
From the equations to the Chow form

Jiayue Qi

Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, AUSTRIA

1 Introduction

The Chow form is a device for assigning invariant ’geometric’ coordinates to any
subvariety of projective space. It was introduced by Cayley for curves in 3-spaces and
later generalized by Chow and van der Waerden.

In this report I will introduce the basic definitions of Chow form and later we will
reach an algorithm how to compute te Chow form in primary Plücker coordinates of a
projective variety.

2 Definition of the Chow form

Definition 1 (Grassmannian). The set of all d-dimensional linear subspaces of Pn,
is called the Grassmannian and is denoted by G(d, n).

Definition 2. In a 3-dimensional projective space P 3, let L be a line through distinct
points x and y with homogeneous coordinates (x0 : x1 : x2 : x3) and (y0 : y1 : y2 : y3).
The (primary) Plücker coordinates of L: pij are defined as follows:

pij = |xi, yi;xj , yj | = xiyj − xjyi.

Remark 3. The definition implies pii = 0 and pij = −pji, reducing the possibilities
to only six independent quantities. The sixtuple is uniquely determined by L up to a
common nonzero scale factor. Also not all six components can be zero.

Alternatively, a line can be described as the intersection of two planes.

Definition 4. Let L be a line contained in distinct planes a and b with homogeneous
coefficients (a0 : a1 : a2 : a3) and (b0 : b1 : b2 : b3),respectively.(The first plane equation
is

∑
K aKxK = 0, for example.) The dual Plücker coordinate pij is

pij = |ai, aj ; bi, bj |.

Remark 5. Dual coordinates are equivalent to primary coordinates:

(p01 : p02 : p03 : p23 : p31 : p12) = (p23 : p31 : p12 : p01 : p02 : p03).

Here equality means the number on the right side are equal to the numbers on the
left side up to some scaling factor λ. Specially, let (i, j, k, l) be an even permutation of
(0, 1, 2, 3); then

pij = λpkl.

2 Jiayue Qi

Similarly, we can define Plücker coordinates for general cases: Given a d-dimensional
linear subspace L of n-dimensional complex projective space Pn, we can write L as
the intersection of n− d hyperplanes. Each hyperplane corresponds to a point in the
dual projective space, and we write the coordinates of these points as the rows of an
(n − d) × (n + 1) matrix M. Left multiplication gives a GL(n − d,C)-action on the
hyperplanes that preserves the subspace L. The invariant of this action are the maximal
minors of M, and these minors determine L uniquely. Conversely, L determines the
vector of minors up to multiplication by a nonzero constant. Thus we can represent L by
the projective vector of maximal minors of M, which we call the (primary) Plücker
coordinates or brackets of L.

Let X be an arbitary irreducible projective variety: X = {x ∈ Pn : f1(x) = ... =
fr(x) = 0}, where fi are homogeneous polynomials in k[x0, ..., xn] and k is a subfield
of the complex numbers. Let L be an (n-d-1)-dimensional linear subspace of Pn, let Y
be the set of all (n-d-1)-dimensional linear subspaces L of Pn such that X ∩ L 6= φ.

Theorem 6. The set Y is an irreducible hypersurface in the Grassmannian G(n− d−
1, n).

Remark 7. Every hypersurface in the Grassmannian is defined by a single polynomial
equation, the corresponding irreducible polynomial of Y is called the Chow form of
X, we denote it as RX . We can express RX as a polynomial in brackets. While this
representation is not unique, the Chow form itself is unique up to multiplication by a
nonzero constant.

When X is reducible, we have the following definition for its Chow form:

Definition 8. If X = X1 ∪X2 ∪ ...∪Xr, where Xi is irreducible and appears mi times
in the above equation, then the Chow form of X is RX := Rm1

X1
...Rmr

Xr
.

Remark 9. In this case, RX has coefficient in k, the field of definition of X, while the
factors RXi

have coefficients in some algebraic field extension k′ of k.

3 From equations to the Chow form

In this section, we consider an algorithm computing the corresponding Chow form in
primary Plücker coordinates for a projective variety.

