
title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

A calculus for monomials in Chow group An−3(n)

Jiayue Qi

Joint work with Josef Schicho (University of Linz)

2020.07.02. Fika Webinar KTH

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

basic setting

Let n ∈ N, n ≥ 3, set N := {1, . . . , n}.
A partition (I , J) of N where both cardinality of I and J are at
least 2 is called a cut (of Mn).

And I , J are called two parts of the cut (I , J).

This talk focus on the Chow ring of Mn, where Mn is the
moduli space of stable n-pointed curves of genus zero.

Denote δI ,J as the class of a cut subvariety DI ,J of Mn.

We will not focus on the details of Mn, what is important for
this talk is the properties of this Chow ring.

We denote the Chow ring of Mn as A∗(n).

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

basic setting

It is a graded ring, we have A∗(n) =
⊕n−3

k=0 A
k(n); and these

homogeneous components are defined as Chow groups (of
Mn). Here, for instance, we say Ar (n) is a Chow group of
rank r .

Fact1: Ar (n) = {0} for r > n − 3.

Fact2: An−3(n) ∼= Z, we denote this isomorphism as∫
: An−3(n) −→ Z.

{δI ,J | {I , J} is a cut} is a set of generators for A1(n); they are
also generators for A∗(n).∏n−3

i=1 δIi ,Ji can be viewed as an element in An−3(n) since we
are in a graded ring.

Goal: calculate the integral value of this monomial, i.e.,∫
(
∏n−3

i=1 δIi ,Ji).

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

motivation

For me, this calculus shows up as a subproblem when I want
to improve an algorithm for realization-counting of Laman
graphs on the sphere.

With the help of the integral value calculation, I invent
another algorithm for the same goal.

However, by efficiency it does not seem faster or better than
the existing one.

But we see that this problem is fundamental, may be helpful
for other similar problems, or even further-away problems.

Then we focus on it, and try to formalize it as a result on its
own.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

two important properties of A∗(n)

Quadratic relations between the generators.

Linear relations between the generators.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

Keel’s quadratic relation

Among the generators of A∗(n), δI1,J1 · δI2,J2 = 0 and we say these
two generators fulfill Keel’s quadratic relation if the following
conditions hold:

I1 ∩ I2 6= ∅;
I1 ∩ J2 6= ∅;
J1 ∩ I2 6= ∅;
J1 ∩ J2 6= ∅.

Easy example: When n = 5, δ12|345 · δ13|245 = 0 but δ12|345 and
δ123|45 does not fulfill this relation.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

Keel’s quadratic relation

Inspired by this property, we know that if any two factors of
the monomial fulfills this relation, the whole integral will be
zero.

Now we only need to focus on those monomials where no two
factors fulfill this quadratic relation, we call those monomials
tree monomial.

This name also has a reason!

Since there is a one-to-one correspondence between these
monomials and a type of tree, which we define as loaded tree.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

loaded tree

A loaded tree with n labels and k edges is a tree (V ,E , h,m),
where h denotes the labeling function from V to the power set of
N and m denotes the multiplicity function for edges. The following
conditions must hold:

Non-empty labels {h(v)}v∈V form a partition of N;

Number of edges is k, edges are counted with multiplicity, i.e.,∑
e∈E m(e) = k;

deg(v) + |h(v)| ≥ 3 holds for every v ∈ V .

(Hint: this tree would correspond to a monomial in the Chow
group Ak(n).)

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

loaded tree

See some examples of loaded trees. (check with definitions)

Figure: This is a loaded tree with 5 labels and 2 edges.

Figure: This is a loaded tree with 6 labels and 3 edges.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

monomial of a given tree

We define the monomial of a given loaded tree as the
following:

For each edge we collect the labels on one side of it to form I
and labels on the other side of it to form J. And we say (I , J)
is the corresponding cut for this edge.

The monomial of this given loaded tree is
∏m

i=1 δIi ,Ji , where m
is the number of edges.

Each edge of the tree contributes to the monomial a factor
δI ,J if (I , J) is the corresponding cut for this edge.

We can see that it is well-defined and each loaded tree has a
unique monomial representation.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

monomial of a given tree

Figure: This is a loaded tree with 5 labels and 2 edges, the corresponding
tree of tree monomial δ12|345 · δ123|45.

