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Ktroduction
:

Approximating Implicitly Defined Objects

Frequently used technique in geometric computations:

generating bounding regions

e Using the properties of the representation

e Min-max boxes
e Convex hulls
* lterative subdivision

¢ Using median curve/surface
Approximating curve/surface + error bound

» Low order approximating object (linear, quadratic)
 Approximating object with high order (interpolation)
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Motivation
e Implicitly defined curve approximation
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Curve approximation W|th subdivision methods

e Solving multivariate polynomial systems
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Bi-quadratic clipping
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Representation of Polynomials

The multivariate functions are given by their Bernstein-Bézier
tensor-product representation with respect to the domain 2 C R™:

= ) dklkHB

0<k;<m;
7,=1..n

Advantages:
— de Casteljau algorithm — stable subdivision
— variation diminishing, convex hull property — topology detection

— convex hull property — fast error bound generation
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Kat Arcs

Fat Arcs for Planar Parametric Curves

Fat arc construction:

(Sederberg '89)
® Median arc generation
® Curve distance measuring

e Offset generation

Our aim:

Fat arc generation for implicitly defined curve
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IEzat Arcs
Fat Arcs
Definition

A fat arc is defined by a circular arc(median arc) S and a thickness p € R.
F(S,0) ={x]|3Ixp € S,

If

x —xo| <o Ax€QCR"}
n = 2 — the fat arc is a part of an annulus,

n = 3 — bounded by a segment of a torus + spherical caps.
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Kat Arcs

Main Advantages of Arcs

® Cubic approximation order.

® Exact parametric and implicit representation

< Parametric form: rational Bernstein-Bézier form
e Convex hull property.
— Implicit form: special quadratic equations

e Fast computation of intersections.

e Fast computation of the offset - boundary of the fat region.
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E(urve Approximation

Subdivision Method

Curve: C={x|fi(x)=0,i=1,...n—1 AxeQCR"}
Tolerance bound: ¢

® Find regions without loops or singularities

if it fails — subdivision (until tolerance is reached)

® Fat arc generation

* Median arc generation
e Distance estimation

if it fails — subdivision
(until tolerance is reached)

® Segmentation with box boundaries.
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Median Arc Generation Techniques

® Fat arc generation

- Interpolation
e Median arc generation
- Least-squares

approximation

- Taylor-expansion

:
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EZurve Approximation

Median Arc Generation Techniques

® Fat arc generation

- Interpolation
e Median arc generation
- Least-squares

approximation

- Taylor-expansion

¢

Generalization

:
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E(urve Approximation

Modification of the Taylor-expansion: 2D

Find [(x,y) = lo + l1(z — ¢z) + l2(y — ¢y) such that

Hess(/f)(c) = (3 2) AER (1)

in the center ¢ of the domain.

Lemma

Given a polynomial f over the domain Q2 C R2. If |[Vf(c)|| # 0 in Q, then
there exists | such that f = lf satisfies (1), and it is unique up to a constant
factor.

The zero set of the quadratic Taylor-expansion of f is a circle.

s(x,y) = T} (@,9) = f(e) + fa(e) (@ — cx)+

+(©@) W —cy) A ((z —ca)? + (¥ —¢y)?) Vx€Q.
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E(urve Approximation

Modification of the Taylor-expansion: 3D

Find two pairs of polynomials k', 1" and k?,1? such that

Klry,2) = ko+ki(w—co) +ki(y —cy) + ki(z — c2),
ey, z) = lh+li(z—co)+ 15y —cy) +13(z — cz),
and
A0 0 '
Hess(k'f1 + 1" f2)(c) = 0 X 0 |, MNeR, =12 (2
0 0 X

in the center ¢ of the domain.

Lemma
Given fi1 and f» polynomials over Q C R®. Suppose that in the center of

IV fi(c) x Vfa(c)|| # 0.

For any (kéz lh) e Rz\{(O, 0)} there exists a non-trivial solution for k' and I’
such that k' f1 + ' f2 satisfies (2), and it is unique up to a constant factor.
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Arc Generation - 3D Taylor-expansion

We choose (ki, 1) and (K3,13)
A=kf+1'"fo and fo=k"fi+1"fa
The quadratic Taylor expansions have spherical zero level set:

s1 = ngl(c) (x) and s9 = ngz(c) (x)

The median arc S is the zero set of the polynomials s; and so

S={(x):51(x) =0As2(x) =0Ax € Q}.
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E(urve Approximation

Convergence of the Approximating Arc

Zero set of circular/spherical equation(s)

N
This can be used as the median arc.

Why is it a good choice?

If ¢ is a point from the approximated plane curve, then the

computed median arc is the osculating circle of the algebraic curve
in c.

If ¢ is a point from the approximated space curve, then the
computed sphere family has one common intersection arc which is
the osculating circle of the algebraic curve in c.

