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Abstract

We discuss the problem of fitting a curve or surface to given measurement data.
In many situations, the usual least–squares approach (minimization of the sum of
squared norms of residual vectors) is not suitable, as it implicitly assumes a Gaussian
distribution of the measurement errors. In those cases, it is more appropriate to
minimize other functions (which we will call norm-like functions) of the residual
vectors. This is well understood in the case of scalar residuals, where the technique
of iteratively re-weighted least-squares (IRLS), which originated in statistics [11],
is known to be a Gauss-Newton-type method for minimizing a sum of norm-like
functions of the residuals. We extend this result to the case of vector-valued residuals.
It is shown that simply treating the norms of the vector-valued residuals as scalar
ones does not work. In order to illustrate the difference we provide a geometric
interpretation of the iterative minimization procedures as evolution processes.

1 Introduction

The problem of fitting a given mathematical model to a certain set of measurement data
appears in the context of various applications. For instance, during the process of recon-
structing geometric models from (possibly unstructured) point cloud data, one is interested
in fitting a parametric curve or surface (often represented by NURBS: non–uniform ratio-
nal B-splines) to a given point cloud, see [10, 18]. In statistics, regression lines or other
geometric objects need to be identified in order to analyze the relations between two or
more variables [11]. In biomedicine, image segmentation or the automatic recognition of
biological structures is an important issue [15].

Many existing techniques rely on least-squares approximation, i.e., on minimizing the
sum of the squared residuals (the deviations between the model and the measured data).
This is equivalent to minimizing the ℓ2 norm of the vector of (scalar–valued) residuals. In
the case of curves and surfaces, the residuals can be chosen as the distances between the
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2 THE GENERALIZED FITTING PROBLEM 2

data and the associated closest points. This leads to the special case of orthogonal distance
regression [2, 4, 5, 6, 14, 18, 19, 20, 21, 22].

If the residuals depend linearly on the parameters controlling the model, then the
solution can be found by solving a system of linear equations. In the case of a non-linear
dependence between residuals and parameters, Gauss-Newton-type methods are widely
used, as they avoid the evaluation of second derivatives. See [26] for a historical overview
of Newton and Newton-like methods.

In many situations, considering the ℓ2 norm of the residuals is not the appropriate
approach. On the one hand, so–called outliers (data with large error) may decrease the
quality of the approximation, since their influence grows quadratically with the distance
to the curve or surface. On the other hand, if the data are very precise, then it is more
appropriate to minimize the maximum deviation between the model and the data. It is
clearly important to adjust the norm carefully to the problem, see [3, 12, 23, 24].

In the field of statistics [11], the usual ℓ2 approximation is extended with the help of
the concept of iteratively-reweighted least-squares (IRLS). In [16] and [25] the important
connection of IRLS and Gauss-Newton for maximum likelihood estimation is analyzed.
These articles are concerned with fitting regression models to given observations. As the
underlying models are functions, the considered techniques are applied to scalar residuals.

In [8] the IRLS approach was used to implement the fitting of linear and non-linear
models in different norms. Again, the residuals where scalar values.

A more general approach for fitting graphs of functions is proposed in [7]. The error
is assumed to be both in the dependent variable and in the independent variable. This
modification allows to perform orthogonal distance regression, i.e., to minimize the shortest
distance from a data point to the function.

The need for dealing with vector-valued residuals has arisen in connection with curve
and surface fitting. The existing literature which studies the relation between IRLS and
Gauss-Newton-type techniques discusses only the case of scalar residuals. The present
paper aims to extend these results to the vector–valued case.

The remainder of the paper is organized as follows. The next section presents some
preliminaries and introduces the generalized fitting problem. Section 3 focuses on the
Gauss-Newton method. We analyze it for the scalar and vector-valued situation in terms
of an evolution process and show that simply defining scalar residuals as norms of vector-
valued ones does not give good results in Section 4. Section 5 discusses the convergence
behavior of the Gauss-Newton method for vector-valued residuals. Section 6 presents
several examples. Finally, we conclude this paper.