Suppose X is an irreducible projective variety, presented by a finite set of generators
for the corresponding homogeneous prime ideal I = I(X) in k[x0, ..., xn].

step 0: Compute d = dim(X).
step 1: Add d+ 1 linear forms li = ui0x0 + ui1x1 + ...+ uinxn with indeterminate

coefficients, consider the ideal J = I + 〈l0, ..., ld〉 ⊂ k[xi, uji : i = 0, ..., d, j = 0, ..., n] =:
S.

step 2: Replace J by J ′ = (J : (x0, ..., xn)
∞) = {f ∈ S|∀i∃di : xdi

i f ∈ J}.
step 3: Compute the elimination ideal J ′∩k[u00, u01, ..., udn], since it’s in a Euclidean

domain, the ideal is principal; let R(u00, ..., udn) be its principal generator.
step 4: Rewrite the polynomial R in terms of brackets. The result is the Chow form

RX .

From the equations to the Chow form 3

Here are some intuitive explanation of this algorithm: In step 1 we form the natural
incidence correspondence {(x, L) : x ∈ X ∩ L} between X and the Grassmannian. In
step 2 we remove trivial solutions with all x-coordinates zero, for which there is no point
in Pn. In step 3 and 4 we project the incidence correspondence onto the Grassmannian.

Remark 10. This algorithm works not only for prime ideals but for all unmixed ho-
mogenous ideals.

I have implemented this algorithm in Maple, and I will list some examples in the next
section.

4 Examples

In the program, we only need to input the corresponding ideal of our variety X and the
dimension of whole space, then we will get the Chow form of X in bracket polynomial.
In this section we go through most of the examples listed in Dalbec and Sturmfels’
paper with a verification from our "chowform" program.

Example 11. Now let’s consider the twisted cubic curve X = {(s3 : s2t : st2 : t3) ∈
P 3 : (s : t) ∈ P 1}. It’s the intersection of three quatratic surfaces: X = {(x0 : x1 :
x2 : x3) ∈ P 3 : x0x2 − x21 = x0x3 − x1x2 = x1x3 − x22 = 0}. So we input this variety
into the program "chowform", then the out put is the same as what’s listed in the
paper "Introsuction to Chow forms" by John Dalbec and Bernd Sturmfels,which is:
RX = −[03]3 − [03]2[12] + 2[02][03][13]− [01][13]2 − [02]2[23] + [01][03][23] + [01][12][23]
up to modulo the syzygy [01][23]− [02][13] + [03][12].

Example 12. Consider the ideal I = 〈x21 − x0x2, x22 − x1x3〉. It’s variety consists of
the twisted cubic and the line x1 = x2 = 0. Then add the generic linear forms
u00x0+u01x1+u02x2+u03x3 and u10x0+u11x1+u12x2+u13x3. Saturate it with respect
to 〈x0, x1, x2, x3〉 and eliminate the x-variables, then we get a homogeneous polynomial
R of bidegree (4,4) in the uij . To obtain a polynomial in brackets, we may take the ideal
generated by R together with the polynomial u0iu1j − u0ju1i − [ij] for 0 ≤ i < j ≤ 3,
and eliminate the u-variables. Finally, we compute the normal form of the resulting
polynomial with respect to the syzygy [01][23]− [02][13]+[03][12]. The output is same as
RX = [03](−[03]3−[03]2[12]+2[02][03][13]−[01][13]2−[02]2[23]+[01][03][23]+[01][12][23])
up to the syzygy [01][23]− [02][13] + [03][12] .

Example 13. Here is an example with k = Q and k′ = Q(ω), where ω is a primitive
cube root of unity. Consider the point set {(1 : ω : ω2), (1 : ω2) : ω} in the projective
plane. It’s defining ideal is 〈x0 + x1 + x2, x

2
1 + x1x2 + x22〉. Input it into our program,

we get the Chow form: [0]2 − [0][1] + [1]2 − [0][2]− [1][2] + [2]2.

Example 14. Another example is the Fermat cubic surface x30 + x31 + x32 + x33 = 0 in
P 3, its Chow form is [012]3 − [013]3 + [023]3 − [123]3.

Example 15. Now let’s consider the intersection of the twisted cubic with the hyperplane
x0+x1+x2+x3 = 0, after factoring over complex numbers, it coincides with the result
in their paper: −([0]− [1] + [2]− [3])([0] + i[1]− [2]− i[3])([0]− i[1]− [2] + i[3]).

4 Jiayue Qi

Example 16. For the surface (x1 − x2)3 − x0x3(x0 − 3x1 + 3x2 − x3) = 0, it’s Chow
form in P 3 is: −[012][123]([012] + 3[013] + 3[023] + [123]) + ([013] + [023])3.

