ1+λ2

)
(λ1 + λ2)i and vij(x, y) := p̂2i−1

j (2λ3 − 1), (3.7)

respectively, where the baryzentrical coordinates depend on x and y. Note that these are the
polynomials used in the definition of the H1-cell based basis functions φCij = uivij in [10] and [9]
for a = 1, respectively. The set of all interior basis functions is denoted by

[ΨI ] :=
[

[Ψ1] [Ψ2]
]

with [Ψ1] =
[
ψ

(1)
ij

]i+j≤p
i≥2,j≥1

and [Ψ2] =
[
ψ

(2)
ij

]i+j≤p
i≥1,j≥1

. (3.8)

The cell-based functions (3.8) have vanishing normal trace on all edges.
Finally, the row vector of all basis functions is denoted by

[Ψ] := [ [Ψ0] [ΨE ] [ΨI ] ] . (3.9)

Lemma 3.1. The shape functions [Ψ], see (3.9), are linearly independent spanning (P p(∆))2 and
div([Ψ2]) spanning P p−1(∆)|R.

Proof. The result follows from the fact that the proofs presented in [35] also hold for the suggested
auxiliary functions (3.7).

Remark 3.2. [Ψ] is a basis for the Raviart-Thomas spaces of second kind as introduced in [24].
Decreasing the polynomial degrees for the divergence-free functions by one yields FE-space with the
same approximation properties as Raviart-Thomas spaces of the first family [23].
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Figure 1: Notation of the vertices and edges/faces on the reference element 4̂ for 2d and 3d.

3.2 Properties of the basis functions and orthogonality relations

To simplify the presentation, we prove the orthogonality properties of the suggested shape functions
for a (fixed) reference triangle. The generalization to an arbitrary two-dimensional simplex then
follows by the Piola transformation (see chapter 5). Let 4̂ be the reference triangle with the vertices
(−1,−1), (1,−1) and (0, 1) as depicted in Figure 1. In this case, the corresponding baryzentrical
coordinates are

λ1(x, y) =
1− 2x− y

4
, λ2(x, y) =

1 + 2x− y
4

, λ3(x, y) =
1 + y

2

and the auxiliary functions (3.7) for the cell-based shape functions equal

ui(x, y) = p̂0
i

(
2x

1− y

)(
1− y

2

)i
, vij(x, y) = vij(y) = p̂2i−1

j (y). (3.10)

The next lemma summarizes the divergence of the basis functions (3.1), (3.2), (3.4)-(3.6).

Lemma 3.3. Let [Ψ0], [ΨE ] and [ΨI ] be defined by (3.1), (3.3), (3.8), respectively. Then, the
relations

[∇ ·Ψ0] = − 1
21, [∇ ·ΨE ] = 0, [∇ ·Ψ1] = 0, (3.11)

∇ · ψ(2)
1j (x, y) = −p1

j (y), j ≥ 1, (3.12)

∇ · ψ(2)
ij (x, y) = −p0

i−1

(
2x

1− y

)(
1− y

2

)i−1

p2i−1
j−1 (y), i ≥ 2, j ≥ 1 (3.13)

hold.

Proof. The first identity in (3.11) is easily calculated, the two other ones are direct consequences
of ∇ · (Curl) ≡ 0. Because of this and since vij(y) depends only on y, we also immediately
obtain (3.13), i.e.

∇ · ψ(2)
ij (x, y) = −∂ui

∂x
(x, y)

∂vij
∂y

(x, y)

= −p0
i−1

(
2x

1− y

)(
1− y

2

)i−1

p2i−1
j−1 (y).
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The last identity (3.12) is proved in a similar way. On 4̂, there holds ψ[1,2]
0 (x, y) = 1

4

[
−x

1− y

]
.

This yields

∇ · ψ(2)
1j (x, y) = 2∇ · ψ[1,2]

0 (x, y) p̂3
j (y) + 2ψ[1,2]

0 (x, y) · ∇p̂3
j (y)

=
1− y

2
p3
j−1(y)− p̂3

j (y) = −p1
j (y).

Note that we have used relation (2.5) with α = 3 in the last step. This proves the assertion.

Remark 3.4. The special choice (3.10) of the auxiliary functions implies that the divergence of
the non-divergence-free interior shape functions (3.13), (3.12) coincides with the shape functions
suggested by Dubiner [17] for the L2-conforming triangle.

Remark 3.5. Since p0
0(z) = 1, relation (3.12) can be viewed as a special case of (3.13) with i = 1.

The orthogonality of the interior basis functions (3.4)-(3.6) with respect to the H(div)-seminorm
is now immediate.

Theorem 3.6. Let [Ψ] be defined by (3.9). Then, the fluxes [∇ ·ΨI ] are L2-orthogonal to [∇ ·Ψ].
More precisely, the only nonzero div-div inner-products of the basis [Ψ] are

(∇ · ψ(2)
ij ,∇ · ψ

(2)
kl )0,4̂ =

2δi,kδj,l
(2i− 1)(i+ j − 1)

, i ≥ 1, j ≥ 1,

(∇ · ψEm
0 ,∇ · ψEn

0 )0,4̂ = 1
2 , m, n ∈ {1, 2, 3}.

Proof. The result for (∇·ψEm
0 ,∇·ψEn

0 )0,4̂ follows by straightforward computation. Performing the
Duffy transformation to the non-divergence-free basis functions (3.6), taking the results of Lemma
3.3 and exploiting the orthogonality relations (2.4) of Jacobi polynomials one obtains∫

4̂
∇ · ψ(2)

ij ∇ · ψ
(2)
kl d(x, y) =

∫ 1

−1

p0
i−1(ξ) p0

k−1(ξ) dξ
∫ 1

−1

(
1− y

2

)i+k−1

p2i−1
j−1 (y) p2k−1

l−1 (y) dy

=
2δi,k

(2i− 1)

∫ 1

−1

(
1− y

2

)2i−1

p2i−1
j−1 (y) p2i−1

l−1 (y) dy

=
2δi,kδj,l

(2i− 1)(i+ j − 1)
.

Testing with the constant low-order contributions ∇ · ψ[α,β]
0 = 1/|4̂| yields∫

T̂

∇ · ψ[α,β]
0 ∇ · ψ(2)

kl d(x, y) = 0 for k, l ≥ 1.

Since all other shape functions are divergence-free, this proves the theorem.

Remark 3.7. Obviously, the interior basis functions become orthonormal with respect to the
H(div)-seminorm simply by accounting the correct scaling in the definition of the auxiliary func-
tions (3.10).

Hence, the element stiffness matrix for [Ψ] =
[

[Ψ0] [ΨE ] [Ψ1] [Ψ2]
]

Â :=
[∫
4̂

[∇ ·Ψ]>[∇ ·Ψ] d(x, y)
]

= diag[Â0,0,0,0, ÂI2,2] (3.14)
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is block diagonal with a dense 3×3 low-order block Â0,0 := [([∇·Ψ0], [∇·Ψ0])0,4̂] and a p(p+1)/2-

dimensional diagonal matrix ÂI2,2 = [([∇ ·Ψ2], [∇ ·Ψ2])0,4̂].
Next, we investigate the orthogonality relations of the interior shape functions with respect to the
L2(4̂)-inner-product. Let

M̂II :=
[∫
4̂

[ΨI ]>[ΨI ] d(x, y)
]

(3.15)

be the mass matrix with respect to the interior basis function on the reference element.