2 The generalized fitting problem

Given a set of data points {Pj}j=1..N in R
d, we are interested in a surface of dimension

k < d which approximates them. In order to keep the notation simple, in this paper we
restrict ourselves to the case of curves (k = 1) or surfaces (k=2). The results which are
presented in this paper can easily be extended to other values of k.
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We denote a parametric curve or surface by cs(t), with t ∈ I = [a, b] ⊂ R for curves or
t = (t(1), t(2)) ∈ [a1, b1]× [a2, b2] ⊂ R

2 for surfaces. Similarly to the framework described in
[1, 2], we assume that a curve/surface can be described by a vector of shape parameters
s ∈ R

n, where n is the number of degrees of freedom.

Example 1. An ellipse in the plane can be parameterized using trigonometric functions
as

cs(t) =

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

) (
x0 + a sin(t)
y0 + b cos(t)

)

, t ∈ I = [0, 2π). (1)

The shape parameters are the coordinates of the center (x0, y0) along with the semi-major
a and the semi-minor axes b and the rotation angle φ of the ellipse.

Example 2. Consider a spline surface

cs(t) =

l∑

i=0

m∑

j=0

dijψi(t
(1))ψj(t

(2)) (2)

where ψi(t1) are the B-splines of a certain degree k, defined over a suitable fixed knot
vector, see [10]. The vector of shape parameters is obtained as the concatenation of all
control points dij = (s3(m+1)i+3j+1, s3(m+1)i+3j+2, s3(m+1)i+3j+3), n = 3(l + 1)(m + 1). In
addition, it may also contain the knots.

When fitting a curve/surface to a given set of points one minimizes usually certain
distances from the data to the curve/surface. In this work we consider distance regres-
sion where the parameters of the points on the curve/surface are fixed a-priori with some
suitable parameterization method, such as chordal, centripetal or uniform parameteriza-
tion, see e.g. [10]. We shall denote the parameter values with tj . The residual vector
which connects a data point with an associated point on the hyper surface is given by
Rj(s) = Pj − cs(tj). Its Euclidean norm gives the scalar residual rj(s) = ||Rj(s)||.

Now, consider the generalized fitting problem

s0 = arg min
s

F (s) = arg min
s

M∑

j=1

N(‖Rj(s)‖) = arg min
s

M∑

j=1

N(rj(s)). (3)

It generalizes the usual fitting problems by replacing the ℓp norms (mostly with p = 2) of
the vector of scalar residuals ||Rj(s)|| with a sum of a certain functions N(.) applied to the
residuals. We choose these functions from the class of norm-like functions in the following
sense, cf. [17].

Definition 1. A C2 function N(x) : R
+ → R

+ is said to be norm-like if there exists a
positive constant ε such that the derivative satisfies

N ′(x) = xw(x) for x ∈ (0, ε] (4)

where the associated weight function w(x) is positive. If the weight function w(x) is a
restriction of a function w0 ∈ C1(R,R) to the interval (0, ε] with w0(x) : [0, ε] → [c, C] and
c, C ∈ R

+, then we will call it positive and bounded.
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Example 3. 1. The norm–like function N(x) = x2, which corresponds to the ℓ2 norm
of the vector of residuals, has the weight function w(x) = 2 which is positive and
bounded.

2. The norm–like function N(x) = exp(x2)−1 has the weight function w(x) = 2 exp x2.
Again, the weight function is positive and bounded.

3. The norm–like functions N(x) = xp for p 6= 2, which correspond to the ℓp norm of the
vector of residuals, have the weight functions w(x) = pxp−2. The weight functions
are positive, but not bounded, for 1 < p < 2, and bounded, but not positive, for
p > 2.

For later reference we provide the gradient and the Hessian of the objective function
F (s), see (3). The gradient is the row vector of the first partial derivatives with respect to
the shape parameters si,

∇F =
M∑

j=1

N ′(‖Rj‖)
R⊤

j

‖Rj‖
∇Rj =

M∑

j=1

w(‖Rj‖)R
⊤
j ∇Rj (5)

where we shall omitt the argument of the residual from now on. The Hessian is the n×n–
matrix

HF = ∇(∇F⊤) =

M∑

j=1

w′
j

‖Rj‖
∇R⊤

j RjR
⊤
j ∇Rj + wj∇R⊤

j ∇Rj + wj∇(∇R⊤
j ) ◦ Rj, (6)

where we use the abbreviations wj = w(‖Rj‖) and w′
j = w′(‖Rj‖). The second order

derivative ∇(∇R⊤
j ) is a tensor, and is to be interpreted in the following way:

[
∇(∇R⊤

j ) ◦ Rj

]

l,k
=

d∑

i=1

[
∂

∂sl

∂

∂sk

[Rj]i

]

[Rj]i. (7)

Here, [V]i denotes the i−th entry of the vector V and [M]i,j denotes the j−th entry of the
i−th row of the matrix M.