Example 17. The Chow form of the planar curve defined by 3x30 + 2x20x1 + 13x20x2 −
12x0x

2
1−4x0x1x2+13x0x

2
2+8x31−12x21x2+2x1x

2
2+3x32 is 3[01]3−2[01]2[02]+13[01]2[12]−

12[01][02]2 + 4[01][02][12] + 13[01][12]2 − 8[02]3 − 12[02]2[12]− 2[02][12]2 + 3[12]3.

The last example in their paper is quite time consuming in my program, so I didn’t
manage to verify it.

5 Further remark

In my program I only considers Plücker relation when the dimension of the variety is 1
and dimension of the whole space is 3, but for other situations I didn’t manage to add
this into consideration for the moment, it could be one of the future works (to improve
the present "chowform" program). So as we mentioned above, the representation of
bracket polynomial may not be unique sometimes. Actually even if we consider the
Plücker relations, the representation may also not be unique but the result could be
more concise in some cases.

6 Reference

– Dalbec J., Sturmfels B. (1995) Introduction to Chow Forms. In: White N.L. (eds)
Invariant Methods in Discrete and Computational Geometry. Springer, Dordrecht

– Bernd Sturmfels. Algorithms in Invariant Theory. Springer Verlag, Vienna, 1993.

From the equations to the Chow form 5

7 Appendix

The program "chowform.txt" is written in Maple language. Input should be a homoge-
neous ideal s (denote its corresponding projective variety as X), and the dimension of
the projective space that we are working in n. Output should be the Chow form for X
in bracket polynomial.

7.1 Program: from equations to the Chow form

with(PolynomialIdeals):
with(Groebner):
with(combinat):

ChowForm:= module()
export chow;

chow:= proc(s,n) local d,b,c,g,i,j,a,J,k,K,l1,l2,K1,B,R,i1,j1,R1,S1,S2,u,br,Q
,R3,S,R2,N,t0,t1,t2,t3,t4,t5,t6,p,e,t,i5;

b:= {};
c:= {};
g:= {};

B:= {};
t:= {};
t6:= {};
t3:= {};
K:= <1>;

for k from 0 by 1 to n do
c:= ‘union‘({x[k]}, c);

end do;
d:=HilbertDimension(s,c)-1;

for i from 0 by 1 to d do
a[i]:=0;
for j from 0 by 1 to n do

a[i]:= a[i] + u[i,j]*x[j];
end do;
b:= ‘union‘({a[i]}, b);

end do;
J:= Add(s,);

6 Jiayue Qi

for i5 from 0 by 1 to n do
K:= Intersect(K,Saturate(J,x[i5]));

end do;

for l1 from 0 by 1 to d do
for l2 from 0 by 1 to n do

g:= ‘union‘({u[l1,l2]}, g);
end do;

end do;

K1:= EliminationIdeal(K, g);
R:= Basis(K1,plex(seq(g)));
S:= {seq(R)};

e:=binomial(n+1,d+1);
p:=firstcomb(n+1,d+1);

for t0 from 1 by 1 to e do

for t2 from 0 by 1 to d do
for t1 from 1 by 1 to d+1 do

t:=‘union‘({u[t2,p[t1]-1]} ,t);
t6:=‘union‘({p[t1]-1},t6);

end do;

t3:=‘union‘({[seq(t)]} ,t3);
t:={};

end do;

t4:= Matrix([seq(t3)]);

t5:= LinearAlgebra:-Determinant(t4);

B:=‘union‘({br[seq(t6)]} ,B);

S:=‘union‘({t5-br[seq(t6)]} ,S);

p:=nextcomb(p,n+1);
t3:={};

From the equations to the Chow form 7

t6:={};
end do;

S1:= seq(S);
S2:= <S1>;
R1:= EliminationIdeal(S2, B);

R3:= Basis(R1,plex(seq(B)));

if d=1 and n=3 then

Q:= br[0,1]*br[2,3]-br[0,2]*br[1,3]+br[0,3]*br[1,2];

N:=NormalForm(R3,{Q},tdeg(seq(B)));

R2:=Basis(<N>,plex(seq(B)));

return seq(R2);

else

return seq(R3);

end if
end proc;

end module;

7.2 Example verifications

|\^/| Maple 2017 (X86 64 LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2017
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> read"chowform.txt";