Figure: This is a loaded tree with 6 labels and 3 edges, the corresponding
tree of tree monomial δ34|1256 · δ12|3456 · δ56|1234.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

one-to-one correspondence

Theorem

There is a one to one correspondence between tree monomials
T =

∏m
i=1 δIi ,Ji (1 ≤ m ≤ n − 3) and loaded trees with n labels and

m edges. We call the corresponding tree of a tree monomial tree
of the given tree monomial.

We also have an algorithm converting the monomial to tree, we
call it tree algorithm.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

tree algorithm

Input: a tree monomial M in Ak(n)

Output: a loaded tree with n labels and k edges

Step 1: collect all cuts in each factor of the monomial in set
C .

Step 2: collect all parts of those cuts in set P.

Step 3: pick any cut from set C , say c = (I , J) ∈ C .

Step 4: go through all elements in P, find those that is either
a cubset of I or a subset of J, collect them together in set P1.

Step 5: create a Hasse diagram H of elements in P1 w.r.t. set
containment order.

Step 6: consider H as a graph (V ,E). Each element in P1

has a corresponding vertex in H. We denote the vertex vI for
I ∈ P1.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

tree algorithm

Step 7: For each vertex v of H, define the labeling set h(v) as
its corresponding element in P1.

Step 8: Go through the vertices again, update the labeling
function: h(v) := h(v) \ h(v1) if v1 is less than v in H (in the
Hasse diagram relation).

Step 9: E = E ∪ {vI , vJ}. This edge corresponds to the cut
we pick in Step 3.

Step 10: set the multiplicity value m(e) for each edge e as the
power of its corresponding factor in M.

Step 11: return H = (V ,E , h,m).

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

tree algorithm: an example

Let’s see an example.

Example

Given a tree monomial
δ3123,456789 · δ12345,6789 · δ1234589,67 · δ1234567,89.

Obviously we have the labeling set
N := {1, 2, 3, 4, 5, 6, 7, 8, 9}.
We collect the parts in set
P := {123, 456789, 12345, 6789, 1234589, 67, 1234567, 89}
and we pick any cut c = {12345, 6789}.
After collecting all parts which are either contained in 12345
or 6789, we obtain P1 = {12345, 6789, 123, 67, 89}.
Then we construct the corresponding Hasse diagram for c , see
the figure below.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

tree algorithm: an example

Figure: This is the Hasse diagram of set {12345, 6789, 123, 67, 89} with
respect to set containment order.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

tree algorithm: an example

Example

The corresponding loaded tree see the figure below.

It is easy to see that if we go back from the tree constructing
monomial, we get the same one as the given one.

Figure: This is the corresponding loaded tree of monomial
δ3123,456789 · δ12345,6789 · δ1234589,67 · δ1234567,89. Multiplicity function values
are written in blue.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

value of a loaded tree

Goal: Calculate
∫

(T) for any tree monomial T ∈ An−3(n).

Recall:
∫

represents the isomorphism from An−3(n) to Z
Because of this one-to-one correspondence, now we define
value of a loaded tree as

∫
(T), where T is the

corresponding monomial of this loaded tree.

Given a loaded tree with n labels and n − 3 edges, we want to
calculate its value.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

weighted tree

LT = (V ,E , h): loaded tree with n labels and k edges.

its corresponding weighted tree: WT = (V ,E ,w).

weight function w : V ∪ E → N, w(v) := deg(v) + |h(v)| − 3
for all v ∈ V and w(e) :=multipicity(e)− 1 for all e ∈ E .

Tree monomial −→ Loaded tree −→ Weighted tree

Since permuting/renaming the labels doesn’t change the
integral value, we see that if two monomial have the same
weighted tree, they also must have the same value.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

weighted tree

Given a weighted tree of some tree monomial, its value is
defined to be the value of the monomial.

Our goal can also be to calculate the value of the weighted
tree (of some loaded tree with n labels and n − 3 edges).

Assume WT = (V ,E ,w) is a weighted tree of some
loaded tree with n labels and n − 3 edges, then we can
verify the following identity about the weight function w .∑

v∈V w(v) =
∑

e∈E w(e).

