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Introduction

Inverse problems

“Inverse problems are concerned with determining causes for a
desired or an observed effect” [Engl, Hanke, and Neubauer, 2000]

Consider a linear operator equation

Ax = y.

Inverse problems most oft do not fulfill Hadamard’s postulate
[1902] of well posedness (existence, uniqueness and stability).

Computational issues: observed effect has measurement errors or
perturbations caused by noise.
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Introduction

1st Case: noisy data

Solve Ax = y0 out of the measurement yδ with
∥

∥y0 − yδ
∥

∥ ≤ δ.
Need apply some regularization technique

minimize
x

∥

∥Ax− yδ
∥

∥

2
+ α

∥

∥Lx
∥

∥

2
.

Tikhonov regularization

fidelity term (based on LS);

regularization parameter α;

stabilization term (quadratic).

[Tikhonov, 1963, Phillips, 1962]

Bleyer, Ramlau JKU Linz 4 / 22



Introduction
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Solve Ax = y0 out of the measurement yδ with
∥

∥y0 − yδ
∥

∥ ≤ δ.
Need apply some regularization technique

minimize
x

∥

∥Ax− yδ
∥

∥

2
+ αR(x).

Tikhonov-type regularization

fidelity term (based on LS);

regularization parameter α;

R is a proper, convex and weakly lower

semicontinuous functional.

[Burger and Osher, 2004, Resmerita, 2005]
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Introduction

Subgradient

The Fenchel subdifferential of a functional R : U → [0,+∞] at
ū ∈ U is the set

∂FR (ū) = {ξ ∈ U
∗ | R(v)− R(ū) ≥

〈

ξ , v − ū
〉

∀v ∈ U}.

First in 1960 by Moreau & Rockafellar and extended by Clark 1973.

Optimality condition:

If ū minimizes R then
0 ∈ ∂FR (ū)
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Introduction

Example

Consider the function R(u) = |u|

0

1

−1

Figure: Function (left) and its subdifferential (right).
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Introduction

2nd Case: inexact operator and noisy data

Solve A0x = y0 under the assumptions

(i) noisy data
∥

∥y0 − yδ
∥

∥ ≤ δ .

(ii) inexact operator
∥

∥A0 −Aǫ

∥

∥ ≤ ǫ .

What have been done so far?

Linear case - based on TLS [Golub and Van Loan, 1980]:

R-TLS: Regularized TLS [Golub et al., 1999];
D-RTLS: Dual R-TLS [Lu et al., 2007].

Nonlinear case: no publication (?)

LS: yδ and A0

minimizey
∥

∥y − yδ
∥

∥

2

subject to y ∈ R(A0)

TLS: yδ and Aǫ

minimize
∥

∥[A, y]− [Aǫ, yδ]
∥

∥

F

subject to y ∈ R(A)
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Introduction

Illustration

Solve 1D problem: am = b, find the slope m.

Given:

1. bδ, aǫ (red)

Solution:

1. LS solution (blue)

2. TLS solution (green)

−1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

slope 45.9078

TLS vs LS

 

 

LS solution

TLS solution

noisy data

true data

Example: arctan(1) = 45o [Van Huffel and Vandewalle, 1991]
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Introduction

R-TLS

The R-TLS method [Golub, Hansen, and O’leary, 1999]

minimize
∥

∥A−Aǫ

∥

∥

2

+
∥

∥y − yδ
∥

∥

2

subject to

{

Ax = y
∥

∥Lx
∥

∥

2

≤M .

If the inequality constraint is active, then

(

AT

ǫ Aǫ + αLTL+ βI
)

x̂ = AT

ǫ yδ and
∥

∥Lx̂
∥

∥ =M

with α = µ(1 +
∥

∥x̂
∥

∥

2

), β = −

∥

∥Aǫx̂− yδ
∥

∥

2

1 +
∥

∥x̂
∥

∥

2
and µ > 0 is the Lagrange

multiplier.

Difficulty: requires a reliable bound M for the norm
∥

∥Lx†
∥

∥

2

.
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Proposed method: DBL-RTLS

Consider the operator equation

B(k, f) = g0

where B is a bilinear operator (nonlinear)

B : U× V −→ H

(k, f) 7−→ B(k, f)

and B is characterized by a function k0.

K· = B(k̃, ·) compact linear operator for a fixed k̃ ∈ U

F · = B(·, f̃) linear operator for a fixed f̃ ∈ V

∥

∥B(k0, ·)
∥

∥

V→H
≤ C

∥

∥k0
∥

∥

U
;

∥

∥B(k, f)
∥

∥

H
≤ C

∥

∥k
∥

∥

U

∥

∥f
∥

∥

V
;

Example:

B(k, f)(s) :=

∫

Ω

k(s, t)f(t)dt .
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Proposed method: DBL-RTLS

We want to solve
B(k0, f) = g0

out of the measurements kǫ and gδ with

(i) noisy data
∥

∥g0 − gδ
∥

∥

H
≤ δ .

(ii) inexact operator
∥

∥k0 − kǫ
∥

∥

U
≤ ǫ .