Alternatively, one may also express the gradient and the Hessian using the scalar resid-
uals rj = ‖Rj‖,

∇F = ∇

M∑

j=1

N(rj) =

M∑

j=1

N ′(rj)∇rj =

M∑

j=1

w(rj)rj∇rj (8)

and

HF = ∇(∇F⊤) =
M∑

j=1

w′
jrj∇r

⊤
j ∇rj + wj∇r

⊤
j ∇rj + wj∇(∇r⊤j )rj. (9)
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3 Iterative solution of the generalized fitting problem

Equation (3) defines a non-linear optimization problem. Using Newton’s method one ob-
tains the linearized system

∇F⊤ +HF ∆s = 0 (10)

for the update step ∆s. Under certain assumptions, Newton’s method exhibits quadratic
convergence, see [26] and the references cited therein.

In some situations, i.e. if the exact Hessian is unknown or very costly to evaluate, one
may prefer an approximation instead of the exact Hessian. This leads to Gauss-Newton-
type methods. In the following we consider the approximate Hessians

H∗
F =

M∑

j=1

wj∇R⊤
j ∇Rj (11)

and

H†
F =

M∑

j=1

wj∇r
⊤
j ∇rj (12)

which are obtained by omitting the first and the last part in the expansions (6) and (9),
respectively.

In the vector-valued situation and for vanishing residuals we get the following result.

Lemma 2. Let s0 be the minimizer of (3) such that ‖Rj(s
0)‖ = 0 for all j and let N(x)

have a positive and bounded weight function. Then

lim
s→s

0

HF = lim
s→s

0

H∗
F . (13)

Proof. We have to show that all but the second term of the expansion of the Hessian (6)
vanish. For the last term this can be seen immediately. The first part of the Hessian is the
sum of

Tj = w′
j‖Rj‖∇R⊤

j

Rj

‖Rj‖

R⊤
j

‖Rj‖
∇Rj, j = 1, . . . ,M. (14)

We consider the spectral norm of Tj ,

‖Tj‖
2
2 ≤

∥
∥
∥
∥
∥
w′

j‖Rj‖∇R⊤
j

Rj

‖Rj‖

R⊤
j

‖Rj‖
∇Rj

∥
∥
∥
∥
∥

2

2

≤ |w′
j|

2 ‖Rj‖
2

∥
∥
∥
∥
∥
∇R⊤

j

Rj

‖Rj‖

R⊤
j

‖Rj‖
∇Rj

∥
∥
∥
∥
∥

2

2

Exploiting the Cauchy-Schwarz inequality we obtain

‖Tj‖
2
2 ≤ |w′

j|
2 ‖Rj‖

2

∥
∥
∥
∥
∇R⊤

j

Rj

‖Rj‖

∥
∥
∥
∥

2

2

∥
∥
∥
∥
∥

R⊤
j

‖Rj‖
∇Rj

∥
∥
∥
∥
∥

2

2

.
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Finally we get

‖Tj‖
2
2 ≤ |w′

j|
2 ‖Rj‖

2
∥
∥∇R⊤

j

∥
∥

2

2

∥
∥
∥
∥

Rj

‖Rj‖

∥
∥
∥
∥

2

2
︸ ︷︷ ︸

=1

∥
∥
∥
∥

Rj

‖Rj‖

∥
∥
∥
∥

2

2
︸ ︷︷ ︸

=1

∥
∥∇R⊤

j

∥
∥

2

2
, (15)

as the spectral norm for matrices and the ℓ2 norm for vectors are consistent. Now, if
s → s0, then ‖Rj‖ → 0, hence ‖Tj‖2 → 0.

