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Overview

B (C?-finite sequences are defined by certain linear recurrence equations.
B We will see how we can compute with them.

B These computations can be done with the package rec_sequences in Sage
(can be obtained from github.com/PhilippNuspl/rec_sequences).

B The package is based on the ore_algebra package (Kauers, Jaroschek, and
Johansson 2015).

sage: from rec_sequences.CFiniteSequenceRing import x*
sage: from rec_sequences.C2FiniteSequenceRing import x*
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https://www.github.com/PhilippNuspl/rec_sequences

C-finite sequences

A sequence a(n) € K is called C-finite if there are constants v, ..., v, € K, not
all zero, such that

Yoa(n) + - +y—1a(n+r—1)+ya(n+r)=0 forallneN.

B Examples: Fibonacci numbers, Lucas numbers, Pell numbers, etc.

B The set of C-finite sequences is a ring under termwise addition and
multiplication.

B Every C-finite sequence can be described by finite amount of data.

sage: C = CFiniteSequenceRing(QQ)
sage: £ = C([1,1,-1], [1,1])
sage: f[:10]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55] 2/16



C?-finite sequences

A sequence a = a(n) € KN is called C°-finite if there are C-finite sequences
co(n), ..., cr(n) € KN with ¢,.(n) # 0 for all n € N such that

co(n)a(n) + -+ c_1(n)a(n+r—1) + ¢ (n)a(n+r)=0 foralln e N.

B Contains C- and D-finite (also P-recursive or holonomic) and ¢-holonomic
sequences.

B Describable by finite amount of data.

B Studied by Kotek and Makowsky 2014 and Thanatipanonda and Zhang 2020.

sage: C2 = C2FiniteSequenceRing (QQ)

sage: fib_fac = C2([f,-1], [1])

sage: fib_fac[:10] # fibonacci-factorial, A003266
[+, 1, 1, 2, 6, 30, 240, 3120, 65520, 2227680] 3/16



Skolem-Problem

Skolem-Problem

Does a given C-finite sequence have a zero?

Not known whether decidable in general.

B Decidable for sequences of order < 4 (Ouaknine and Worrell 2012).

B Decidable if we have a unique dominant root (Halava et al. 2005).

B Sometimes the Gerhold-Kauers method using CAD can be applied (Gerhold
and Kauers 2005; Kauers and Pillwein 2010).

sage: £>0 # use Gerhold-Kauers to show positivity

True
sage: f.has_no_zeros ()

True
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Skolem-Mahler-Lech Theorem

A sequence (nd + r),en for r,d € Nis called an arithmetic progression.

Skolem-Mahler-Lech Theorem

Let ¢(n) be C-finite over a field of characteristic 0. Then the set

Z. ={neN|¢(n) =0}
is comprised of a finite set together with a finite number of arithmetic progres-
sions.

sage: # A021250, decimal expansion of 1/246

sage: ¢ = ¢([0,0,0,-1,0,0,0,0,1], [0, O, 4, O, 6, 5, 0, 4])
sage: c.zeros ()

Zero pattern with finite set {0} and arithmetic progressions:
- Arithmetic progression (5*n+3)_n

- Arithmetic progression (5*n+1)_n
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Example: Sparse Subsequences

Let ¢ be a C-finite sequence. The sequence c(n?) is C2-finite.

sage: fib_sparse = f.sparse_subsequence(C2) # A054783
sage: fib_sparse
C~2-finite sequence of order 2 and degree 2 with coefficients:
> cO0 (n) : C-finite sequence cO0(n): (-1)*c0(n) + (3)*c0(n+1) + (-1)
*c0(n+2) = 0 and c0(0)=-2 , c0(1)=-5
> cl (n) : C-finite sequence cl(n): (-1)*cl1(n) + (7)*cil(n+1) + (-1)
*¥c1(n+2) = 0 and c1(0)=-3 , c1(1)=-21
> c2 (n) : C-finite sequence c2(n): (-1)*c2(n) + (3)*c2(n+1) + (-1)
*¥c2(n+2) = 0 and c2(0)=1 , c2(1)=2
and initial values a(0)=1 , a(1)=1
sage: fib_sparse[:10]

[1, 1, 5, 55, 1597, 121393, 24157817, 12586269025]
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Ring

Theorem (Jiménez-Pastor, Nuspl, and Pillwein 2021b)

The set of C2-finite sequences is a difference ring under termwise addition and
multiplication.

Proof idea: Let a, b be C?%-finite. Is a + b a C?-finite sequence?

B Let R be the smallest K-algebra that contains all coefficients of the
recurrences of a, b and their shifts.
B Let Q(R) be its total ring of fractions (localization w.r.t. sequences which do
not contain zeros). This ring Q(R) is Noetherian.
B Then,
<O’n(CL + b) ‘ n e N)Q(R) - <a”a | n e N>Q(R) + <Unb | n e N)Q(R)

is finitely generated.
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Computable

B Is the ring computable?