We introduce the DBL-RTLS

minimize
k,f

J (k, f) := T (k, f, kǫ, gδ) +R(k, f)

where

T measures of accuracy (closeness/discrepancy)

R promotes stability.
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Proposed method: DBL-RTLS

DBL-RTLS

minimize
k,f

J (k, f) := T (k, f, kǫ, gδ) +R(k, f) (1)

where

T (k, f, kǫ, gδ) =
1

2

∥

∥B(k, f)− gδ
∥

∥

2

H
+
γ

2

∥

∥k − kǫ
∥

∥

2

U

R(k, f) =
α

2

∥

∥Lf
∥

∥

2

V
+ βR(k)

T is based on TLS method, measures the discrepancy on both
data and operator;

L : V → V is a linear bounded operator;

α, β are the regularization parameters and γ is a scaling
parameter;

double regularization [You and Kaveh, 1996],
R : U → [0,+∞] is proper convex function and w-lsc.

Bleyer, Ramlau JKU Linz 12 / 22



Proposed method: DBL-RTLS

Theoretical results

DBL-RTLS is a regularization strategy:

existence

stability

convergence

convergence rates (New)

More info:
www.dk-compmath.jku.at/people/ibleyer
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Computational aspects

Optimality condition

If the pair (k̄, f̄) is a minimizer of J (k, f), then (0, 0) ∈ ∂J
(

k̄, f̄
)

.

Theorem

Let J : U× V → R be a nonconvex functional,

J(u, v) = ϕ(u) +Q(u, v) + ψ(v)

where Q is a nonlinear differentiable term and ϕ, ψ are lsc convex

functions. Then

∂J(u, v) = {∂ϕ (u) +DuQ(u, v)} × {∂ψ (v) +DvQ(u, v)}

= {∂uJ(u, v)} × {∂vJ(u, v)}
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Computational aspects

Remark:

is difficult to solve wrt both (k, f)

J is bilinear and biconvex (linear and convex to each one)

applied alternating minimization method.

Alternating minimization algorithm

Require: gδ , kǫ, L, γ, α, β

1: n = 0
2: repeat

3: fn+1 ∈ argminf J(k, f |k
n)

4: kn+1 ∈ argmink J(k, f |f
n+1)

5: until convergence
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Computational aspects

Proposition

The sequence generated by the function J(kn, fn) is
non-increasing,

J(kn+1, fn+1) ≤ J(kn, fn+1) ≤ J(kn, fn).

Assumptions:

(A1) B is strongly continuous, ie., if (kn, fn)⇀ (k̄, f̄) then
B(kn, fn) → B(k̄, f̄)

(A2) B is weakly sequentially closed, ie., if (kn, fn)⇀ (k̄, f̄) and
B(kn, fn)⇀ g then B(k̄, f̄) = g

(A3) the adjoint of B′ is strongly continuous, ie., if
(kn, fn)⇀ (k̄, f̄) then B′(kn, fn)∗z → B′(k̄, f̄)∗z,
∀z ∈ D(B′)
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Computational aspects

Theorem

Given regularization parameters 0 < α ≤ α and β, compute AM

algorithm. The sequence {(kn+1, fn+1)}n+1 has a weakly

convergent subsequence, namely (knj+1, fnj+1)⇀ (k̄, f̄) and the

limit has the property

J(k̄, f̄) ≤ J(k̄, f) and J(k̄, f̄) ≤ J(k, f̄)

for all f ∈ V and for all k ∈ U.

Proposition

Let {(kn, fn)}n be a weakly convergent sequence generated by

AM algorithm, where kn ⇀ k̄ and fn ⇀ f̄ . Then there exists a

subsequence {knj}nj
such that knj → k̄ and there exists {ξ

nj

k }nj

with ξ
nj

k ∈ ∂kJ(k
nj , fnj) such that ξ

nj

k → 0.
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Computational aspects

Proposition

Let {n} be a subsequence of N such that the sequence

{(kn, fn)}n generated by AM algorithm satisfies kn → k̄ and

fn ⇀ f̄ . Then fnj → f̄ and there exists {ξ
nj

f }nj
with

ξ
nj

f ∈ ∂fJ(k
nj , fnj) such that ξ

nj

f → 0.

Remark: Graph of subdifferential mapping is sw-closed, ie., if
vn → v̄ and ξn ⇀ ξ̄ with ξn ∈ ∂ϕ (vn), then ξ̄ ∈ ∂ϕ (v̄).

Theorem

Let {(kn, fn)}n be the sequence generated by the AM algorithm,

then there exists a subsequence converging towards to a critical

point of J , ie.,

(0, 0) ∈ ∂J
(

k̄, f̄
)

.
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Numerical illustration

First numerical result

Convolution in 1D
∫

Ω

k(s− t)f(t)dt = g(s)

characteristic kernel and hat function;

space: Ω = [0, 1], discretization: N = 2048 points;

R(k) =
∥

∥k
∥

∥

w,p
with p = 1

Haar wavelet for {φ}λ and J = 10;

initial guess: k0 = kǫ, τ = 1.0;

1st. relative error: 10% and 10%.
2nd. relative error: 0.1% and 0.1%.
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Numerical illustration
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Numerical illustration
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