Remark 1. This Lemma excludes the case of ℓp norms for p > 2 since they do not fulfill
the assumption that w(0) 6= 0 in a zero-residual case. Nevertheless, Eq. (13) remains true,
since both HF and H∗

F converge to the null matrix. For the case 1 ≤ p < 2, however, the
optimization problem is not differentiable.

The equivalent result for scalar residuals (e.g. regression analysis) is well-known, see
[16]. However, if the scalar approach is applied directly to vector-valued residuals by
choosing simply rj = ‖Rj‖, this result is no longer true:

Lemma 3. Let cs(t) be a B-Spline curve in R
2 (i.e. k = 1 and d = 2) as in (2), where the

shape parameters s are the components of the control points, and let s0 be the minimizer
of (3) such that ‖Rj(s

0)‖ = 0 for all j. In addition, let N(x) have a positive and bounded
weight function. Then

lim
s→s

0

HF 6= lim
s→s

0

H†
F . (16)

Proof. For any matrix A = (aij), let ‖(aij)‖p = p

√∑

i,j |aij|p. We show that there exists a

positive constant D such that

lim
s→s

0

‖H∗
F −H†

F‖1 = lim
s→s

0

‖

M∑

j=1

wj(∇R⊤
j ∇Rj −∇r⊤j ∇rj)‖1 ≥ D > 0. (17)

Due to the previous lemma, this statement is equivalent to (16).
With the identity matrix E = diag(1, 1), we get

M∑

j=1

wj(∇R⊤
j ∇Rj −∇r⊤j ∇rj) =

M∑

j=1

wj(∇R⊤
j E∇Rj −∇R⊤

j

Rj

‖Rj‖

R⊤
j

‖Rj‖
∇Rj) =

=
M∑

j=1

wj∇R⊤
j (E−

Rj

‖Rj‖

R⊤
j

‖Rj‖
)∇Rj =

M∑

j=1

wj∇R⊤
j SjS

⊤
j ∇Rj

where Sj is a unit vector which is orthogonal to Rj. Now we note that ∇R⊤
j SjS

⊤
j ∇Rj =

(Sj∇Rj)
⊤(S⊤

j ∇Rj) and that the trace of (S⊤
j ∇Rj)

⊤(S⊤
j ∇Rj) is ‖S⊤

j ∇Rj‖
2
2. From this
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and using the Cauchy-Schwarz inequality we conclude

‖

M∑

j=1

wj∇R⊤
j SjS

⊤
j ∇Rj‖1 ≥

M∑

j=1

wjtrace(∇R⊤
j SjS

⊤
j ∇Rj) ≥

M∑

j=1

wj‖S
⊤
j ∇Rj‖

2
2

=
M∑

j=1

wj‖S
⊤
j

(
ψ0(tj) 0 . . . ψm(tj) 0

0 ψ0(tj) . . . 0 ψm(tj)

)

‖2
2

=

M∑

j=1

wj

m∑

i=0

(ψi(tj))
2 (

1

m+ 1

m∑

i=0

12)

︸ ︷︷ ︸

=1

≥

M∑

j=1

wj

1

m+ 1
(

m∑

i=0

ψi(tj) · 1)2

︸ ︷︷ ︸

=1

≥
Mc

m+ 1
> 0

as the B-splines ψi(tj) sum to one, wj > c (see Definition 1) and ‖Sj‖ = 1.

Consequently, at least for the class of B-Spline curves (which includes polynomial ones),
the direct application of the scalar approach is not useful. Hence, we use the approximate
Hessian H∗

F , which is based on vector-valued residuals, in order to define a Gauss-Newton-
type method. With the help of (5) and (11), we are led to formulate the following definition.

Definition 4. In each step of the vector-valued-residual-based Gauss-Newton (VGN) method
for the generalized fitting problem (3) we solve the system of linear equations

M∑

j=1

w(‖Rj(s
c)‖)∇R⊤

j (sc)∇Rj(s
c)∆s +

M∑

j=1

w(‖Rj(s
c)‖)∇R⊤

j (sc)Rj(s
c) = 0 (18)

for the update step ∆s and compute the update s+ = sc + h∆s, where h is the step size
h ≤ 1.

