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Main results

An example leading to a non-trivial bound: ω ≤ 2.9262

TPP and DPP property of Sylow subgroups of a given group.

6× 6 small matrix multiplication: Reduces to 56 candidates
for groups of order < 90.

Relations between the TPP of an abstract group B and the
group Cn × B.
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Main results

An example leading to a non-trivial bound: ω ≤ 2.9262

TPP and DPP property of Sylow subgroups of a given group.

6× 6 small matrix multiplication: Reduces to 56 candidates
for groups of order < 90.

Relations between the TPP(Triple Product Property) of an
abstract group B and the group Cn × B.
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Triple Product Property

If S is a subset of a group, let Q(S) denote the right quotient
set of S ,i.e., Q(S) = {s1s−1

2 : s1, s2 ∈ S}.

Definition (CU03, Definition 2.1.)

A group realizes 〈n1, n2, n3〉 if there are subsets S1,S2, S3 ⊆ G
such that |Si | = ni , and for qi ∈ Q(Si ), if q1q2q3 = 1 then
q1 = q2 = q3 = 1. We call this condition on S1, S2, S3 the triple
product property.
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Constructing TPP

Theorem

A4(alternating group of order 4) realizes 〈3, 3, 2〉.

Proof.

TPP triples: S : {(1), (13)(24)}; T : {(1), (243), (234)};
U : {(1), (124), (142)}.
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Contructing TPP

Denote G := C6 × A4.

Proposition

G realizes 〈6, 6, 3〉 via S1,T1,U1:
S1 :=
{(1, 1), (1, (13)(24)), (3̄(1), 1), (3̄(1), (13)(24)), (3̄(2), 1), (3̄(2), (13)(24))};
T1 :=
{(1, 1), (1, (243)), (1, (234)), (2̄(1), 1), (2̄(1), (243)), (2̄(1), (234))};
U1 := {(1, 1), (1, (124)), (1, (142))}.
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Constructing TPP triples

Denote H := C3 × A4.

Proposition

H realizes 〈6, 4, 3〉 via S ,T ,U:
S :=
{(1, 1), (1, (13)(24)), (3̄(1), (13)(24)), (3̄(2), (13)(24)), (3̄(1), 1), (3̄(2), 1)};
T := {(1, 1), (1, (14)(23)), (1, (143)), (1, (134))};
U := {(1, 1), (1, (123)), (1, (132))}.
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Motivation

From the examples above we can see that once I got a ”TPP”
triple of a subgoup, say A4 , I would like to expand it in some
way to get a ”TPP” triple of a bigger group, say C6 × A4 or
C3 × A4.

It’s easier to obtain a TPP triple of a smaller group, so I
would like to find some theory behind, say relations between
TPP of A4 and TPP of Cn ×A4. (Cn: cyclic group of order n)
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constructing TPP triples—some principles

D := C2 × B, Q := C3 × B, F := Cn × B.
Take 〈6, 6, 6〉 for S2,T2,U2 for example:

S2 T2 U2

(1, s1) (1, t1) (1, u1)
(1, s2) (1, t2) (1, u2)
(1, s3) (1, t3) (2, z1)
(2, x1) (2, y1) (2, z2)
(2, x2) (2, y2) (2, z3)
(2, x3) (2, y3) (2, z4)

Here,we have S = {s1, s2, s3},T = {t1, t2, t3},U = {u1, u2},X =
{x1, x2, x3},Y = {y1, y2, y3},Z = {z1, z2, z3, z4}. And C2 = {1, 2}
is the cyclic group of order 2, 1 is the unit and 2 represents the
2-ordered element in it.
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constructing TPP triples—some principles

Theorem

If S2,T2,U2 ⊂ D satisfy TPP and S ∩ X 6= φ, then Y ∩ T = φ
and Z ∩ U = φ must hold.

Proof.

When S2,T2,U2 ⊂ D has TPP property, if S ∩ X 6= φ. Suppose
Y ∩ T 6= φ, w.l.o.g., y1 = t1, s1 = x1, then we have
(1, s1)(2, x1)−1(1, t1)(2, y1)−1(1, u1)(1, u1)−1 = 1, but obviously
(1, s1) 6= (2, x1), contradiction! With the same approach, we can
obtain Z ∩ U 6= φ.
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constructing TPP triples—some principles

Theorem

If S3,T3,U3 ⊂ Q satisfy TPP and S ∩ X 6= φ, then we have
Y ∩ T = φ and Z ∩ U = φ.

Theorem

If S2,T2,U2 ⊂ D satisfy TPP, then the subset triples (S ,Y ,U),
(S ,Y ,Z ), (S ,T ,Z ), (X ,T ,U), (X ,T ,Z ), (X ,Y ,U), (X ,Y ,Z ) of
B all satisfy TPP.
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constructing TPP triples—some principles

Theorem

If S2,T2,U2 ⊂ D satisfy TPP, and S2|B contains some repeated
elements, then B realizes 〈a, b, c〉, where a = r + 1 (r is the
number of elements that has more than one occurrence in S2|B),
b = |T2|, c = |U2|.
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An example for the theorem on the previous slide

Example

S2 T2 U2

(1, s1) (1, t1) (1, u1)
(1, s2) (1, t2) (1, u2)
(1, s3) (1, t3) (2, z1)
(2, x1) (2, y1) (2, z2)
(2, x2) (2, y2) (2, z3)
(2, x3) (2, y3) (2, z4)

Here |S ∩ X | = r , a = r + 1, b = |T2|, c = |U2|, then if
S2,T2,U2 ⊂ D satisfy TPP, we can obtain that B satisfies TPP
via 〈a, b, c〉, where D = C2 × B, C2 = {1, 2} is the cyclic group of
order 2, 1 is the unit and 2 represents the 2-ordered element in it.
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