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C-finite sequences

A sequence c(n) € K" is called C-finite if there are constants vo,..., 71 € K
such that
Yoc(n) + -+ y—1c(n+r—1)+c(n+r)=0 forallneN.

B The sequence ¢(n) can be described completely by finite amount of data,
namely by
Y0y« -+ s Yr—1,¢(0), ... c(r —1).

B C-finite sequences form a ring under termwise addition and multiplication. We

denote it by R¢.
B Example: Fibonacci-sequence f(n), Lucas numbers, Perrin numbers.
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C?-finite sequences

A sequence a = a(n) € K is called C*-finite if there are C-finite sequences
co(n),...,c.(n) € KN with ¢.(n) # 0 for all n € N such that

co(n)a(n) + -+ c_i1(n)a(n+r—1)+c¢(n)a(n+r)=0 forallneN.

B The sequence a can again be described completely by finite data.

B Contains C- and D-finite and g-holonomic sequences.
B Similar sequences already studied in

0 Kotek and Makowsky 2014,

O Thanatipanonda and Zhang 2020.

B Recognizing whether recurrence is valid: Skolem-Problem.
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Skolem-Problem

Skolem-Problem

Does a given C-finite sequence have a zero?

Not known whether decidable in general.

B Decidable for small orders (< 4), Ouaknine and Worrell 2012.
B Asymptotic analysis can help in many cases.

B CAD can be used to determine sign-pattern of sequence, Gerhold and Kauers
2005.
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Examples C*-finite sequences

Example: Fibonorials (A003266)

Let f(n) be the Fibonacci sequence and 2n

a(n) = [Ii-, f(i). The sequence a is C*-

finite with recurrence C?finite:
fn+1a(n) — aln +1) = 0. 2", f(n?)

They are called fibonorial numbers.
D-finite:
Hy= T o
Let ¢(n) be C-finite. Then, ¢(n?) is C?-finite.

Kotek and Makowsky 2014 give a C2-finite C-finite: 2"

recurrence for f(n?) (A054783).
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Module of shifts

B Q(Rc) is the localisation of C-finite sequences w.r.t. the sequences which do
not contain any zeros.

B Let o: KN — KN be the shift operator, i.e. o (a(n)) = a(n + 1).

The following are equivalent:

1. The sequence a is C*-finite

2. The module (c"a | n € N)g(r,) over the ring Q(Rc) is finitely generated.
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Ring
Let a, b be C?-finite. Is a + b a C?-finite sequence?

(a”(a + b) | n e N)Q(Rc) - <a”a | n e N)Q(Rc) + <0nb ‘ n e N)Q(Rc)
Submodules of finitely generated modules might not be finitely generated as R¢ is
not Noetherian.

The set of C2-finite sequences is a ring under elementwise addition and multipli-
cation.

B Idea: Restrict underlying ring from R to Noetherian subring.
B Order of addition/multiplication depends on coefficients of the C?-finite

sequences.
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Addition of C>-finite sequence

Given C?-finite a, b of order 1, ;. Make ansatz
zo(n)(a(n) +b(n)) + -+ +zs1(n)(a(n+s—1) +b(n+s - 1))
+(a(n+s) + b(n +5)) =0
of unknown order s and unknown coefficients x, ..., zs-1 € Q(R¢). Repeated
application of the recurrences and collecting a(n + i) and b(n + 7) yields

ri—1 s—1

Z (Cm(n) + Z QG (n)xj (n)) a(n + 7;)4_
=0 =

r2—1 s—1

Z (62(71) + Z ﬁm(n)xj(n)) b(n+i)=0
=0 =

for some «y, o 5, Bi, Bij € Q(R¢). This equation is certainly true for all n if the

coefficient sequences of a(n + i) and b(n + i) are zero. /
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Addition of C>-finite sequence

The ansatz yields the linear system

Ar =w
with given A € Q(R¢)"1172)%s w € Q(R¢o)™ 2 and unknown z € Q(R¢)® where
the order of the ansatz is denoted by s.

Lemma

If the order of the ansatz s is chosen big enough, then the linear system Az = w
has a solution z(n) € K* for every n € N.

B Computation of s yields an ideal membership problem in R¢.
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Addition of C>-finite sequence

The ansatz yields the linear system

Ar =w
with given A € Q(R¢)"172)%5 w € Q(R¢)™ 2 and unknown = € Q(R¢)® where
the order of the ansatz is denoted by s.

Lemma

If a linear system Az = w has a termwise solution z(n) for every n € N, then
there exists a solution z € Q(R¢)*.

B Based on Kotek and Makowsky 2014.

B For computing z € Q(R¢)® we need to solve instances of the
Skolem-Problem.

B Hence, the lemma is not fully algorithmic. 813



Example
Consider

(=D)"+2")a(n) —a(n+1) =0,

(1+2")b(n) —b(n+1)=0, forallneN.
Ansatz of order 2 for the sequence ¢ = a + b yields the equation
<1 (—1)" + 2"> (mo(n)> B (—2 4 (—2)" 4+ 1)

1 1427 z1(n) —2.4" —3.2" — 1

which has no solution for even n.

Ansatz of order 3 yields recurrence

(=2-8" 4" +2.2" — (-1)" =2 (=2)" + (—4)" + 2 (=8)" + 1) c(n)
(=10-4" —5-2" +5 (=2)" + 10 (=4)") ¢(n + 1)
4-2"+(-1D)"+4(-2)"+1)e(n+2)

2¢(n+3)=0



More closure properties

C?-finite sequences are also closed under

B shifts,

B partial sums,

B taking subsequences at arithmetic progressions,
H interlacing.

Example

Let f denote the Fibonacci-sequence. The sequence

[2n/3]
( > (BE+ 1)2))
k=0 neN

is C2-finite.
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Fibonomial coefficients

Example: Fibonomial coefficients (Kilic, Akkus, and Ohtsuka 2012)

Let f be the Fibonacci sequence, [ the Lucas numbers and

Fib(n, k) f(n ZH

the fibonomial coefficient. Then,

En:Fib(Qn +1,k) = f[ 1(2k)
k=1

k=0
for all n € N. In particular, this sequence is C2-finite.

Identities of this form can be derived and proven fully automatically using
difference rings with idempotent representations (Ablinger and Schneider 2021).
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D? and C"-finite

B |n an analogous way, the set of C3-finite: 27°
D?inite sequences forms a
ring. D2finite: T, !
B This process can be iterated to
show that the sets of C* and C2-finite: 27
D*-finite sequences are a ring
forallk € I- D-finite: n!

B Jiménez-Pastor and Pillwein
2018, 2019 used a similar Cfinite: 27
construction for functions.
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Conclusion

B (2-finite sequences are a generalization of many well-studied structures.
B They have many closure properties which are usually computable.
B Algorithms can be limited by Skolem-Problem.
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