It is well known that the Gauss-Newton approach for the generalized fitting problem for
scalar residuals is equivalent to a weighted version of the usual Gauss-Newton approach,
see [15]. It can be directly seen that this is also true for its vector-valued version VGN.
Indeed, (18) is the minimum condition of

M∑

i=1

w(‖Rj(s
c)‖)‖Rj(s

c) + ∇Rj(s
c)∆s‖2 → min

∆s

(19)

Again the generalized fitting problem can be solved via a least-squares approach where the
summands are multiplied with individual weights. During an iteration step, these weights
are kept constant, and then updated with the new residuals. In statistics this approach is
called iteratively re-weighted least squares(IRLS).
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4 Fitting as an evolution

A geometric interpretation of iterative methods for orthogonal distance regression was
introduced in [2]. The intermediate results of the iterative approximation are seen as
instances of a continuous family of curves or surfaces generated by an evolution process.
We adapt this framework to the case of arbitrary norm–like functions and general distance
regression. We assume that the shape parameters s = s(τ) of the curve or surface depend
on a time-like variable τ . This produces a time–dependent family of evolving curves or
surfaces. Each point cs(t

∗) with the velocity

v(t∗) =
d

dτ
cs(t)

∣
∣
∣
t=t∗

= ∇scs(t)
∣
∣
∣
t=t∗

ṡ (20)

where the dot indicates the derivative with respect to τ . We restrict ourselves to the case
of distance regression, where the parameter values t∗ = tj , that are associated with the
given points, are kept fixed. The velocities of these points are then given by

vj = v(tj) = ∇scs(t)
∣
∣
∣
t=tj

ṡ = −∇Rj ṡ, (21)

due to the definition of the residual vectors.
In order to get a continuous version of VGN, we replace in (19) sc by s(τ) and ∆s by

ṡ and obtain

M∑

i=1

wj (Rj + ∇Rj ṡ)
2 =

M∑

i=1

wj (Rj − vj)
2 → min

ṡ

. (22)

which means that the expected velocity vectors should be equal to the residuals. The
geometric interpretation is as follows: The evolution tries to make the velocity vector vj of
each point cs(tj) equal to the corresponding residual vector Rj,

vj ≈ Rj (j = 1, . . . ,M), (23)

see Fig. 1, left, and this system is solved in the least–squares sense with weights wj.

Remark 2. Similarly, one can also built up a Gauss-Newton system using H†
F .

The geometric interpretation is now as follows: The evolution tries to make the projec-
tion of the velocity vector vj onto the direction of the residual vector of each point cs(tj)
equal to the corresponding scalar residual ‖Rj‖,

R⊤
j

‖Rj‖
vj ≈ ‖Rj‖ (j = 1, . . . ,M), (24)

see Fig. 1, right, and this system is again solved in the least–squares sense with weights
wj.
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Figure 1: Evolution defined via vector-valued (left) and scalar residuals(right).

These different geometric interpretations (23), (24) have important consequences. In
the first place, the approximate Hessian H†

F that corresponds to the scalar approach does
not converge to the true Hessian in the limit. In addition, it may easily encounter singular
situations during the approximation process, e.g., if all residual vectors happen to be
parallel. Consequently, the uniqueness of the solution is not guaranteed.

Remark 3. In order to guarantee a stable evolution one should introduce a stepsize control
that adjusts the value of h in each iteration step. The geometrical interpretation as an
evolution offers a simple strategy to do so. In each point cs(tj) one can compute the
velocity and choose h such that maxj hvj ≤ ǫD, where D is related to the size of the
data (e.g. the diameter of some bounding box) and ǫ ≤ 1 some user defined constant.
This approach ensures that the points cs(tj) do not move more than a certain percentage
(defined by epsilon) of the size of the data.

5 Convergence results

The convergence results for Gauss-Newton methods for scalar residuals in the ℓ2 case, i.e.,
N(x) = x2, are well known. Under certain conditions the standard Gauss-Newton method
converges quadratically in the zero-residual case, cf. [13]. For the sake of completeness we
derive the corresponding statements in the vector-valued situation for a general N(x).