Lemma 3.8. Let M̂II be defined by (3.15). Then, the number of nonzero entries in M̂II per
row is bounded by a constant independent of the polynomial degree. More precisely, the following
orthogonality results hold:

1. if |i− k| /∈ {0, 2} or |i− k + j − l| > 2 then
(
ψ

(1)
ij , ψ

(1)
kl

)
0,4̂ = 0,

2. if i 6= k or |j − l| > 2 then
(
ψ

(2)
ij , ψ

(2)
kl

)
0,4̂ = 0,

3. if |j − l| > 2 then
(
ψ

(2)
1j , ψ

(2)
1l

)
0,4̂ = 0,

4. if i− k /∈ {−2, 0} or |i− k + j − l| > 2 then
(
ψ

(1)
ij , ψ

(2)
kl

)
0,4̂ = 0,

5. if i 6= 3 or |j − l − 1| > 2 then
(
ψ

(1)
ij , ψ

(2)
1l

)
0,4̂ = 0 and

(
ψ

(2)
ij , ψ

(2)
1l

)
0,4̂ = 0.

Proof. This sparsity result has been obtained by evaluating the entries of the mass matrix on the
reference triangle symbolically using the algorithm developed in [8]. Carrying out such computa-
tions manually, as done e.g. for the scalar H1-conforming triangle in [10], is very paper and time
consuming. Hence, we present explicit computations only for some illustrative examples, while the
general proof was carried out symbolically.
Using the three term recurrence for Jacobi polynomials (A.6) and the identity (A.4) relating
integrated Jacobi and Jacobi polynomials, the basis functions ψ(1)

ij (x, y) can be rewritten as

ψ
(1)
ij (x, y) =

 1
2p

0
i−2

(
2x

1−y

) (
1−y

2

)i−1
p̂2i−1
j (y) + p̂0

i

(
2x

1−y

)
p2i−1
j−1 (y)

−p0
i−1

(
2x

1−y

) (
1−y

2

)i−1
p̂2i−1
j


in complete analogy to the proof of Lemma 5.1 in [10]. Also the sparsity pattern for

(
ψ

(1)
ij , ψ

(1)
kl

)
0,4̂

is equivalent to their result for the interior block of the stiffness matrix.
By means of the same rewriting using (A.6) and (A.4) the basis functions ψ(2)

ij (x, y) can be expressed
in the simpler form

ψ
(2)
ij (x, y) =

 1
2p

0
i−2

(
2x

1−y

)
−p0

i−1

(
2x

1−y

) (1− y
2

)i−1

p̂2i−1
j (y).

Performing the Duffy substitution the integrands decouple to

(
ψ

(2)
ij , ψ

(2)
kl

)
0,4̂ =

∫ 1

−1

(
1
4p

0
i−2(ξ)p0

k−2(ξ) + p0
i−1(ξ)p0

k−1(ξ)
)

dξ

∗
∫ 1

−1

(
1− y

2

)i+k−1

p̂2i−1
j (y)p̂2k−1

l (y) dy.
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By means of the orthogonality relation (2.4), the first integral is easily evaluated and we obtain

(
ψ

(2)
ij , ψ

(2)
kl

)
0,4̂ =

(10i− 13)δi,k
2(2i− 3)(2i− 1)

∫ 1

−1

(
1− y

2

)2i−1

p̂2i−1
j (y)p̂2i−1

l (y) dy.

Rewriting integrated Jacobi polynomials p̂αn(z) in terms of Jacobi polynomials pαn(z) using (A.6)
explains the extra two shifts in the dependence of j and l and allows to evaluate the integral using
only (2.4). The final result for this part of the interior block is

1
10i− 13

(
ψ

(2)
ij , ψ

(2)
kl

)
0,4̂ = − (j + 1)(2i+ j − 1)δi,kδj,l−2

(i− 3/2)2(2i+ 2j − 2)5
+

4δi,kδj,l−1

(2i+ 2j − 3)5
+

4δi,kδj,l+1

(2i+ 2j − 5)5

+
2(4i2 + 2ij − 8i+ j2 − 2j + 3)δi,kδj,l

(i− 3/2)2(2i+ 2j − 4)5
− (j − 1)(2i+ j − 3)δi,kδj,l+2

(i− 3/2)2(2i+ 2j − 6)5
,

where (a)n := a(a+ 1) · · · (a+ n− 1) denotes the Pochhammer symbol.

Finally, we consider the integrals involving ψ(2)
1j (x, y) = 1

2

(
−x

1− y

)
p̂3
j (y). After performing the

Duffy substitution we have

(
ψ

(2)
1j , ψ

(2)
1l

)
0,4̂ =

∫ 1

−1

ξ2 + 4
4

dξ
∫ 1

−1

(
1− y

2

)3

p̂3
j (y)p̂3

l (y) dy,

which yields the nonzero pattern as stated above. For the computation of the mixed prod-
ucts

(
ψ

(a)
ij , ψ

(2)
1l

)
0,4̂, a = 1, 2, observe that after performing the Duffy substitution we have, e.g.,

(
ψ

(2)
ij , ψ

(2)
1l

)
0,4̂ =

1
4

(∫ 1

−1

4p0
i−1(ξ) dξ −

∫ 1

−1

ξp0
i−2(ξ) dξ

)∫ 1

−1

(
1− y

2

)i+1

p̂2i−1
j (y)p̂3

l (y) dy.

The first integral w.r.t ξ is nonzero only for i = 1, which is excluded since i ≥ 2. The second
integral does not vanish only for i = 3. This together with an analogous evaluation as above yields
the result.

4 The element stiffness matrix on tetrahedra

In this section we first define the shape functions on a general 3-dimensional simplex 4, which
are appropriate for normal continuous discretizations and imply sparse element stiffness and mass
matrices. In order to allow for globally varying polynomial degree we use as common a face-cell-
based construction [2, 13] of the basis functions. Again, for ease of notation, we assume a uniform
polynomial order p.

4.1 Definition of H(div)-conforming shape functions on 3d simplices

Let ∆ denote an arbitrary non-degenerated simplex ∆ ⊂ R3, its set of four vertices by V =
{V1, V2, V3, V4}, Vi ∈ R3, and λ1, λ2, λ3, λ4 ∈ P 1(∆) its barycentric coordinates uniquely defined
by λi(Vj) = δij . Again the general construction concept follows [35]: The set of face-based shape
functions consists of low-order Raviart-Thomas shape functions and divergence-free shape func-
tions. The set of interior based shape functions are split into a set of divergence-free and a set
of non-divergence-free completion functions. In view of special orthogonality relations we adopt
the polynomial building blocks in the tensor-product based construction by introducing properly
weighted Jacobi-type polynomials in this work.
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Face-based shape functions For each face f = [f1, f2, f3], characterized by the vertices Vf1 , Vf2
and Vf3 , we choose the classical Raviart-Thomas function of order zero [23] and divergence free
higher-order face based basis functions as

ψF0 = ψ
[f1,f2,f3]
0 := λf1∇λf2 ×∇λf3 + λf2∇λf3 ×∇λf1 + λf3∇λf1 ×∇λf2 ,

ψF1j := ∇×
(
ϕ

[f1,f2]
0 vF1j

)
, 1 ≤ j ≤ p,

ψFij := ∇×
(
∇uFi vFij

)
= −∇uFi ×∇vFij , 2 ≤ i; 1 ≤ j; i+ j ≤ p+ 1

(4.1)

using the face-based Jacobi-type polynomials

uFi := p̂0
i

(
λf2 − λf1
λf2 + λf1

)(
λf2 + λf1

)i
, vFij := p̂2i−1

j

(
λf3 − λf2 − λf1

)
, (4.2)

and the lowest-order Nédélec function [23] corresponding to the edge [f1, f2]

ϕ
[f1,f2]
0 := ∇λf1 λf2 − λf1∇λf2 . (4.3)

Let [Ψ0] :=
[
ψF1

0 , ψF1
0 , ψF1

0 , ψF1
0

]
denote the row vector of low-order shape functions and [Ψf ] :=[[

ψF1j
]p
j=1

,
[
ψFij
]i+j≤p+1

i=2,j=1

]
denote the row vector of the faced-based shape functions of one fixed face

f , and
[ΨF ] =

[
[ΨF1] [ΨF2] [ΨF3] [ΨF4]

]
(4.4)

be the row vector of all face-based shape functions.

