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Outline

I Introduction
I Organization
I Lectures
I Tutorials
I Model-Driven Development of Reliable Services
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Introduction

I History
I NATO Software Engineering Conference in Germany

(1968)
I Tony Hoare and E.W. Dijkistra

I Introduction
I For two weeks (August 3-15, 2010)
I Academic Activities
I Entertainment
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Model-Driven Development of Reliable Services by
Manfred Broy

I detail on coming slides.
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Unifying Models of Data Flow by Tony Hoare

I

5 / 14



Model Checking by Doron Pelad

I Modeling of software and hardware systems
I Software specification using temporal logic and Buchi

Automata
I Translation between logic and automata
I Model Checking Algorithms
I How to make it work in practice:

abstraction/reduction/BDDs
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Issues of Adaptable Software for Open-World
Requirements by Carlo Ghezzi

I Specifications and service level agreements among
different stakeholders and subsystems

I Functional and non-functional qualities
I Architecture: how do the requirements for dynamic

adaptation aspect software composition
I Language support to dynamic adaptation
I Modelling and analysis: development time requirements vs

runtime requirements
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Requirements Models for System Safety and Security
by Connie Heitmeyer

I Modeling and formal specification of requirements
I Consistency and completeness checking of requirements
I Simulation of requirements to check their validity
I Generating invariants from requirements specifications
I Formal verification of requirements
I Testing and automatic code generation based on an

operational requirements model
I Modeling and analyzing systems for critical properties (e.g.

security and fault-tolerance)
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Formal Methods and Argument-based Safety Cases
by John Rushby

I
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Abstraction for System Verification by Susanne Graf

I Appropriate abstraction is the key for successful
verification of programs/systems

I General verification is of high complexity task (state
explosion)

I General framework for abstraction
I Using abstractions to (meaningfully) reason about large

composed systems
I General contract framework to prove stronger properties
I Proving properties with top-down design constraints and

bottom-up abstractions
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Model-based Testing by Ed Brinksma

I Model-based testing (terminology and concepts)
I Derivation of functional tests from models in the form of

input/output transition systems
I Theory and tools can be extended to deal with real-time

behaviour in specifications, implementations and tests
I Test selection and coverage
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From Concurrency Models to Numbers: Performance,
Dependability, Energy by Holger Hermanns

I
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Formal Verification by John Harrison

I
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Model-based Verification and Analysis for Real-Time
Systems by Kim Larsen

I
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