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Matrix multiplication exponent w

Definition (matrix multiplication exponent w)

The matrix multiplication exponent w is the smallest real number
w for which n x n matrix multiplication can be performed in
O(n“*¢) operations for each € > 0.

Itisclear: 2 <w <3

A Major Conjecture: w = 2.



Strassen's algorithm

Let A, B, C € R?"*?".

A A Bi1 B2 Cii G2
A= B — C = 1
[A21 Azz} ’ [521 322} ’ [C21 sz] (1)

Let

M := (A11 + A2)(B11 + Bx2)

M, := (A1 + Ax) By

Ms := A11(B12 — Bx)

Ms = A2z(Bo1 — B11) (2)
Ms := (A11 + A12) B2

M := (A21 — A11)(Bu11 + Bi2)

Mz := (A12 — Ax)(Ba1 + Bx)



Strassen's algorithm

Ci1, Ci2, Go1, Gy can be obtained from M; by additions.
Then we only need 7 multiplication operations in each step!
We repeat this step n times till the sub-matrix becomes number.

Denote f(n) as the total number of calculations for multiplying
two 2" x 2" matrices.

f(n+1)=T7f(n)+1-4",

where [ is the number of additions in one step of the algorithm.
Thus,
f(n) = (7+0(1))",

then for two N = 2" matrices, the asymptotic complexity of
Strassen’s algorithm is:

O([7+ O(l)]") — O(Nlog2 7+o(1)) s O(N2'8074).



History of the complexity of matrix multiplication

Volker Strassen, 1969, w < 2.8074.

Don Coppersmith, Shmuel Winograd, 1990, tensor algorithm
w < 2.375477. (CW1990)

Andrew Stothers, 2010, improve CW90 algorithm, w < 2.374.
Virginia Williams, 2011, w < 2.3728642.

Francois Le Gall, 2014, simplify Williams’ algorithm,
w < 2.3728639.



History of the complexity of matrix multiplication

@ Henry Cohn, Robert Kleinberg, Balazs Szegedy, Chris Umans,
2005, the Group-theoretical Method of Matrix Multiplication,
two conjectures = w = 2, best bound: w < 2.41.

@ Andris Ambainis, Yuval Filmus, Francois Le Gall, 2015,
"the framework of analyzing higher and higher tensor powers
of a certain identity of Coppersmith and Winograd cannot
result in an algorithm within running time O(n?372%) thus
cannot prove w = 2".

@ Hence the main topic of this thesis is the group-theoretical
method of matrix multiplication.
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Group Method of Matrix Multiplication: Notions

C: the field of complex numbers.

@ The group algebra C[G] of a finite group G decomposes as
the direct product C[G] =2 CH*% x ... x C%*% of matrix
algebras of orders di, ..., dr. These orders are the character
degrees of G.

o If we compute the dimensions of both sides, we have
|G| = Z; C/iz-

@ If G has an abelian subgroup A, then all the character degrees
of G are less than or equal to the index [G : A].



Group Method of Matrix Multiplication: Notions

e If S is a subset of a group, let Q(S) denote the right quotient
set of S,i.e., Q(S) = 5152_:l 151, €8S,

Definition (double product property)

We say that subsets S1, S» of a group H satisfy the double product
property if
q1q2 = 1 implies g1 = q2 = 1, where g; € Q(S;).

Definition

A group realizes (ny, ny, n3) if there are subsets 51, 5,,5; C G
such that |S;| = n;, and for g; € Q(S;), if g1g2g93 = 1 then

g1 = g2 = g3 = 1. We call this condition on 51, S, S3 the triple
product property.




Group-theoretical Method of Matrix Multiplication

Suppose G realizes (n, m, p) and has character degrees {d;}.

Theorem (CU03)

Suppose G realizes (n, m, p) and the character degrees of G are
{d;}. Then (nmp)~/3 < 3. di*.

Theorem (CU03)

Suppose G realizes (n, m,p) and has largest character degree d.
Then (nmp)“/3 < d“~2|G|.

Beating the sum of the cubes
Since w < 3,by ruling out the possibility of w =3, Thm1.8[CU03]
yields a nontrivial bound on w if and only if nmp > 3", d3.



Triple product property of Sylow subgroups

Theorem (TPP)

Suppose group G has Sylow p-subgroup P, Sylow g-subgroup @
and Sylow r-subgroup R, p, q, r are pairwisely coprime. Then G
realizes (|P|,|Q|, |R]|) via P, Q, R.

A\

Corollary (DPP)

Group G has Sylow p-subgroup P and Sylow g-subgroup @,
|P|,|Q| coprime. Then P,Q C G satisfy double product property.




The simultaneous double product property

Definition (CKSUO05)
We say that n pairs of subsets A;, Bi(for 1 </ < n) of a group H
satisfy the simultaneous double product property if
e for all i, the pair A;, B; satisfies the double product property,
and
e for all ij,k, a,-(aj’-)_lbj(bf()_1 =1 implies i = k, where
aj € A,‘,aj- S Aj, bj € Bj, andbz € Byg.