Interior (cell-based) shape functions The cell-based basis functions are constructed in two
types. First we define the divergence-free shape functions by the rotations

ψ
(a)
1jk(x, y, z) := ∇×

(
ϕ

[1,2]
0 (x, y, z) v2j(x, y, z) w2jk(x, y, z)

)
, j, k ≥ 1; j + k ≤ p,

ψ
(b)
ijk(x, y, z) := ∇×

(
∇ui(x, y, z) vij(x, y, z) wijk(x, y, z)

)
, i ≥ 2; j, k ≥ 1; i+ j + k ≤ p+ 2,

ψ
(c)
ijk(x, y, z) := ∇×

(
∇(ui(x, y, z) vij(x, y, z)) wijk(x, y, z)

)
, i ≥ 2; j, k ≥ 1; i+ j + k ≤ p+ 2,

(4.5)
and complete the basis with the non-divergence free cell-based shape functions

ψ̃
(a)
10k(x, y, z) := 4ψ[1,2,3]

0 (x, y, z) w21k(x, y, z), 1 ≤ k ≤ p− 1,

ψ̃
(b)
1jk(x, y, z) := 2ϕ[1,2]

0 (x, y, z) × ∇w2jk(x, y, z) v2j(x, y, z), j, k ≥ 1; j + k ≤ p,

ψ̃
(c)
ijk(x, y, z) := wijk(x, y, z) ∇ui(x, y, z) × ∇vij(x, y, z), i ≥ 2; j, k ≥ 1; i+ j + k ≤ p+ 2,

(4.6)
where ψ

[1,2,3]
0 (x, y, z) denotes the Raviart-Thomas function (4.1) associated to the bottom face

[1, 2, 3] and ϕ
[1,2]
0 is the Nédélec function (4.3) associated to the edge [1, 2]. Furthermore, we

introduce the auxiliary functions ui, vij and wijk by the following mixed-weighted Jacobi-type
polynomials

ui(x, y, z) := p̂0
i

(
λ2 − λ1

λ2 + λ1

)
(λ2 + λ1)i,

vij(x, y, z) := p̂2i−1
j

(
2λ3 − (1− λ4)

1− λ4

)
(1− λ4)j ,

and wijk(x, y, z) := p̂2i+2j−2
k (2λ4 − 1),

(4.7)
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where the baryzentrical coordinates depend on x, y and z. Finally, we denote the row vectors of

the corresponding basis functions as [Ψa] =
[
ψ

(a)
1jk(x, y, z)

]j+k≤p−1

j,k,≥1
, [Ψb] =

[
ψ

(b)
ijk(x, y, z)

]i+j+k≤p
i≥2,j,k,≥1

,

[Ψc] =
[
ψ

(c)
ijk(x, y, z)

]i+j+k≤p
i≥2,j,k,≥1

, and [Ψ̃a] =
[
ψ̃

(a)
10k(z)

]p−1

k=1
, [Ψ̃b] =

[
ψ̃

(b)
1jk(x, y, z)

]j+k≤p−1

j,k,≥1
and [Ψ̃c] =[

ψ̃
(c)
ijk(x, y, z)

]i+j+k≤p
i≥2,j,k,≥1

. The set of the interior shape functions is denoted by

[ΨI ] :=
[

[Ψ1] [Ψ2]
]

with [Ψ1] :=
[

[Ψa] [Ψb] [Ψc]
]
, [Ψ2] :=

[
[Ψ̃a] [Ψ̃b] [Ψ̃c].

]
(4.8)

The complete set of low-order-face-cell-based shape functions on the tetrahedron is written as

[Ψ] :=
[

[Ψ0] [ΨF ] [ΨI ]
]
. (4.9)

Lemma 4.1. The shape functions [Ψ] are linearly independent spanning (P p(∆))3. Moreover, the
flux [∇ ·Ψ2] spans P p−1(∆)|R, while [∇ ·Ψ0] spans R.

Proof. The proofs of [35] also hold for the auxiliary functions (4.7), which implies the result.

4.2 Properties of the basis functions and orthogonality relations

For a graspable presentation we prove the orthogonality properties of the suggested shape func-
tions for a (fixed) reference tetrahedron. The general result then follows by Piola transformation
(see Chapter 5). Let 4̂ be the reference tetrahedron with the vertices A,B,C, and D, and the
faces F1, . . . , F4 as depicted in Figure 1. The baryzentrical coordinates of the chosen reference
tetrahedron 4̂ are

λ1(x, y, z) = 1−4x−2y−z
8 , λ2(x, y, z) = 1+4x−2y−z

8 , λ3(y, z) = 1+2y−z
4 , λ4(z) = 1+z

2 . (4.10)

Hence the Jacobi-type auxiliary functions (4.7) for the cell-based shape functions equal

ui(x, y, z) := p̂0
i

(
4x

1− 2y − z

)(
1− 2y − z

4

)i
,

vij(y, z) := p̂2i−1
j

(
2y

1− z

)(
1− z

2

)j
,

wijk(z) := p̂2i+2j−2
k (z).

(4.11)

The divergence of the basis function on the reference tetrahedron 4̂ then are as follows.

Lemma 4.2. Let [Ψ] as defined in (4.9) be the basis of the local shape functions on the reference
element 4 := 4̂. Then, the flux of the divergence-free set of basis functions vanishes, namely

[∇ ·ΨF ] ≡ 0, and [∇ ·Ψ1] ≡ 0, (4.12)

12



while the flux of the remaining functions evaluate to

[∇ ·Ψ0] = −3
8
1 (4.13)

∇ · ψ̃(a)
10k(x, y, z) = −p2

k(z), ∀k ≥ 1, (4.14)

∇ · ψ̃(b)
1jk(x, y, z) = −p1

j

(
2y

1− z

)(
1− z

2

)j
p2j+2
k−1 (z), ∀j, k ≥ 1, (4.15)

∇ · ψ̃(c)
ijk(x, y, z) = p0

i−1

(
4x

1− 2y − z

)(
1− 2y − z

4

)i−1

∗p2i−1
j−1

(
2y

1− z

)(
1− z

2

)j−1

p2i+2j−2
k−1 (z), ∀i ≥ 2, j, k ≥ 1. (4.16)

Proof. The results (4.12) are a direct consequence of the relation ∇ · ∇× ≡ 0. In order to prove
(4.16), we observe that in general div

(
h(z)∇f(x, y, z)×∇g(y, z)

)
= ∂f

∂x (x, y, z)∂g∂y (y, z)h′(z). There-
fore, we can conclude

∇ · ψ̃(c)
ijk(x, y, z) =

∂ui
∂x

(x, y, z)
∂vij
∂y

(y, z)
∂wijk
∂z

(z).

This proves the assertion. For the proof of (4.14) and (4.15), the Nedelec function and the Raviart-
Thomas function have to be computed. Simple calculations show

ϕ
[1,2]
0 (x, y, z) = −1

8

 1− 2y − z
2x
x

 and ψ
[1,2,3]
0 (x, y, z) =

1
8

 −x
−y

1− z

 . (4.17)

A rewriting using (2.5) as in the proof of Lemma 3.3 yields the result.

Remark 4.3. As in the two-dimensional case, the results (4.14), (4.15), can be viewed as special
cases of (4.16) with i = 1, j = 0 and i = 1, respectively.

Let us define the element stiffness matrix with respect to the basis [Ψ] by

Â =
∫
4̂

(∇ · [Ψ])> ∇ · [Ψ] d(x, y, z) := adiv([Ψ], [Ψ]). (4.18)

Since the higher-order kernel of the divergence operator is explicitly represented by [ΨF ] and [Ψ1]
within in the basis [Ψ], the corresponding blocks of the stiffness matrix Â are zero by construction.
Moreover, the orthogonality properties of the remaining shape functions [Ψ] are as follows.