I

Convergence.
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EZurve Approximation

Distance Estimation

® Fat arc generation

o Distance estimation - One-sided
Hausdorff-distance

- Convex hull
property

o <
: :
Fat Arcs for Algebraic Space Curves JKU-DK3




EZurve Approximation

Distance Estimation

® Fat arc generation

o Distance estimation - One-sided
Hausdorff-distance

- Convex hull
property
1

Generalization
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Kurve Approximation
:

Distance Bound for Algebraic Curves

Consider the distance bound of f and s over the domain 2 C R™:

d(f.s) = IF ) = s()[2 .

2D
The curve: C = {x|f(x)=0Ax€eN}.
The medianarc: & = {x]|s(x) =0Ax € Q}.

If there is 0 < G < ||V f||, then the algebraic curve distance bounded by

The fat domain defined by:
F(S,0) = {X|E|X0 €S, |X0 —x| < Q},
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§<urve Approximation
:

Distance Bound for Algebraic Curves

3D - with using orthogonalized combination of f1(x) and f2(x)

The curve: C (x| fi(x) =0A fo(x) =0 Ax e Q}.
The median arc: & = {x|51(x) =0A52(x)=0 Ax € Q}.

If there exist 0 < GG, 0 < K such that
G<|VAll, G<|Vfal, |Vfi-Vfe]<K and 0<G*-K,

then the algebraic curve distance bounded by

- \/ d(f1.51)2 +d(fy. 5)?
2= G2_K :

The fat arc is the point set
'F(S7Q) = {X|E|X0 687 |X0 —X| < Q}
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Example - 2D
Fat arcs Boxes
£, W
L
]
]
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Approximation with arcs (Taylor-expansion and bounding boxes).
In the unit box with tolerance bound: 0.01.
Number of bounding primitives: 46 and 685.
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.E Zurve Approximation
Example - 3D
Fat arcs

Boxes

Approximating arcs for an implicitly defined space curve.
In the unit box with tolerance bound: 0.05.
Fat Arcs for Algebraic Space Curves

Number of bounding primitives: 35 and 319.
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.E Zurve Approximation
Example - 3D
Fat arcs

Boxes

Generate bounding domains around a singularity.

Fat Arcs for Algebraic Space Curves

In the unit box with tolerance bound: 0.05.
Bounding primitives: 277 fat arcs 4+ 22 boxes and 1320 boxes.
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e Root Finding Method
1. Algorithm

2. Fat Arc/Sphere Generation
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Xoot Finding Method

[terative Domain Reduction

Polynomial system: R = {x| fi(x) =0,i=1,...n A x€ Q CR"}
Tolerance bound: ¢

® Find segments without singular points
if it fails — subdivision (until tolerance is reached)

* Fat arc/sphere generation for each implicit curve/surface

« Median arc/sphere generation
 Distance estimate

if it fails — subdivision (until tolerance is reached)

® Generate min-max box around the intersection
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Xoot Finding Method

Fat Arc Generation 2D
Find
R={(z,y)| fi(z,y) =0,i=1,2 A (z,y) € 2 CR*}.

We compute fz with the modification of the Taylor-expansion.
fi=lfrand fo=lsfo.
s1 = T;l (e, ye) and sg = T]%2(wc,yc).
Using the former distance estimation for BB-polynomials:
B= .F(fl, s1) N f(fg, s92) N
+
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EZoot Finding Method

Fat Arc Generation - Example

The intersection of the fat arcs is bounded by a curved polygon.
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%oot Finding Method
Fat Sphere Generation 3D

Find
R={(z,y.2)| fiz,9,2) =0,i =13 A (z,y) € R C R’}

We compute fz with the modification of the Taylor-expansion.
fi=kifr +lifo, fo=kofi +lofs and fs = kafo + I3 f5.
Choose an element of each sphere family:

8; = T? (TeyYey 2e)y T =1..3.
Using the former distance estimation:

B = F(f1,51) N F(fa,52) 0 F(f3,53) NQ
i
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.E :oot Finding Method
Fat Sphere Generation - Example

Fat Arcs for Algebraic Space Curves

spherical patches.

=

The intersection of the fat spheres is bounded by plane segments and




IE:aot Finding Method
Domain Reduction

e Generate min-max box around the intersection
.
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Xoot Finding Method

Min-max Box Generation

The min-max box around the intersection is the min-max box around

- intersection points of fat region boundaries

- intersection points of fat region boundaries and box boundaries contained
by the other fat regions

- points on fat region boundaries with normal vector pointing into the
direction of a coordinate axis.
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oot Finding Method

Example 1. 2D

0.8

the degree of f : (4,7) <

the degree of g : (3,2)

0.6

0.4+

7.07107101
1.59900 102
4.6601610~7
1.616301020
1.90841 10760

0.24

o
o
o
=4
=
o
Y
o
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EZoot Finding Method

Example 2. - 2D Double root

the degree of f : (3,3) 1

the degree of g : (2,2) 1

0.6

1/2v2
6.62919 102
9.114141073
3.8537710~%
3.5799310~6 L R A R
3.35420107°
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Conclusion and future work

Algorithms:
® bound algebraic curves in 2 and 3 dimensional space

® bound the root of polynomial systems with two or three
variables
e theoretical analysis of the rate of convergence

Future work:
® generalization for higher dimensional problems

® interval-type methods for robust computation
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Thank you for your attention!
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