ChowForm := module() export chow; end module

> h:=ChowForm;
h := ChowForm

> h:-chow(<x[0]*x[2]-x[1]^2,x[0]*x[3]-x[1]*x[2],x[1]*x[3]-x[2]^2>,3);
memory used=2.6MB, alloc=40.3MB, time=0.20
memory used=3.8MB, alloc=72.3MB, time=0.34

8 Jiayue Qi

-2 br[0, 1] br[0, 3] br[2, 3] - br[0, 1] br[1, 2] br[2, 3]

2 2
+ br[0, 1] br[1, 3] + br[0, 2] br[2, 3] - br[0, 2] br[0, 3] br[1, 3]

3
+ br[0, 3]

> h:-chow(<x[1]^2-x[0]*x[2],x[2]^2-x[1]*x[3]>,3);
2 2

br[0, 1] br[2, 3] - br[0, 1] br[0, 2] br[1, 3] br[2, 3]

2 2
- 2 br[0, 1] br[0, 3] br[2, 3] + br[0, 1] br[0, 3] br[1, 3]

2 2 4
+ br[0, 2] br[0, 3] br[2, 3] - br[0, 2] br[0, 3] br[1, 3] + br[0, 3]

> h:-chow(<x[0]+x[1]+x[2],x[1]^2+x[1]*x[2]+x[2]^2>,2);
2 2 2

br[0] - br[0] br[1] - br[0] br[2] + br[1] - br[1] br[2] + br[2]

> h:-chow(<x[0]^3+x[1]^3+x[2]^3+x[3]^3>,3);
memory used=40.0MB, alloc=75.9MB, time=2.87
memory used=105.3MB, alloc=117.2MB, time=9.60

3 3 3 3
br[0, 1, 2] - br[0, 1, 3] + br[0, 2, 3] - br[1, 2, 3]

> h:-chow(<x[0]*x[2]-x[1]^2,x[0]*x[3]-x[\
> 1]*x[2],x[1]*x[3]-x[2]^2,x[0]+x[1]+x[2]+x[3]>,3);

3 2 2 2 2
br[0] - br[0] br[1] - br[0] br[2] - br[0] br[3] + br[0] br[1]

2
+ 2 br[0] br[1] br[2] - 2 br[0] br[1] br[3] - br[0] br[2]

2 3 2
+ 2 br[0] br[2] br[3] + br[0] br[3] - br[1] + br[1] br[2]

2 2 2
+ br[1] br[3] - br[1] br[2] - 2 br[1] br[2] br[3] + br[1] br[3]

3 2 2 3
+ br[2] - br[2] br[3] + br[2] br[3] - br[3]

> h:-chow(<(x[1]-x[2])^3-x[0]*x[3]*(x[0]-3*x[1]+3*x[2]-x[3])>,3);

From the equations to the Chow form 9

memory used=169.3MB, alloc=117.2MB, time=14.00
memory used=213.2MB, alloc=120.0MB, time=18.55
memory used=292.4MB, alloc=133.8MB, time=28.47

2
-br[0, 1, 2] br[1, 2, 3] - 3 br[0, 1, 2] br[0, 1, 3] br[1, 2, 3]

2
- 3 br[0, 1, 2] br[0, 2, 3] br[1, 2, 3] - br[0, 1, 2] br[1, 2, 3]

3 2 2
+ br[0, 1, 3] + 3 br[0, 1, 3] br[0, 2, 3] + 3 br[0, 1, 3] br[0, 2, 3]

3
+ br[0, 2, 3]

> h:-chow(<3*x[0]^3+2*x[0]^2*x[1]+13*x[0\
>]^2*x[2]-12*x[0]*x[1]^2-4*x[0]*x[1]*x[\
> 2]+13*x[0]*x[2]^2+8*x[1]^3-12*x[1]^2*x[2]+2*x[1]*x[2]^2+3*x[2]^3>,2);

3 2 2
3 br[0, 1] - 2 br[0, 1] br[0, 2] + 13 br[0, 1] br[1, 2]

2
- 12 br[0, 1] br[0, 2] + 4 br[0, 1] br[0, 2] br[1, 2]

2 3 2
+ 13 br[0, 1] br[1, 2] - 8 br[0, 2] - 12 br[0, 2] br[1, 2]

2 3
- 2 br[0, 2] br[1, 2] + 3 br[1, 2]