Theorem 4.4. Let the set [Ψ] of basis functions be defined in (4.9). Then, the fluxes [∇ ·ΨI ] are
L2-orthogonal to [∇ · Ψ]. Moreover, the stiffness matrix Â defined in (4.18) is diagonal up to the
4× 4 low-order block adiv([Ψ0], [Ψ0]).

Proof. With the closed forms given in Lemma 4.2, the assertion follows by simple calculations. By
(4.16) the divergence of ψ̃(c)

ijk are just the L2(∆̂)-orthogonal basis functions and their inner product
is given by (

∇ · ψ̃(c)
ijk,∇ · ψ̃

(c)
lmn

)
=

4δi,lδj,mδk,n
(2i− 1)(i+ j − 1)(2i+ 2j + 2k − 3)

,
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see [31]. After performing the Duffy transformation we obtain for the remaining products with
ψ̃

(c)
ijk that (

∇ · ψ̃(c)
ijk,∇ · ψ̃

(b)
1mn

)
=
∫ 1

−1

1 · p0
i−1 dx ∗ further integrals = 0,

(
∇ · ψ̃(c)

ijk,∇ · ψ̃
(a)
10n

)
=
∫ 1

−1

1 · p0
i−1 dx ∗ further integrals = 0,

since i ≥ 2. Furthermore, we have,

(
∇ · ψ̃(b)

1jk,∇ · ψ̃
(b)
1mn

)
=

1
4

∫ 1

−1

1− y
2

p1
j (y)p1

m(y) dy
∫ 1

−1

(
1− z

2

)j+m+2

p2j+2
k−1 (z)p2m+2

n−1 (z) dz

=
δj,mδk,n

2(j + 1)(2k + 2j + 1)
.

Since j ≥ 1, we can conclude

(
∇ · ψ̃(b)

1jk,∇ · ψ̃
(a)
10n

)
=

1
8

∫ 1

−1

1− y
2

p1
j (y) dy

∫ 1

−1

(
1− z

2

)j+2

p2j+2
k−1 (z)p2

n(z) dz = 0, (j ≥ 1).

Finally, we have

(
∇ · ψ̃(a)

10k,∇ · ψ̃
(a)
10n

)
=

1
8

∫ 1

−1

(
1− z

2

)2

p2
k(z)p2

n(z) dz =
δk,n

4(2k + 3)
.

This completes the proof.

Remark 4.5. The special choice (4.11) of the auxiliary functions implies that the fluxes {1/|4̂|,∇·
Ψ2} of the non-solenoidal shape functions coincide with the L2-orthogonal Dubiner basis for the
L2-conforming tetrahedron as presented in [31].

Next, the sparsity of the element mass matrix block, i.e.

M̂II =
∫

∆̂

[ΨI ]> [ΨI ] d(x, y, z), (4.19)

is investigated. It can be shown that the number of nonzero entries per row in the block M̂II is
O(1) and hence independent of the polynomial degree p. Since the number of combinations as well
as the integrals to be computed in the sparsity proof of the mass matrix become very involved, we
do not evaluate them by hand, but utilize the algorithm and implementation presented in [8, 9].
An upper bound for the non-zero entries is summarized in the following lemma.

Lemma 4.6. Let [ΨI ] be the set of interior shape functions on the reference tetrahedron 4̂ (of
polynomial order p) as defined in (4.8). Then the number of nonzero entries per row in the matrix
M̂II is bounded by a constant independent of the polynomial degree p. More precisely, the following
implications hold: Let i, l ≥ 2 and j, k,m, n ≥ 1. If |i− l| > 2 or

1. |i− l + j −m| > 2 or |i− l + j −m+ k − n| > 2 then the inner products(
ψ

(a)
1jk, ψ

(a)
1mn

)
0,4̂,

(
ψ

(b)
ijk, ψ

(b)
lmn

)
0,4̂,

(
ψ

(c)
ijk, ψ

(c)
lmn

)
0,4̂,

(
ψ̃

(a)
10k, ψ̃

(a)
10n

)
0,4̂,

(
ψ̃

(b)
1jk, ψ̃

(b)
1mn

)
0,4̂,(

ψ̃
(c)
ijk, ψ̃

(c)
lmn

)
0,4̂,

(
ψ

(a)
1jk, ψ̃

(b)
1mn

)
0,4̂,

(
ψ̃

(b)
1jk, ψ

(a)
1mn

)
0,4̂,

(
ψ

(b)
ijk, ψ

(c)
lmn

)
0,4̂,

(
ψ

(c)
ijk, ψ

(b)
lmn

)
0,4̂,(

ψ
(b)
ijk, ψ̃

(c)
lmn

)
0,4̂,

(
ψ̃

(c)
ijk, ψ

(b)
lmn

)
0,4̂,

(
ψ

(c)
ijk, ψ̃

(c)
lmn

)
0,4̂,

(
ψ̃

(c)
ijk, ψ

(c)
lmn

)
0,4̂,

vanish.
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2. |i− l + j −m+ 1| > 2 or |i− l + j −m+ k − n+ 1| > 2 then the inner products(
ψ

(a)
1jk, ψ

(b)
lmn

)
0,4̂,

(
ψ

(a)
1jk, ψ

(c)
lmn

)
0,4̂,

(
ψ

(a)
1jk, ψ̃

(c)
lmn

)
0,4̂,

(
ψ̃

(a)
10k, ψ

(a)
1mn

)
0,4̂,(

ψ̃
(a)
10k, ψ̃

(b)
1mn

)
0,4̂,

(
ψ̃

(b)
1jk, ψ

(b)
lmn

)
0,4̂,

(
ψ̃

(b)
1jk, ψ

(c)
lmn

)
0,4̂,

(
ψ̃

(b)
1jk, ψ̃

(c)
lmn

)
0,4̂

vanish.

3. |i− l + j −m− 1| > 2 or |i− l + j −m+ k − n− 1| > 2 then the inner products(
ψ

(b)
ijk, ψ

(a)
1mn

)
0,4̂,

(
ψ

(c)
ijk, ψ

(a)
1mn

)
0,4̂,

(
ψ̃

(c)
ijk, ψ

(a)
1mn

)
0,4̂,

(
ψ

(a)
1jk, ψ̃

(a)
10n

)
0,4̂,(

ψ̃
(b)
1jk, ψ̃

(a)
10n

)
0,4̂,

(
ψ

(b)
ijk, ψ̃

(b)
1mn

)
0,4̂,

(
ψ

(c)
ijk, ψ̃

(b)
1mn

)
0,4̂,

(
ψ̃

(c)
ijk, ψ̃

(b)
1mn

)
0,4̂

vanish.

4. |i − l + j − m − 1| > 2 or |i − l + j − m + k − n − 2| > 2 then
(
ψ

(b)
ijk, ψ̃

(a)
10n

)
0,4̂ = 0 and(

ψ̃
(c)
ijk, ψ̃

(a)
10n

)
0,4̂ = 0.

5. |i − l + j − m + 1| > 2 or |i − l + j − m + k − n + 2| > 2 then
(
ψ̃

(a)
10k, ψ

(b)
lmn

)
0,4̂ = 0 and(

ψ̃
(a)
10k, ψ̃

(c)
lmn

)
0,4̂ = 0.

6.
(
ψ

(c)
ijk, ψ̃

(a)
10n

)
0,4̂ = 0 and

(
ψ̃

(a)
10k, ψ

(c)
lmn

)
0,4̂ = 0.

Proof. Evaluation of the integrals using the algorithm introduced in [8, 9].