Theorem 5. Let s0 be a minimizer of

M∑

j=1

N(‖Rj(s)‖) → min
s

with a norm-like function N(x) and w(x) be a positive and bounded weight function. The
residuals Rj shall be Lipschitz continuously differentiable and

∑M

j=1 ∇R⊤
j wj∇Rj be regular

in Bδ(s
0) = {s : ‖s− s0‖ < δ} with δ > 0. Then there exists for the Gauss-Newton method

(18) some constant K ∈ R such that

‖s+ − s0‖ ≤ K(‖sc − s0‖2 +
∑M

j=1
‖Rj(s

0)‖ ‖sc − s0‖).

Proof. In order to simplify the notation we shall write Rc
j = Rj(s

c) and where R0
j = Rj(s

0),
wc

j = wj(Rj(s
c)) and w0

j = wj(Rj(s
0)). With ∆s from Eq. (18), the error after one update
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step is given by

s+ − s0 = sc − s0 + ∆s = (sc − s0) − [

M∑

j=1

∇Rc
j
⊤wc

j∇Rc
j]

−1 M∑

j=1

∇Rc
j
⊤wc

jR
c
j

= [

M∑

j=1

∇Rc
j
⊤wc

j∇Rc
j]
−1

M∑

j=1

∇Rc
j
⊤wc

j [∇Rc
j(s

c − s0) −Rc
j].

The last factor [. . .] can be rewritten as

∇Rc
j(s

c − s0) − Rc
j = ∇Rc

j(s
c − s0) −R0

j + R0
j −Rc

j

= −R0
j +

(
∇Rc

j(s
c − s0) + R0

j − Rc
j

)
= −R0

j − ϕ′(0) + ϕ(1) − ϕ(0)

with ϕ(t) = Rj(s
c + t(s0 − sc)). As

−ϕ′(0) + ϕ(1) − ϕ(0) =

∫ 1

0

ϕ′(t) − ϕ′(0)dt

and the Lipschitz continuity holds it follows with

‖ϕ′(t) − ϕ′(0)‖ = ‖(Rj(s
c + t(s0 − sc)) −∇Rj(s

c))(s0 − sc)‖ ≤ αt‖s0 − sc‖2

that
‖∇Rc

j(s
c − s0) + R0

j −Rc
j‖ ≤

α

2
‖sc − s0‖2

Hence we obtain

‖s+ − s0‖ ≤ ‖[
M∑

j=1

∇Rc
j
⊤wc

j∇Rc
j ]
−1‖ · (‖

M∑

j=1

∇Rc
j
⊤wc

jR
0
j‖ +

M∑

j=1

‖∇Rc
j
⊤wc

j‖
α

2
‖sc − s0‖2).

Finally,

‖
M∑

j=1

∇Rc
j
⊤wc

jR
0
j‖ = ‖

M∑

j=1

(w0
j∇R0

j − wc
j∇Rc

j)
⊤R0

j‖ ≤ β
M∑

j=1

‖R0
j‖ ‖s

c − s0‖

since
∑M

j=1w
0
j (∇R0

j)
⊤R0

j = 0 and since the Lipschitz continuity of ∇Rj implies the Lips-
chitz continuity of wj∇Rj with some constant β because wj is bounded. Summing up,

‖s+ − s0‖ ≤ ‖[

M∑

j=1

∇Rc
j
⊤wc

j∇Rc
j]
−1‖ [ β

M∑

j=1

‖R0
j‖ ‖s

c − s0‖ +
α

2

M∑

j=1

‖∇Rc
j
⊤wc

j‖ ‖s
c − s0‖2 ] ≤

≤ K [

M∑

j=1

‖R0
j‖ ‖s

c − s0‖ + ‖sc − s0‖2 ]

with the constant

K = max
s∈Bδ(s0)

‖[
M∑

j=1

∇R⊤
j wj∇Rj]

−1‖ [ β +
α

2

M∑

j=1

‖∇R⊤
j wj‖ ].

This concludes the proof.
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approx. ℓ1 ℓ2 approx. ℓ∞

Figure 2: Approximation of point data with different N(x). Top: points and
approximating curves. Bottom: error distribution.

According to this result, the Gauss-Newton-type method (Definition 4) performs with
quadratic convergence rate in the zero-residual case. However, the assumptions restrict the
choice of the weight function w(x), and therefore of the norm–like function N(x). More
precisely, the weight function w(x) must be positive and has to be bounded for x ∈ [0, ǫ].