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

weight identity

∑
v∈V

w(v) =
∑
v∈V

(deg(v) + |h(v)| − 3)

=
∑
v∈V

deg(v) +
∑
v∈V
|h(v)| − 3 · |V |

= 2 · |E |+ n − 3 · |V |
= 2 · |E |+ n − 3 · |E | − 3

= n − 3− |E |∑
e∈E

w(e) =
∑
e∈E

(multiplicity(e)− 1)

=
∑
e∈E

multiplicity(e)− |E |

= n − 3− |E |

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

clever tree

For tree monomials in An−3(n), there is a known result.

Theorem

If all factors are distinct in T := Πn−3
i=1 δIi ,Ji , then

∫
(T) = 1. We

call this type of tree monomial clever monomial and its
corresponding loaded tree clever tree.

Remark

For clever trees, we know that they have value 1. What about
non-clever trees? Stage time for Keel’s linear relation.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

Recall: two important properties of A∗(n)

Quadratic relations between the generators.

Linear relations between the generators.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

Keel’s linear relation

Denote εij |kl :=
∑

i ,j∈I ,k,l∈J δI ,J . Then we have the equality
relations εij |kl = εil |kj = εik|jl , we call it Keel’s linear relation.

Example

When n = 6, we have ε12|35 = ε13|25 = ε15|23, i.e.,

δ12,3456 + δ124,356 + δ126,345 + δ1246,35

= δ13,2456 + δ134,256 + δ136,245 + δ1346,25

= δ15,2346 + δ145,236 + δ156,234 + δ1456,23

Remark

In the motivation, we mention the realization-counting of Laman
graphs pn the sphere, actually this integral value is the key thing
to solve there:

∫ ∏n−3
r=1 εir jr |kr lr . We can then see that the goal in

our talk is indeed a subproblem of it.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

Keel’s linear relation

Example

When n = 6, we have ε12|35 = ε13|25 = ε15|23, i.e.,

δ12,3456 + δ124,356 + δ126,345 + δ1246,35

= δ13,2456 + δ134,256 + δ136,245 + δ1346,25

= δ15,2346 + δ145,236 + δ156,234 + δ1456,23

Remark

From the example above we easily see that we can replace some
δI ,J , say δ12|3456, by ε13|25 − (ε12|35 − δ12|3456). Basicly we can
replace δI ,J by a sum of (2n−3 − 1) many (±)δI ′,J′ .

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

non-clever trees?

Example

Given: δ212|3456 · δ1234|56
Corresponding tree see below, note that for the multiplicity
function of edges, sometimes we draw all the edges down,
sometimes just write the multiplicity besides it.

use Keel’s linear relation:

δ212|3456·δ1234|56 = δ12|3456·δ1234|56·(ε13|25−δ124|356−δ126|345−δ1246|35).

After cancellations caused by Keel’s quadratic relation, we get
δ212|3456 · δ1234|56 = −δ12|3456 · δ1234|56 · δ124|356.

obtain tree value/monomial value: −1

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

non-clever trees?

Above is the newly generated tree in the example.

We can also see from the process that whenever we substitute
some term with the linear relation, we create a negative sign
for the value.

We call it one-step reduction.

Meanwhile, we generate one or more loaded tree of the same
type.

However, the weight sum of the edges (equivalently, of the
vertices) is reduced by one.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

non-clever trees?

Then we apply again this reduction to each one of the newly
generated trees.

When at some stage, it is reduced to zero, we directly know
the absolute value, by counting the number of clever trees in
total.

As for the sign, it is simply −1 to the power of weight sum of
the given loaded tree.

In this example, weight sum is reduced from 1 to 0.

The sign is (−1)1 = −1 and one clever tree is generated.
Therefore, the value of the given tree is −1.

We can also see that in order to compute the value of a
loaded tree, the tricky part is to figure out its absolute value.

Based on this idea, we have an algorithm for computing all
tree monomials in An−3(n). We call it forest algorithm.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

forest algorithm

Input: a loaded tree with n labels and n − 3 edges.

Output: value of this loaded tree.

Transfer the loaded tree to a weighted tree.

Calculate the sign of the tree value.

Construct a redundancy forest from the weighted tree.