Remark 4.7. Note that the sparsity pattern as stated in Lemma 4.6 only gives an upper bound
for the number of nonzero entries in the mass matrix to simplify the presentation. In Appendix B
we give a short summary of the applied algorithm and sketch the proof of the sparsity result on
the reference tetrahedron 4̂ as depicted in Figure 1 for the part

(
ψ̃

(c)
ijk, ψ̃

(c)
lmn

)
0,4̂. It is also for

this element that the mass matrix becomes least populated. The essential difference between this
reference tetrehadron and an arbitrarily chosen is that the branches |i− l| = 1 are vanishing on 4̂
due to geometric symmetries of the reference element. The complete information on the sparsity
pattern of the inner block of the mass matrix as well as precomputed matrix entries for arbitrary
tetrahedra (in terms of barycentric coordinates) can be found at

http://www.risc.jku.at/people/vpillwei/hdiv/ .

5 The global matrix

The nonzero pattern of the element matrices has been considered in the previous two sections for
the two-dimensional and three-dimensional case, respectively. In this section, we investigate the
global matrix

KΨ := a([Ψ], [Ψ]) with a(u, v) := (κ∇ · u,∇ · v) + (εu, v) (5.1)

which can be represented by the local element matrices, i.e.,

KΨ =
nel∑
s=1

R>s KsRs, (5.2)

where Ks are the local matrices on ∆s and Rs are the usual finite element connectivity matrices,
nel denotes the number of elements and [Ψ] is the global basis. First, the authors have a look to
the structure of the local matrices on the elements where the Piola-transformation is required.
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5.1 The Piola transformation for general simplices

The conforming mapping of H(div)-conforming basis functions requires the Piola transformation
(cf. [12, 23]). Let 4s be a non-degenerated simplex in Rd, d = 2, 3 and 4̂ be the reference simplex
depicted in Figure 1, respectively. Let Fs : 4̂ → 4s be the bijective element mapping with
Jacobian DFs and Jacobi determinant Js := det (DFs). The Piola transformation of a function
ψ̂ ∈ H(div, 4̂) is defined by

ψ |4s = J−1
s (DFs)T ψ̂ ◦ F−1

s . (5.3)

Then there holds ψ ∈ H(div,4s) with

∇ · ψ |4s
= Js

−1 ∇̂ · ψ̂ ◦ F−1
s . (5.4)

The Piola transformation is kernel preserving [18], hence the Piola mapping of a divergence-free
function is divergence-free.
The basis functions for general (possibly curved) simplicial elements can be defined via the Pi-
ola transformation. Let [Ψ] denote the basis functions on the reference element 4̂ and [Ψs] :=
J−1
s (DFs)T [Ψ] ◦ F−1

s its Piola transformation. Let us define the element matrices corresponding
to an element 4s as

As =
∫

∆s

(∇ · [Ψs])
> ∇ · [Ψs] d(x, y, z) and Ms =

∫
∆s

[Ψs]> [Ψs] d(x, y, z) (5.5)

5.2 Sparsity results for affine linear mapping and piecewise constant
coefficients

For general (affine) simplices the Piola mapping [Ψs] coincides with the basis functions (3.9) and
(4.9) defined in barycentric coordinates, for d = 2, 3, respectively. The Piola mapping allows us
to generalize the orthogonality results stated in Theorem 4.4 and Lemma 4.6 (Theorem 3.6 and
Lemma 3.8 in the 2D-case) for the reference element to general affine simplices.

Lemma 5.1. Let Fs be an affine element mapping and As and Ms be defined by (5.5). Then, the
element stiffness matrix As, as defined in (5.5), is diagonal up to the (d + 1) × (d + 1) low-order
block. Moreover, the interior block M

(s)
II of the element mass matrix Ms is sparse having only

O(pd) nonzero entries.

Proof. For affine element transformations the Piola transformation of the divergence (5.4) simplifies
to scaling by a constant, i.e. the orthogonality relations of fluxes and sparsity properties of the
stiffness matrix Â obviously generalizes onto general affine simplices.
The sparsity result for the mass matrix relies on affine transformations, where we refer the interested
reader to the appendix of this technical report.

Finally, we investigate the properties of the global system matrix KΨ assuming triangulations with
affine simplices ∆s and piecewise constant coefficients κ(x) |∆s

= κs and ε(x) |∆s
= εs. We denote

the global stiffness and mass matrix as

AΨ =
nel∑
s=1

εsR
>
s AsRs and MΨ =

nel∑
s=1

κsR
>
s MsRs. (5.6)

The sparsity results of Theorem 4.4, Lemma 4.6 (Theorem 3.6 and Lemma 3.8 in the 2D-case) and
the relation Ks = εsAs +κsMs (due to (1.3)) immediately imply global sparsity as summarized in
the next theorem.
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Theorem 5.2. Let KΨ, AΨ and MΨ be defined by (5.1) and (5.6), respectively. Let [Ψ] be par-
titioned into coupling (denoted by C), i.e. low-order and face-based, basis functions, and element-
based interior (denoted by I) basis functions, then the global matrix KΨ can be written in the
form

KΨ =
[
KCC KCI
KIC KII

]
Let AΨ and MΨ be partitioned the same way. Then the following assertions hold:

• The inner diagonal block MII of the global mass matrix and the inner diagonal block KII of
the system matrix are sparse with O(nel pd) total nonzero entries.

Furthermore, the global stiffness matrix reduces to the form

AΨ =
[
ACC 0

0 AII

]
with coupling block ACC =

(
A00 0
0 0

)
• with inner block AII being a diagonal matrix and

• sparse low-order stiffness matrix A00 with O(nel) total nonzero entries.

Fast Assembling strategies of system matrices
There are two alternative ways of efficiently assembling the system matrices Kψ. The new set of
basis functions (3.1)-(3.7) apply by construction two both variants of fast assembling.
(i) Recursive evaluation of matrix entries: All matrix entries can be evaluated recursively, cf. [26],
with a total cost or O(pd) operations for the matrix.
(ii) Sum factorization: The basis functions (3.1)-(3.7) on the reference triangle are the result of one-
dimensional basis functions under the Duffy-transformation. Using sum factorization techniques,
[22], [20], the generation of KΨ can be performed in O(p3) operations for d = 2, 3, respectively.
The algorithm is presented in the Appendix C.

6 Numerical experiments

In this chapter we investigate practically achieved sparsity patterns and condition numbers of the
finite element system matrix using the proposed mixed-weighted Jacobi-type finite element basis
functions in several settings.

6.1 Sparsity pattern for triangular elements

Sparsity pattern of element matrices on the reference triangle In Figure 2 the sparsity
pattern of the stiffness and mass matrix for the FE basis (3.1)-(3.7) for uniform polynomial order
p = 25 is visualized. The inner block M̂II (3.15) according to all interior basis functions (3.8) is
sparse. In fact, due to further orthogonality properties caused by the special geometric properties
of the reference triangle the sparsity pattern for this geometry is even better than proven in Lemma
3.8. The element stiffness matrix Â is diagonal up to a 3× 3 low-order block (which is not visible
on the used scale).

Interior coupling of facet-based degree’s of freedom The second plot of Figure 2 shows
the element mass matrix including all degrees of freedom, i.e. low-order, edge-based and cell-based
ones. Obviously, the block M̂CI is in general non-sparse having O(pd−1) nonzero entries per row,
an analogue result is obtained in 3d. This is due to the used monomial extension of polynomial
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Figure 2: Sparsity pattern for polynomial order p = 25 on reference triangle 4̂: inner block M̂ II

of mass matrix (left), mass matrix M̂ with facet-coupling terms (middle) and element stiffness
matrix Â (right).

normal traces into the interior (based on Duffy’s transformation) in the definition of facet-based
shape functions (3.2) and (3.3). This construction can be optimal only for one edge: the one for
which the Duffy transformation used for extending edge-traces into the interior coincides with the
Duffy transformation used for the interior basis functions (3.8), i.e. the third edge in the example
used for Figure 2.

Remark 6.1. The matrix blocks MCC and MCI can be factorized into a product of sparse ma-
trices, as done for H1-conforming problems in [8] and [10] for 3d, but the advantages get visible
only for very high polynomial order p.

