
Summer School Marktoberdorf (1970-2010)
Software and Systems Safety: Specification and Verification

Muhammad Taimoor Khan

Doktoratskolleg Computational Mathematics
Johannes Kepler University

Linz, Austria

October 20, 2010

1 / 14



Outline

I Introduction
I Organization
I Lectures
I Tutorials
I Model-Driven Development of Reliable Services

2 / 14



Introduction

I History
I NATO Software Engineering Conference in Germany

(1968)
I Tony Hoare and E.W. Dijkistra

I Introduction
I For two weeks (August 3-15, 2010)
I Academic Activities
I Entertainment

3 / 14



Model-Driven Development of Reliable Services by
Manfred Broy

I detail on coming slides.

4 / 14



Unifying Models of Data Flow by Tony Hoare

I

5 / 14



Model Checking by Doron Pelad

I Modeling of software and hardware systems
I Software specification using temporal logic and Buchi

Automata
I Translation between logic and automata
I Model Checking Algorithms
I How to make it work in practice:

abstraction/reduction/BDDs

6 / 14



Issues of Adaptable Software for Open-World
Requirements by Carlo Ghezzi

I Specifications and service level agreements among
different stakeholders and subsystems

I Functional and non-functional qualities
I Architecture: how do the requirements for dynamic

adaptation aspect software composition
I Language support to dynamic adaptation
I Modelling and analysis: development time requirements vs

runtime requirements

7 / 14



Requirements Models for System Safety and Security
by Connie Heitmeyer

I Modeling and formal specification of requirements
I Consistency and completeness checking of requirements
I Simulation of requirements to check their validity
I Generating invariants from requirements specifications
I Formal verification of requirements
I Testing and automatic code generation based on an

operational requirements model
I Modeling and analyzing systems for critical properties (e.g.

security and fault-tolerance)

8 / 14



Formal Methods and Argument-based Safety Cases
by John Rushby

I

9 / 14



Abstraction for System Verification by Susanne Graf

I Appropriate abstraction is the key for successful
verification of programs/systems

I General verification is of high complexity task (state
explosion)

I General framework for abstraction
I Using abstractions to (meaningfully) reason about large

composed systems
I General contract framework to prove stronger properties
I Proving properties with top-down design constraints and

bottom-up abstractions

10 / 14



Model-based Testing by Ed Brinksma

I Model-based testing (terminology and concepts)
I Derivation of functional tests from models in the form of

input/output transition systems
I Theory and tools can be extended to deal with real-time

behaviour in specifications, implementations and tests
I Test selection and coverage

11 / 14



From Concurrency Models to Numbers: Performance,
Dependability, Energy by Holger Hermanns

I

12 / 14



Formal Verification by John Harrison

I

13 / 14



Model-based Verification and Analysis for Real-Time
Systems by Kim Larsen

I

14 / 14