The weights of the ℓp norms for p 6= 2 do not fulfill these conditions. In the case p < 2,
even a single vanishing residual causes the Hessian to diverge.

Consider the case p > 2. In a zero–residual case, all residuals vanish simultaneously
which causes the Hessian to be singular. In the general situation, some of the weights may
vanish in the limit. This has the same effect as if the points with the associated weights
would be excluded from the data set. Since we assume that M ≫ n this will not influence
the regularity compared to the ℓ2 case too much, since sufficiently many points can be
expected to remain. Consequently, one may expect that the method works well for most
data sets.

6 Examples

We present three numerical examples.

Example 4. Fig. 2 shows a point cloud which was approximated with a polynomial curve
of degree 5 that interpolates the first and the last data point. The three pictures in the top
row show the sensitivity of approximations obtained using different norm–like functions
N(x) with respect to outliers. The first result was obtained with N(x) = 1− exp(−(ηx)2)
which shall serve as an approximation of the ℓ1 norm, where the choice of η will be clearified
in the next remark. In the statistics literature, the weight derived from this function is
called the Welsch weight [9]. The second result is the ℓ2 fit, where N(x) = x2. For the
third result, the maximal distance from the curve to the data points was to be minimized.
This corresponds to the ℓ∞ norm. We replaced this non-differentiable norm by N(x) =
exp((ηx)2) − 1. The plots in the bottom row visualize the lengths of the error vectors.
From left to right the maximal error decreases, while the distribution of the error gets



7 CONCLUSION 12

approx. ℓ1 ℓ2 approx. ℓ∞

Figure 3: Approximation of point data with different N(x). Top: fitted
curves. Bottom: distances from data to curve.

more uniform.

Remark 4. The results obtained by minimizing the objective functions with N(x) =
1 − exp(−x2) and N(x) = exp(x2) − 1 are not invariant under scaling. The parameter η
is introduced in order to avoid this dependency. A possible strategy for choosing the
parameter η is the following. First we compute the ℓ2 fit of the data points and identify
the point which has the largest distance to the curve or surface. Then η is chosen such
that this data point has some prescribed weight w0. This does not require much additional
computational effort, since the ℓ2 approximation should be computed anyway, in order to
obtain a suitable initial value for the iteration process.

Example 5. Fig. 3 shows a point set that was obtained from the data of the previous
example by adding some additional noise. Also the single outlier was eliminated. From left
to right one can see again an approximate ℓ1 fit, an ℓ2 approximation and an approximate
ℓ∞ fit. Again, the magnitudes of the corresponding errors in the bottom line show that
the maximal error decreases, while the distribution becomes more uniform. However, the
difference between the approximate ℓ1 fit and the ℓ2 fit are not that significant, since the
data points were perturbed with a uniform random error.

Example 6. In order to demonstrate the quadratic convergence rate in the zero-residual
case, we fitted an ellipse-shaped point cloud, as one can see in Fig. 4. The model curve
and the shape parameters were chosen according to Example 1. The errors in the first 7
steps are reported in the table. After 3 steps the new error is roughly the square of the
previous one, which indicates the quadratic convergence.

7 Conclusion

The generalized fitting problem (3) can be solved iteratively by using two different Gauss-
Newton-type methods. These methods are in fact equivalent to the technique of iteratively
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step error step error step error step error
0 11.583450 2 0.4580835 4 0.5437303e-6 6 0.9761834e-30
1 3.9724490 3 0.0041590 5 0.5572782e-14 7 0.1796254e-61

Figure 4: Top: Zero-residual approximation with an ellipse; initial position
and after 1, 2 and 4 steps and associated error vectors. Bottom: approxima-
tion errors.

re-weighted least-squares, where the weights w(x) and the corresponding norm-like function
N(x) are related by N ′(x) = xw(x). The direct application of the results which are
available in the scalar case, which is well understood in statistics does not give useful
results. The main difference between both approaches were illustrated by interpreting
both techniques as evolution processes.

In addition, based on classical results about Gauss-Newton methods, we analyzed the
convergence properties. By choosing other norm-like functions than N(x) = x2, which
corresponds to the ℓ2 norm, one may efficiently deal with data containing outliers, and one
may find curves and surfaces that minimize the maximum distance error.
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