The remedy to this problem would be the use of H(div)-conforming facet-based shape functions
with optimal extension into the interior, but this is (up to the knowledge of the authors) an open
problem. Nevertheless, results on optimal extensions for H1-conforming basis functions can be
found in [7].

6.2 Numerical results for reference, affine and curved tetrahedra

The choice of the basis functions (4.1)-(4.9) follows the general construction principle of H(div)-
conforming basis functions suggested in [35]: combining a hierarchic construction using warped
tensor-products of orthogonal polynomials and the explicit use of solenoidal basis functions ex-
pressed in proper combinations of tensor-products and differential fields of three sets of auxiliary
functions ui, vij and wijk. The main contribution of the new shape functions is (i) the careful
choice of the auxiliary functions (4.7) and respectively (4.2) based on Jacobi-type polynomials
with properly chosen mixed-weights, and (ii) the proper choices (with respect to mixed-weights)
of auxiliary functions in the shape functions labeled by the superscripts (a) and (b) in (4.5) and
(4.6). In the following, we want to compare the introduced shape functions with a commonly-used
non-weighted Legendre-type shape functions.

Legendre-type H(div)-conforming shape functions In order to demonstrate the impact of
using mixed-weighted Jacobi-polynomials we numerically compare sparsity and condition numbers
implied by the new FE basis with a basis using the low-order shape functions (4.3), but auxiliary
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functions based on Legendre-type polynomials, namely

ui = uLi := p̂0
i

(
λ2 − λ1

λ2 + λ1

)
(λ2 + λ1)i,

vij = vLj := λ3p
0
j−1

(
2λ3 − (1− λ4)

1− λ4

)
(1− λ4)j−1, (6.1)

and wijk = wLk := λ4p
0
k−1(2λ4 − 1),

for i ≥ 2, j ≥ 1, k ≥ 1, in the definition of the face-based shape functions (4.1) as well as in the
cell-based shape (4.6). This yields a commonly used choice of H(div)-conforming basis functions.
The orthogonality properties of the Legendre polynomials also imply a sparsity pattern for system
matrices based on Legendre-type H(div)-conforming basis functions. We refer the interested reader
to the Appendix D.
In the remaining part of this section, we will compare practically achieved sparsity patterns and con-
dition numbers using Jacobi-type auxiliary functions (4.2) and (4.7) in contrast to above Legendre-
type auxiliary functions first, on the reference tetrahedron, secondly on the general affine tetrahe-
dron 4s with vertices (0, 0, 0), (0.315, 0.632, 0.158), (1.5, 0, 0), and (0, 0, 1) as well as the eighth of
the unit sphere meshed by 4 curved tetrahedral elements. We remark that we always use diagonal
preconditioning within the computation of condition numbers.

A comparison of the sparsity pattern on affine tetrahedra Figure 3 shows the sparsity
pattern of the element stiffness matrix As and the inner block Ms,II of the element mass matrix
using H(div)-conforming properly weighted Jacobi-type shape functions as suggested in Chapter
4. Due to symmetry properties one obtains an improved sparsity pattern for the inner block M̂II

of the element mass matrix on the reference element as shown in the first graph in Figure 3. For
the affine tetrahedron 4s one obtains the sparsity pattern as depicted in the second plot. Using
Legendre-type auxiliary functions (6.1) one observes sparsity patterns with much more non-zero
entries as shown in Figure 3.

Figure 3: Optimally weighted Jacobi-type basis [Ψ] for p = 15: Sparsity pattern of inner block
M̂II of element mass (left) on reference tetrahedron 4̂, inner block Ms,II of mass matrix (middle)
and stiffness matrix As on a general affine tetrahedron 4s.

A comparison of condition numbers for the general affine tetrahedra 4s Table 1 shows
a comparison of practically achieved condition numbers of the inner block of Ks,II = As,II +Ms,II

on the affine tetrahedron 4s using auxiliary functions with and without properly chosen weights
in the construction of H(div)-conforming basis functions. One observes that the quality of the
condition numbers when increasing polynomial degree p crucially depends on the proper weights
in the auxiliary functions, cf. (4.7) and (6.1).
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Figure 4: Integrated Legendre-type basis [ΨLeg] for p = 15: Sparsity pattern of inner block M̂Leg
II

of element mass (left) on reference tetrahedron 4̂, inner block MLeg
s,II of mass matrix (middle) and

stiffness matrix ALegs on a general affine tetrahedron 4s.

degree κ(Ks,II) κ(KLeg
s,II)

p=3 1.7E+01 3.4E+01
p=5 6.6E+01 1.5E+03
p=8 3.1E+02 1.2E+06
p=10 6.8E+02 2.7E+08
p=13 1.8E+03 1.2E+10
p=15 3.1E+03
p=20 9.4E+03

degree κ(Ks,II) eoc of O(pk)
p=5 6.6E+01
p=10 6.8E+02 3.37
p=15 3.1E+03 3.73
p=20 9.4E+03 3.86

Table 1: Practically achieved condition numbers κ(Ks,II) for K = A + M for a general affine
tetrahedron ∆s (left) and experimental order of convergence k according to κ(KII) = O(pk) for
new Jacobi-type basis (right).
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The elimination of inner degrees of freedom via static condensation (see e.g. [20] Section 4.2) is an
established tool for the efficient solution of algebraic equation systems arising from p and hp-FE
disretizations. The left table of Table 1 shows that for Legendre-type basis functions the condition
numbers for the inner blocks deteriorate already for moderate p. Hence, in view of accuracy
and reliable digits of the solution the applicability of static condensation gets already critical for
polynomial order greater than 8. Contrary to that using properly weighted Jacobi-type auxiliary
functions yields much small condition numbers which are still moderate for p = 20. Numerical
examples indicate that the condition number using mixed-weighted Jacobi-type basis functions
depends on the polynomial order sligthly better as O(p4).

The parameter-dependent div-div-problem Next, we investigate the dependency of the
condition number of the parameter-dependent system matrix Ks := κAs + εMs corresponding to
the parameter-dependent div-div-problem (5.1). Since the matrix As is only positive semidefi-
nite with large non-trivial kernel space, parameter-robust preconditioning gets an issue especially
for small parameters ε, as analyzed in [4] and [19]. It is shown in [35] that using solenoidal ba-
sis functions, namely (4.1) and (4.5), in the construction of the H(div)-conforming FE-basis, a
parameter-robustness is provided by a parameter-robust preconditioner for the low-order space as
e.g. Hiptmair [4] or Arnold-Falk-Winther [19], and simple diagonal preconditioning of the higher-
order face-based and cell-based degrees of freedom. Figure shows the condition numbers of the
inner block Ks,II for κ = 1 and varying parameter ε from 10−5 up to 105 which are indeed robust
with respect to positive parameters ε.

Figure 5: Condition numbers of inner block Ks,II (on general tetrahedron) with respect to poly-
nomial order p, for bilinearform a(u, v) := (∇ · u,∇ · v) + ε(u, v) with varying constant coefficient
ε = 10−5, 1, 105.