B Algorithm suggested by the previous theorem: Reduce problem of finding a
recurrence for a + b to solving a linear system Az = b over Q(R).

B Not clear how to solve such systems.

B If the zeros of the sequences appearing in the system A can be computed:

0 A solution 2 can be computed (if such a solution exists).
0 Uses Skolem-Mabhler-Lech theorem and Moore-Penrose inverse.
O Not very efficient.
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Example addition

Consider
(-D)"a(n) +a(n+1)=0, bn)+bn+1)=0, forallneN.
Ansatz of order 2 for the sequence a + b:
zo(n) (a(n) +b(n)) +z1(n) (a(n+ 1)+ b(n+1)) + (a(n+2) + b(n+2)) = 0.
Using recurrences of a, b this can be written as
a(n) (xo(n) — (=1)"z1(n) — 1) + b(n) (xo(n) — x1(n) +1) = 0.
Equating coefficients of a, b to zero yields the linear system
() ()
1 -1 z1(n) -1
which has no solution for even n.
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Example addition continued

Ansatz of order 3 yields the linear system

1 —(-1)" -1
1 -1 1

It has the solution

(wo(n), z1(n), 22(n))

-

(_1)n+1 + %70) %(_1)71 +

Indeed, ¢ = a + b satisfies the recurrence

sage:
sage:
sage:
sage:
sage:
(3, 2)

(%(—1)7”rl +3)e(n) + (3(=1)"+3) c(n +2) + ¢(n+3) =0,

var("n")

a

b
c
G

c2([c((-1)~n), 11,
c2(r1, 11, [11)
= a+b

.order (), c.degree()

[11)
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More closure properties
C?-finite sequences are also closed under

B partial sums,
B taking subsequences at arithmetic progressions,

W interlacing.

Example
The sequence Z,EZ/SJ f((2k +1)2) is C?finite.

sage: a = fib_sparse.subsequence(2, 1).sum().multiple (3)
sage: a.order (), a.degree()

(9, 147)

11/16



C?-finite identities

Let f be the Fibonacci sequence. We denote the fibonomial coefficient by

n|  fn)f(n—=1)---f(n—k+1) fn—z+1
Hf‘ 0 (k) H

Let [ denote the Lucas numbers then

k=0

=[] 12k,
k=1
This can be shown using

W ¢-theory (Kilic, Akkus, and Ohtsuka 2012),
B creative telescoping applied to the C2-finite case,

MW difference rings with idempotent representations (Ablinger and Schneider
2021).
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Generating function

Lemma

Let a be C2-finite and g(x) = > >0 a(n)z™ its generating function. Then, g satis-
fies a functional equation of the form

> pr(@)g"™ () = p(=)
k=0

WithpO:"'apmape K[$]7d07"'7dm EN?’VO:"')’Ym € K.

B Not all coefficient sequences of functions satisfying such a functional equation
are C?-finite. E.g., not all coefficient sequences of even functions are C?-finite.
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Examples

Let f(n?) be the sparse subsequence of the Fibonacci sequence f. The gener-
ating function g of f(n?) satisfies the functional equation

(¢3x2 o ¢—3) g (¢2CC) o (¢3$2 o zp—?))g (szx)
t+2g (¢'2) — 29 (V'z) = (¥ — $)z +2(¢ - ¢)
where ¢ = %5 denotes the golden ratio and ¢ = 1%@ its conjugate.

sage: ¢ = C(2°n+1)
sage: d = C(3°n)
sage: a = C2([c, dl, [11)

sage: a.functional_equation ()
(x)g(2x) + (x)g(x) + (1/3)g(3x) = 1/3
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Further generalizations

B D-finite sequences satisfy linear recurrence with polynomial coefficients.

B Can define D?-finite sequences as sequences satisfying linear recurrence
with D-finite coefficients.

B Example: Superfactorial a(n) = [[,_, k! (A000178).

B Define C*-finite (or D*-finite) sequences as sequences satisfying a linear
recurrence with C*~!-finite (or D*~!-finite) coefficients.

B Using the same methods as for C?-finite: All these are rings (Jiménez-Pastor,
Nuspl, and Pillwein 2021a).

B Let c be C-finite. Then, c(n*) is C*-finite.
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Open problems

B More Examples and counterexamples.
B Asymptotics:
O Upper bound for a C2-finite sequence? Conjecture: o
O Precise asymptotic behavior (maybe only for subclass of C?-finite sequences).
B More efficient computations: How can we solve system efficiently?
B Are C2-finite sequences closed under the Cauchy product?
O Is the Cauchy product of 27° and 3"° a C2-finite sequence?
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