The simultaneous double product property

Theorem (CKSU05)

If n pairs of subsets A;, B; C H(with 0 < i < n— 1) satisfy the
simultaneous double product property, then the following subsets
S1,52,53 of G = (H3)A" x Sym(A,) satisfy the triple product
property: A

Sy =ar: 7w e Sym(A,),a, € A, for all v

S = brime Sym(A,), bAV € E‘, for all v

S3=Tcm:me Sym(A,), ¢, € a for all v




An example: a nontrivial bound for w

Example

H = Cyck x Cyc,, Ai = {(x,i) : x € Cyck}, B; = {(0, i)}, then for
i € Cycp, Aj, B; satisfy the The simultaneous double product
property.

Let G = (H®)A" x Sym(A,)

51 ={ar : 7 € Sym(An),a, € Z\\for all v}

Sy = {br : = € Sym(A,), b, € B, for all v}

Sz ={cr:me Sym(A,), ¢ € C,for all v}

where A, = {(a,b,c) €Z3:a+ b+ c=n—1anda,b,c > 0} for
n pairs subsets A;, Bijof H, 0 < i < n— 1, we define subset triples
in H3, v = (v1, v, 3) € A, is the index set:

;\\V = A, x {1} x By,

/B\V =B, x A, x {1}

C, = {1} x By, X Ay,




An example

Example

from CKSUOQ5 theorem 4.3(as showed above)we know that

51, 52,53 C G satisfy the triple product property. From CKSU05
thm1.8 and corl.9, we have (|S1]|S2[|S3))“/3 < 3°; d¥, denote as
equation (1)

|51] = (|An|")(n )‘A "l =S| =185,

|84 = ("3Y) = 2n(n+1).

|G| = A (n k+1)3\A |, substitute into (1), dg < |A,|!

_—

1 I !

(n+1
6 2-log, ("5
k-n-(n+1) k-n(n+1)
By calculation we know when n =4, k = 3 w has a best bound
w < 2.63682.

w<3+
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Small matrix multiplication—background

The famous result O(n?81) is based on an algorithm that can
compute the product of two 2 x 2 matrices with only 7
multiplications.

@ Winograd: cannot produce better results with 2 x 2 matrices.

@ Hedtke and Murthy: the group-theoretic framework is not
able to produce better bounds for 3 x 3 and 4 x 4 matrices.

@ Sarah Hart, Ivo Hedtke, Matthias Muller-Hannemann and
Sandeep Murthy in 2013: the group-theoretic framework is
not able to produce better bounds for 5 x 5 matrices.

We consider the case for 6 x 6 matrices multiplication and to see
whether this particular TPP approach can give us a better bound.



Definition (BCS1997 chap 14, defl4.7)

Let k be a field and U, V, W finite dimensional k-vector space. Let
n:UxV — W be a k-bilinear map. For i € {1,...,r} let f; € U*,
gi € V*(dual spaces of U and V resp. over k) and w; € W such
that n(u,v) = >"7_, fi(u)gi(v)w; for all u € U, v € V. Then
{f,g1,m1;...; fr,gr, W, } is called a k-bilinear algorithm of length r
for n, or simply a bilinear algorithm when k is fixed. The minimal
length of all bilinear algorithms for 7 is called the rank R(n) of n.
Let A be a k-algebra. The rank R(A) of A is defined as the rank of
its bilinear multiplication map.




6 x 6 small matrix multiplication

Problem Statement: Is there a group with order less than 90
that can realize (6,6,6) TPP property and have multiplication
rank less than 161[DIStable]?

Since the search space is too large, my main thinking is to reduce
the search space by lots of necessary conditions.

If G is an abelian group realizing (6,6,6), then R(G) > 216.

So we only need to consider non-abelian groups from now on.



Necessary conditions for 6 x 6 small matrix multiplication

For a finite group G, let T(G) be the number of irreducible
complex characters of G and b(G) the largest degree of an
irreducible character of G.

Theorem (APlowerbounds, Theorem 6)

Let G be a group.

(1)If b(G) =1, then R(G) = |G]|.

(2)If b(G) = 2, then R(G) = 2|G| — T(G).

(3)If b(G) > 3, then R(G) > 2|G|+ b(G) — T(G) — 1

RENEILS

We write R(G) := 3", R(d;) for the best known upper bound and
R(G) for the best known upper bound(can be the theorem above
sometimes) for R(G).

| \

A




Necessary conditions for 6 x 6 small matrix multiplication

Theorem (HHMM555, lemma3.3)

If G is non-abelian, thenT(G) < 2|G|. Equality implies that
|G:Z(G)| =4

we have:

R(G) > 2/G] - T(G) = (11/8)|6|

Since we want R(G) < 161, then we have:
(11/8)[G| < 161

|G| < 117.