Application to curved domains Even if the sparsity property of the suggested shape functions
gets lost, the improved condition numbers obtained by Jacobi-type auxiliary functions remain for
curved element geometries as documented in Table 6. For e.g. p = 10 static condensation is
reasonable only for the suggested Jacobi-type basis functions, as well as the global system matrix
is moderate-conditioned with respect to the polynomial order p and could be further improved by
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either optimal extension of face-based shape functions or by appropriate splitting techniques as
mentioned in Remark 6.1. Already for moderate p the suggested Jacobi-type shape functions yield
substant improvements even for general problem settings and curved domains.

inner blocks system matrix

κ(KII) κ(KLeg
II ) κ(K) κ(KLeg)

p=5 3.7E+01 3.5E+03 1.2E+03 2.5E+04
p=10 3.6E+02 9.0E+07 2.0E+04 4.0E+08

Figure 6: Comparison of condition numbers of inner block and full matrix K = A + M for one
eighth of a sphere meshed with 4 curved tetrahedra

A Jacobi polynomials

For the Jacobi polynomials (2.1) and the integrated Jacobi polynomials (2.2) there hold

p̂αn(−1) = 0, n ≥ 1, (A.1)

pα−1
n (x) =

1
α+ 2n

[
(α+ n)pαn(x)− npαn−1(x)

]
, (A.2)

p̂αn(x) =
2

2n+ α− 1
(
pα−1
n (x) + pα−1

n−1(x)
)
, n ≥ 1, (A.3)

p̂αn(x) =
2n+ 2α

(2n+ α− 1)(2n+ α)
pαn(x) +

2α
(2n+ α− 2)(2n+ α)

pαn−1(x)

− 2n− 2
(2n+ α− 1)(2n+ α− 2)

pαn−2(x), n ≥ 2, (A.4)

ypαj−1(y)− jp̂αj (y) =
1

2j + α− 2
(
−αpαj−1(y) + (2j − 2)pαj−2(y)

)
, α > −1, j ≥ 2.(A.5)

additionally to the relations (2.4) and (2.5). Formula (A.4) gives a simple connection between the
Jacobi and the integrated Jacobi polynomials.
Furthermore, there hold the recurrence relations

pαn+1(x) =
2n+ α+ 1

(2n+ 2)(n+ α+ 1)(2n+ α)
(
(2n+ α+ 2)(2n+ α)x+ α2

)
pαn(x)

− n(n+ α)(2n+ α+ 2)
(n+ 1)(n+ α+ 1)(2n+ α)

pαn−1(x), n ≥ 1, (A.6)

p̂αn+1(x) =
2n+ α− 1

(2n+ 2)(n+ α)(2n+ α− 2)
((2n+ α− 2)(2n+ α)x+ α(α− 2)) p̂αn(x)

− (n− 1)(n+ α− 2)(2n+ α)
(n+ 1)(n+ α)(2n+ α− 2)

p̂αn−1(x), n ≥ 1. (A.7)

Together with the initial values pα−1 = 0, pα0 = 1 or p̂α−1 = 0, p̂α0 1, for α > 0, and p̂0
0 = −1 they can

be used for fast evaluation of Jacobi and Integrated Jacobi polynomials as needed in the evaluation
of the suggested shape functions. The most important results for our work are the formulas (A.4)
and (A.6).
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B Algorithmic exact evaluation of the integrals

The sparsity pattern for the mass matrix in three dimensions has been summarized in Lemma 4.6
where for the proof the integrals are evaluated exactly using the algorithm presented in [8, 9]. The
main concept of this algorithm is a rewriting procedure exploiting relations (A.2)–(A.5) until each
term contributing to the integrand can be evaluated using the orthogonality relation (2.4). This
procedure terminates with the symbolic evaluation of the integrals, if the result is nonzero for only
finitely many combinations of indices and aborts otherwise, returning the integrand up to which
evaluation was possible. This of course then allows for adaptive adjustment of the parameters in
the construction of the basis functions. For sake of completeness, we sketch the arguments for a
specific part of the inner block in the next lemma. Here we omit details like the concrete nature
of the coefficients that are usually large rational functions in the polynomial degrees of the basis
functions. Note that the assertion on the nonzero pattern in the lemma below is sharper than the
upper bound we gave earlier, as indicated already in Remark 4.7.

Lemma B.1. In the setting of section 4.2 it holds that

(i 6= l ∨ |i− l + j −m| > 1 ∨ |i− l + j −m+ k − n| > 2)⇒
(
ψ̃

(c)
ijk, ψ̃

(c)
lmn

)
0,4̂ = 0.

Proof. Using the abbreviatons r = 1−2y−z
4 , s = 1−z

2 and by means of (A.5) we have

(∇ui ×∇vij) (x, y, z) = − ri−1sj−1

2(2i+ 2j − 3)

 p0
i−2

(
x
r

) (
(2i+ j − 2)p2i−1

j−1

(
y
s

)
− (j − 1)p2i−1

j−2

(
y
s

))
p0
i−1

(
x
r

) (
2(j − 1)p2i−1

j−2

(
y
s

)
− (2i− 1)p2i−1

j−1

(
y
s

))
−2(2i+ 2j − 3)p0

i−1

(
x
r

)
p2i−1
j−1

(
y
s

)
 ,

for details see [8, Lemma 6.2]. From this representation it is already obvious that the integrals
vanish if i 6= l because of the orthogonality of Legendre polynomials p0

n(x) with respect to the
L2 inner product.
For the evaluation of the integrals with respect to y, note that after performing the Duffy substi-
tution the factor ri+l−2 of the product ψ̃(c)

ijk · ψ̃
(c)
lmn turns into

(
1−y

2

)i+l−1
. Thus in the next step

we need to consider integrals of the form∫ 1

−1

(
1− y

2

)2i−1

p2i−1
j−j1(y)p2i−1

m−m1
dy, j1,m1 ∈ {1, 2}.

But this is just the inner product with respect to which Jacobi polynomials p2i−1
n (y) are orthogonal,

thus yielding an offset of |j −m| > 1.
The remaining three integrands to be considered in the final step are

I1 =
(

1−z
2

)γ−3
p̂γ−2
k (z)p̂γ−4

n (z), I2 =
(

1−z
2

)γ−2
p̂γ−2
k (z)p̂γ−2

n (z), I3 =
(

1−z
2

)−1+γ
p̂γ−2
k (z)p̂γn(z),

where γ = 2i + 2j. In order to invoke the Jacobi orthogonality relation several rewritings are in
place. The easiest case is I2, where it suffices to rewrite integrated Jacobi polynomials in terms
of Jacobi polynomials with the same parameter α using (A.4). For I1 and I3 firstly integrated
Jacobi polynomials p̂γ−2(z) and p̂γ(z), respectively, are rewritten using (A.3), which drops the
parameter α by one thus adjusting to the appearing weight function. Secondly p̂γ−4

n (z) and p̂γ−2
n (z)

are transformed using (A.4) to obtain Jacobi polynomials and then adjusted to the weight function
using (A.2). Each of these steps introduces up to two additional shifts in the polynomial degrees.
Since none of the contributions cancel in general this yields the nonzero pattern as stated above.
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C Fast integration of the stiffness and mass matrix

C.1 Sum Factorization

In this section, we present an algorithm for the fast numerical generation of the local element
matrices As and Ms (5.5) for tetrahedra. The methods are based on fast summation techniques
presented in [22], [20] and are explained for the example of the matrix

Î(6) = (mijk,i′j′k′)i+j+k≤p,i′+j′+k′≤p (C.1)

with

mijk,i′j′k′ =
∫
4̂
p̂0
i

(
4x

1− 2y − z

)
p̂0
i′

(
4x

1− 2y − z

)(
1− 2y − z

4

)i+i′

×p̂2i−1
j

(
2y

1− z

)
p̂2i′−1
j′

(
2y

1− z

)(
1− z

2

)j+j′
×p2i+2j−2

k (z)p2i′+2j′−2
k′ (z) d(x, y, z).

This matrix is one ingredient uivijw′ijk for the generation of the mass matrix Ms and is identical
to the term Î(6) in [8]. Due to [8], this matrix has the sparsity pattern

mijk,i′j′k′ = 0 if (i, j, k, i′, j′, k′) ∈ Sp(ijk, i′j′k′) (C.2)

where

S
p(ijk, i′j′k′) = {i+ j + k ≤ p, i′ + j′ + k′ ≤ p, |i− i′| > 2 ∨ |i− i′ + j − j′| > 4

∨ |i− i′ + j − j′ + k − k′| > 4}
(C.3)

cf. [8]. The Duffy transformation applied to (C.1) gives

mijk,i′j′k′ =
∫ 1

−1

p̂0
i (x)p̂0

i′(x) dx
∫ 1

−1

(
1− y

2

)i+i′+1

p̂2i′−1
j′ (y)p̂2i−1

j (y) dy (C.4)

×
∫ 1

−1

(
1− z

2

)i+j+i′+j′+2

p2i+2j−2
k (z)p2i′+2j′−2

k′ (z) dz.