Apply a recursive algorithm to this redundancy forest,
obtaining the absolute tree value.

Product of the sign and absolute value gives us tree value.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

running example: loaded tree

Figure: This is a loaded tree LT with 14 labels and 11 edges.

Let’s figure out its weighted tree!

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

running example: weighted tree

Figure: This is the weighted tree of the loaded tree LT , where the weight
of vertices and edges are tagged in red.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

running example: sign of the tree value

Given a weighted tree WT = (V ,E ,w).

Let S be the sum of vertex weight (or equivalently, sum of
edge weight) of LT .

Sign of the tree value is (−1)S .

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

sign of the tree value

Figure: This is the weighted tree of the loaded tree LT , where the weight
of vertices and edges are tagged in red.

Sum of vertex weight S = 1 + 4 + 1 + 0 + 1 = 7, so the sign of LT
value is (−1)7 = −1.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

redundancy forest

How do we transfer a weighted tree (V ,E ,w) (assume its
corresponding loaded tree LT = (V ,E , h)) to a redundancy
forest?

Replace each edge by a length-two edge with a new vertex
connecting them which has the same weight as the replaced
edge.

Then we obtain the redundancy tree (of loaded tree LT)
RT := (V ∪ E ,E1,w1).

Omit those vertices with weight zero and their adjacent edges,
we then obtain the redundancy forest of LT .

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

running example: weighted tree

Figure: This is the weighted tree of the loaded tree LT , where the weight
of vertices and edges are tagged in red.

First let’s figure out its redundancy tree on the whiteboard!

Let’s figure out its redundancy forest!

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

running example: redundancy forest

Figure: This is the redundancy forest RF of loaded tree LT , which
contains two trees and the weight of vertices of RF are tagged in red.

What is the recursive algorithm mentioned above for absolute tree
value?

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

recursive algorithm?

Let RF = (V ,E ,w) be the redundancy forest of a loaded tree
LT .

We define the value of RF as the following:

Pick any leaf of this forest, say l ∈ V , denote the unique
parent of l as l1.

If w(l) > w(l1), return 0 and terminate the process; otherwise,
remove l from RF and assign weight (w(l1)− w(l)) to l1,
replacing its previous weight. Denote the new forest as RF1.

Value of RF is the product of binomial coefficient
(w(l1)
w(l)

)
and

the value of RF1.

Base cases: whenever we reach a degree-zero vertex, if it has
non-zero weight, return 0 and terminate the process;
otherwise, return 1.

Value of RF is then the absolute value of LT .

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

absolute value

Figure: This is the redundancy forest RF of loaded tree LT , which
contains two trees and the weight of vertices of RF are tagged in red.

Let’s figure out how to apply the recursive algorithm to obtain the
absolute value!

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

absolute value

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

tree value

Finally we get the absolute value of RF as
1×

(1
1

)
×
(2
1

)
×
(4
3

)
×
(4
1

)
×
(1
1

)
= 32.

Combining with the sign −1, we obtain the value of LT as
−32.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

forest algorithm

Input: a loaded tree with n labels and n − 3 edges

Output: a natural number

Transfer the loaded tree to a weighted tree.

Calculate the sign of the tree value.

Construct a redundancy forest from the weighted tree.

Apply a recursive algorithm to this redundancy forest,
obtaining the absolute tree value.

Product of the sign and absolute value gives us tree value.

Implemented in Python; based on forest algorithm,
computation of

∫ ∏n−3
r=1 εir jr |kr lr is also implemented in Python.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

well-definedness; termination

Not hard to verify that at every step it does not matter from
which leaf we start and base cases are well-defined. Hence
forest algorithm is well-defined.

Input is a tree with (n− 2) vertices maximally, the redundancy
forest can have at most (n − 2) + (n − 3) = 2n − 5 many
vertices, which is finite.

The recursive algorithm strictly reduces the number of vertices
by 1 in each step, obtaining a proper sub-forest.

Hence the algorithm terminates and is well-defined.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

correctness

Theorem

Forest algorithm is correct.

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

Thank You

title background loaded tree value of a loaded tree Keel’s linear relation forest algorithm

Happy Birthday Kathlén

	title
	background
	loaded tree
	value of a loaded tree
	Keel's linear relation
	forest algorithm

