A calculus for monomials in Chow group $A^{n-3}(n)$

Jiayue Qi

Joint work with Josef Schicho

July, 2020 — ISSAC 2020

Der Wissenschaftsfonds.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

ambient ring, problem statement

- Ambient ring: Chow ring of M_n $(n \in \mathbb{N}, n \ge 3)$. Denote it as $A^*(n)$.
- M_n : moduli space of stable n-pointed curves of genus zero.
- A bipartition {*I*, *J*} of *N* where the cardinality of both *I* and *J* are at least 2 is called a **cut** (of *M_n*).
- Denote $\delta_{I,J}$ as the class of the cut subvariety $D_{I,J}$ of M_n .
- It's a graded ring: $A^*(n) = \bigoplus_{k=0}^{n-3} A^k(n)$; $A^r(n)$ is a **Chow** group of rank r. $A^{n-3}(n) \cong \mathbb{Z}$, we denote this isomorphism as $\int : A^{n-3}(n) \longrightarrow \mathbb{Z}$.
- {δ_{I,J} | {I, J} is a cut} is a set of generators for A¹(n); they are also generators for A^{*}(n).
- $\prod_{i=1}^{n-3} \delta_{l_i,J_i}$ can be viewed as an element in $A^{n-3}(n)$ since we are in a graded ring.
- Goal: calculate the integral value of this monomial, i.e., $\int (\prod_{i=1}^{n-3} \delta_{l_i, J_i}).$

Keel's quadratic relation, tree monomial

Among the generators of $A^*(n)$, we say the two generators $\delta_{I_1,J_1}, \delta_{I_2,J_2}$ fulfill **Keel's quadratic relation** if the following conditions hold:

- $I_1 \cap I_2 \neq \emptyset$;
- $I_1 \cap J_2 \neq \emptyset$;
- $J_1 \cap I_2 \neq \emptyset$;
- $J_1 \cap J_2 \neq \emptyset$.

And when they are fulfilled, we have $\delta_{l_1,J_1} \cdot \delta_{l_2,J_2} = 0.$

- Hence, if any two factors of the monomial fulfills this relation, the whole integral will be zero.
- We call those monomials where no two factors fulfill this quadratic relation **tree monomial**.
- Since there is a one-to-one correspondence between these monomials and loaded trees.

loaded tree, weighted tree, sign of integral value

A loaded tree with *n* labels and *k* edges is a tree (V, E, h, m), where $h: V \to 2^N$ denotes the labeling function for vertices and $m: E \to \mathbb{N}$ denotes the multiplicity function for edges, such that the following conditions hold:

•
$$\cup \{h(v)\}_{v \in V, h(v) \neq \emptyset} = N.$$

•
$$\sum_{e\in E} m(e) = k$$
.

• $\deg(v) + |h(v)| \ge 3$ holds for every $v \in V$.

Remark

For a loaded tree LT = (V, E, h, m), we define its corresponding weighted tree WT = (V, E, w) by attaching a weight function $w : V \cup E \to \mathbb{N}$, $e \mapsto m(e) - 1$ for $e \in E$; $v \mapsto \deg(v) + |h(v)| - 3$ for $v \in V$. If WT = (V, E, w) is a weighted tree of some loaded tree with *n* labels and n - 3 edges, we can easily verify the folowing identity for the weight function: $\sum_{v \in V} w(v) = \sum_{e \in E} w(e)$. Given a tree monomial, the sign of its integral value is $(-1)^S$. (S: edge/vertex weight sum)

one-to-one correspondence, the calculus - running example

Theorem

There is a one-to-one correspondence between tree monomials $T = \prod_{i=1}^{m} \delta_{I_i,J_i} (1 \le m \le n-3)$ and loaded trees with n labels and m edges.

We have algorithms converting between loaded trees and tree monomials. Now we illustrate our calculus with an running example. We start from a loaded tree. Left: loaded tree with 14 labels and 11 edges. Middle: its weighted tree. Right: its redundancy tree.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

the calculus - running example

Figure: redundancy forest *RF*. value of *RF* := value of $RF_1 \times \binom{w(\text{unique parent})}{w(\text{leaf})}$ $w_1(\text{unique parent}) :=$ <math>w(unique parent) - w(leaf) () × $\binom{1}{1}$

Absolute integral value: $1 \times {\binom{1}{1}} \times {\binom{2}{1}} \times {\binom{4}{3}} \times {\binom{4}{1}} \times {\binom{1}{1}} = 32$. Weight sum: 7. Sign: $(-1)^7 = -1$. Final value: -32.

Zoom meeting

- For more discussions, welcome to join our Zoom session from 6 pm (Greek local time), 21st, July.
- https://us04web.zoom.us/j/75988687783?pwd= N3g5YUx1SGpXaU5taFA0VVJKN31Kdz09
- Meeting ID: 759 8868 7783
- Password: 0Lwy3b

Thank You