All one dimensional integrals are computed numerically by a Gaussian quadrature rule with points
xk, k = 1, . . . , p+ 1 and corresponding weights ωk. The points and weights are chosen such that∫ 1

−1

f(x) dx =
p+1∑
l=1

ωlf(xl) ∀f ∈ P2p. (C.5)

Since only polynomials of maximal degree 2p are integrated in (C.4), the integrals (C.4) are eval-
uated exactly. Therefore, we have to compute

mijk,i′j′k′ =
p+1∑
l=1

ωlp̂
0
i (xl)p̂

0
i′(xl)

×
p+1∑
m=1

ωm

(
1− xm

2

)i+i′+1

p̂2i′−1
j′ (xm)p̂2i−1

j (xm)

×
p+1∑
n=1

ωn

(
1− xn

2

)i+j+i′+j′+2

p2i+2j−2
k (xn)p2i′+2j′−2

k′ (xn),

i.e. for all (i, j, k, i′, j′, k′) 6∈ Sp(ijk, i′j′k′), cf. (C.3), (C.2). This is done by the following algorithm.
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Algorithm C.1. 1. Compute

h
(1)
i;i′ =

p+1∑
l=1

ωlp̂
0
i (xl)p̂

0
i′(xl)

for all i, i′ ∈ N satisfying |i− i′| ≤ 2 and i, i′ ≤ p.

2. Compute

h
(2)
i,j;i′,j′ =

p+1∑
m=1

ωm

(
1− xm

2

)i+i′+1

p̂2i−1
j (xm)p̂2i′−1

j′ (xm)

for all i, j, i′, j′ ∈ N satisfying |i− i′| ≤ 2, |i+ j − i′ − j′| ≤ 4, i+ j ≤ p and i′ + j′ ≤ p.

3. Compute

h
(3)
β,k;β,′k′ =

p+1∑
n=1

ωn

(
1− xn

2

)β+β′+2

p2β−2
k (xn)p2β′−2

k′ (xn)

for all k, k′, β, β′ ∈ N satisfying |β−β′| ≤ 4, |β+ k−β′− k′| ≤ 4, β+ k ≤ p and β′+ k′ ≤ p.

4. For all (i, j, k, i′, j′, k′) 6∈ Sp(ijk, i′j′k′), set

mijk,i′j′k′ = h
(1)
i;i′h

(2)
i,j;i′,j′h

(3)
i+j,k;i′+j′,k′ .

The algorithm requires numerical evaluation of Jacobi and integrated Jacobi polynomials at the
Gaussian points xl, l = 1, . . . , p+1. In the next subsection, we present an algorithm which computes
the required values p̂αk (xl), m = 1, . . . , p+ 1, k = 1, . . . , p, α = 1, . . . , 2p in O(p3) operations.

C.2 Fast Evaluation of integrated Jacobi polynomials

The integrated Jacobi polynomials needed in the computation of mijk,i′j′k′ (C.1) are p̂0
i (x), p̂2i−1

j (x)
(progressing in odd steps w.r.t. the parameter α) and p̂2i+2j−2

k (x) (progressing in even steps w.r.t.
the parameter α). For i+ j + k ≤ p with i ≥ 2 and j, k ≥ 1 this means that

[p̂0
i (x)]2≤i≤p, [p̂3

j (x)]1≤j≤p, . . . , [p̂
2p−3
j (x)]1≤j≤p, [p̂4

k(x)]1≤k≤p, . . . , [p̂
2p−4
k (x)]1≤k≤p

are needed. Since one group proceeds in even, the other one in odd steps, the total of integrated
Jacobi polynomials that are needed is

p̂an(x), 1 ≤ n ≤ p− 3, 3 ≤ a ≤ 2p− 3,

if we consider the integrated Legendre polynomials separately. However, integrating over iden-
tity (A.2) yields

p̂α−1
n+1(x) =

1
2n+ α

(
(n+ α)p̂αn+1(x)− np̂αn(x)

)
,

valid for all n ≥ 0. Using this relation starting from the integrated Jacobi polynomials of highest
degree, i.e. α = 2i − 1 = 2p − 3, the remaining Jacobi polynomials can be computed using only
two elements of the previous row. Note that for the initial values n = 1 we have p̂α1 (x) = 1 + x
for all α. For assembling the polynomials of highest degree the three term recurrence (A.7) is
used. Summarizing, the evaluation of the functions at the Gaussian points can be done in O(p3)
operations. This is optimal in the three-dimensional case, but not in the two-dimensional case.
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C.3 Complexity of the Algorithm

The cost of the last three steps in O(p3), the first step requires O(p2) operations. Together with
the evaluation of the Jacobi polynomials, the algorithm requires in total O(p3) flops.
This algorithm uses only the sparsity structure (C.3). Since the matrices As and Ms have a
similar sparsity structure of the form (C.3), cf. Lemma 4.6, this algorithm can be extended to all
ingredients which are required for the generation of As and Ms. For two-dimensional problems,
the third step of the algorithm is not necessary. However, the values h(2)

i,j;i′,j′ have to be computed.
Since this requires O(p3) floating point operations, the total cost in 2D is also O(p3).

D Sparsity relations for Legendre type basis functions

The auxiliary functions for the definition of cell based basis functions of Legendre-type are

uLi (x, y, z) := p̂0
i

(
λ2 − λ1

λ2 + λ1

)
(λ2 + λ1)i,

vLj (x, y, z) := λ3p
0
j−1

(
2λ3 − (1− λ4)

1− λ4

)
(1− λ4)j−1,

and wLk (x, y, z) := λ4p
0
k−1(2λ4 − 1),

(D.1)

respectively. The cell-based basis functions are constructed following (4.5) and (4.6) and we denote
the corresponding Legendre-type basis functions by χ

(r)
ijk and χ̃

(r)
ijk, r = a, b, c, respectively. Also

for these basis functions a certain sparsity pattern can be observed, which occurs because of the
Legendre orthogonality.
For the non-divergence free basis functions we note that

1. if |k − n| > 4 then
(
∇ · χ̃(a)

10k,∇ · χ̃
(a)
10n

)
0,4̂ = 0,

2. if |j −m| > 3 then
(
∇ · χ̃(b)

1jk,∇ · χ̃
(b)
1mn

)
0,4̂ = 0,

3. and if i 6= l then
(
∇ · χ̃(c)

ijk,∇ · χ̃
(c)
lmn

)
0,4̂ = 0.

The integrals in the remaining open parameters can be reduced to the following general type of
integrals ∫ 1

−1

(1− z)αp0
k(z)p0

n(z) dz, α = α(i, j) ∈ N.

By the Legendre orthogonality these integrals only vanish if either i − j > α or −α > i − j.
This yields the wedge-type shape of the sparsity pattern, but it results in an increasing number of
nonzero entries with increasing polynomial degree. The situation for the mass matrix is, of course,
similar but worse, i.e.,

1. if |j −m| > 5 then
(
χ

(a)
1jk, χ

(a)
1mn

)
0,4̂ = 0,

2. if i 6= l then
(
χ

(b)
ijk, χ

(b)
lmn

)
0,4̂ = 0,

3. if |i− l| /∈ {0, 2} then
(
χ

(c)
ijk, χ

(c)
lmn

)
0,4̂ = 0,

4. if |k − n| > 6 then
(
χ̃

(a)
10k, χ̃

(a)
10n

)
0,4̂ = 0,

5. if j 6= m then
(
χ̃

(b)
1jk, χ̃

(b)
1mn

)
0,4̂ = 0,

6. and if i 6= l then
(
χ̃

(c)
ijk, χ̃

(c)
lmn

)
0,4̂ = 0.
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