Necessary conditions for 6 x 6 small matrix multiplication

Definition ((6,6,6)C1 candidate)

If a group G realizes (6,6,6) and has R[G] < 161, we call this
group a (6,6,6) CI candidate.

Proposition
If group G is a (6,6,6) CI candidate, then 66 < |G| < 117.




Necessary conditions for 6 x 6 small matrix multiplication

Definition (HHMM555, definition3.4)

Let G be a group with a TPP triple (S, T, U), and suppose H is a
subgroup of index 2 in G. We define

So=SNH, To=TNH,U=UnNH, 5 =S\H, T, =T\ H
and Uy = U\ H.

Theorem (generalized)

If group G realizes (n,n,n). When n is odd, if G has a subgroup H

of index 2, then H realizes ("L, ™ 1tL)- When n is even, if G

has a subgroup H of index 2, then H realizes(3, 5, 5).

Lemma

Suppose G realizes (6,6,6). If G has a subgroup H of index 2,
then H realizes (3,3, 3).




Necessary conditions for 6 x 6 small matrix multiplication

If G realizes (6,6,6) and |G| < 90, then G has no abelian
subgroups of index 2.




6 x 6 small matrix multiplication—result

RENEILS

After all these necessary conditions and GAP calculations on the
bound of R(G) (rule out those groups G with R(G) > 161).

Among all the groups of order less than 90, possible C1 candidates
are listed as below by their GAP ID (56 groups in total):
(68,3),(72,3),(72,15),(72,16),(72,19),(72,20),(72,21),(72,22),
(72,23),(72,24),(72,25), (72,39),(72,40),(72,41),(72,42),(72,43),
(72,44),(72,45),(72,46),(72,47),(75.2),(78,1), (78,2),(80,3),
(80,15),(80,18),(80,28),(80,29),(80,30),(80,31),(80,32),(80,33),
(80,34), (80,39),(80,40),(80,41),(80,42),(80,49),(80,50),(81,3),
(81,4),(81,6),(81,7),(81,8), (81,9),(81,10),(81,12),(81,13),
(81,14),(84,1),(84,2),(84,7),(84,8),(84,9),(84,10),(84,11).
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Constructing TPP triples

Definition (IHupgrade2015, TPP capacity)

Denote the TPP capacity of group G as 3(G),
B(G) := max{npm,whereG realize (n,p, m)}.

Ay realizes (3,3,2), B(As) = 18.

TPP triples S : {(1), (13)(24)}; T : {(1), (243), (234)};
U {(1), (124), (142)}.



constructing TPP triples

Denote G := Cg x As.

Proposition

G realizes (6,6,3) via Sy, T1, Us:
51 =

{(1 1),(1,(13)(24)), (31, 1), (3, (13)(24)), (31, 1), (31, (13) (24

{(2,1), (L, (248)), (1, (234)), (2, 1);, (29, (243)), (21 (234))};
1,1), (1, (124)), (L, (142))}.




Constructing TPP triples

Denote H := (3 x As.

Proposition

H realizes (6,4,3) via S, T, U:

{(1,2), (1, (13)(24)), (3™, (13)(24)), (3, (13)(24)), (3M, 1), (3P, 1)}
T={(1,1),(1,(14)(23)), (1, (143)), (1, (134)) },
U:={(1,1),(1,(123)), (1,(132))}.




constructing TPP triples—some principles

First explain 52a T27 U21X7 Ya Z>51 T7 Ua Dv 53a T37 U3a QI

Theorem

If Sy, Ty, Uy C D satisfy TPP and SN X £ ¢, then YNT = ¢
and Z N U = ¢ must hold.

N

Theorem (generalized)

If S3, T3, Us C Q satisfy TPP and S N X # ¢, then we have
YNT=¢and ZN U = ¢.

A\




Constructing TPP triples—some principles

Proposition

If Sp, To, Ua C D satisfy TPP, then the subset triples (S, Y, U),
(5,Y.2),(S,T,2), (X, T,U), (X, T,Z2), (X,Y,U), (X,Y,Z) of
B all satisfy TPP.

Theorem

| \

If Sp, Tp, Uy C D satisfy TPP, and S,|g contains some repeated
elements, then B realizes (a,b,c), where a=r + 1 (r is the
number of elements that has more than one occurrence), b = | T>
Cc = |U2’

7

A\




Constructing TPP triples—some principles

Theorem (generalized)

IfS', T', U C F satisfy TPP and S;|g contains some repeated
elements, then B realizes (a, b, c), where a = max{r+1,|S;|} (r is
the number of elements that has more than one occurrence),

b = max{|T;|}, ¢ = max{|Ui|}.(explain S;, T;, U;, division of §'|g,
T'lg ,U'lg)
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Main results

@ An example leading to a non-trivial bound: w < 2.63682
@ TPP and DPP property of Sylow subgroups of a given group.

@ 6 x 6 small matrix multiplication: Reduces to 56 candidates
for groups of order < 90.

@ Relations between the TPP of an abstract group B and the
group C, x B.
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