# SOLVING SYSTEMS OF EQUATIONS OF FIXED SIZE OVER FINITE GROUPS



Philipp Nuspl Institute for Algebra Austrian Science Fund FWF P29931





#### **Problem**

Let  $(G, \cdot)$  be a finite group.

#### Definition

Given polynomials  $t_1, \ldots, t_s$  over G we want to decide whether

$$\exists x = (x_1, \dots, x_n) \in G^n : t_1(x) = \dots = t_s(x) = 1.$$

- For fixed s the problem is called s-PolSysSat(G).
- For s = 1 the problem is called POLSAT(G).
- Otherwise the problem is called PolSysSat(G).

Assumption: Each polynomial t over G is of the form

$$t = w_1 \cdot w_2 \cdots w_k$$
 where  $w_i \in G \cup \{x_1, \dots, x_n\}$ .

# Systems of fixed size

Why consider s-PolSYSSAT(G)?

$$PolSat < s$$
- $PolSysSat < PolSysSat$ 

■ For  $D = (\{0,1\}, \land, \lor)$  we have PoLSAT $(D) \in P$ , but 2-PoLSYSSAT $(D) \in NPC$  (Gorazd and Krzaczkowski 2011, Schaefer 1978): V set of variables,  $Y \subseteq V^3$ :

$$\bigwedge_{\substack{(x,y,z)\in Y}} (x\vee y\vee z) = 1, \\ \bigvee_{\substack{(x,y,z)\in Y}} (x\wedge y\wedge z) = 0, \end{cases} \Leftrightarrow \Big(\bigwedge_{\substack{(x,y,z)\in Y}} (x\vee y\vee z)\Big) \wedge \Big(\bigwedge_{\substack{(x,y,z)\in Y}} (\neg x\vee \neg y\vee \neg z)\Big) = 1.$$

■ For the group  $S_3$  we have s-PolSysSat $(S_3) \in P$ , but PolSysSat $(S_3) \in NPC$ .

# **Expanded polynomials**

Let  $\mathbb{F}_q$  be the finite field with q elements. A polynomial  $f \in \mathbb{F}_q[x_1,\ldots,x_n]$  is given in expanded form if f is given as

$$f(x_1, \dots, x_n) = \sum_{0 \le s_1, \dots, s_n \le q-1} c_{s_1, \dots, s_n} x_1^{s_1} \cdots x_n^{s_n}$$

with  $c_{s_1,\dots,s_n}\in\mathbb{F}_q$ , i.e.

- $\blacksquare$  f is written as sum of monomials,
- $\blacksquare$  all the exponents are in  $\{0,\ldots,q-1\}$ .

## **Equations over Finite Fields**

Given:  $f_1, \ldots, f_s \in \mathbb{F}_q[x_1, \ldots, x_n]$ .

Asked:  $\exists x \in \mathbb{F}_q^n \colon f_1(x) = \dots = f_s(x) = 0.$ 

|                     | no restrictions | $f_i$ in expanded form ( $\Sigma$ problem) |  |  |
|---------------------|-----------------|--------------------------------------------|--|--|
| POLSAT              | NPC             | P                                          |  |  |
| $s	ext{-}PolSYsSat$ | NPC             | P                                          |  |  |
| <b>POLSYSSAT</b>    | NPC             | NPC (reduce POLSAT)                        |  |  |

# **Equations over Finite Fields**

Given:  $f_1, \ldots, f_s \in \mathbb{F}_q[x_1, \ldots, x_n]$ .

Asked:  $\exists x \in \mathbb{F}_q^n$ :  $f_1(x) = \cdots = f_s(x) = 0$ .

|                     | no restrictions | $f_i$ in expanded form ( $\Sigma$ problem) |  |  |
|---------------------|-----------------|--------------------------------------------|--|--|
| POLSAT              | NPC             | P                                          |  |  |
| $s	ext{-PolSysSat}$ | NPC             | P                                          |  |  |
| <b>POLSYSSAT</b>    | NPC             | NPC (reduce POLSAT)                        |  |  |

Proof: For  $f \in \mathbb{F}_q[x_1, \dots, x_n]$  we have

$$\left(\forall x \in \mathbb{F}_q^n \colon f(x) = 0\right) \Longleftrightarrow f \in \mathsf{Ideal}_{\mathbb{F}_q[x_1, \dots, x_n]} \left(x_1^q - x_1, \dots, x_n^q - x_n\right).$$

Let  $f(x_1,...,x_n) := \prod_{i=1}^{s} (1 - f_i(x_1,...,x_n)^{q-1})$ . Now

$$(\forall x \in \mathbb{F}_q^n : f(x) = 0) \iff \neg (\exists x \in \mathbb{F}_q^n : f_1(x) = \dots = f_s(x) = 0).$$

4/12

# **Known Results for Groups**

|                     | abelian | nilpotent        | solvable         | non-solvable     |
|---------------------|---------|------------------|------------------|------------------|
| PolSat              | Р       | P <sup>1</sup>   | ?                | NPC <sup>1</sup> |
| $s	ext{-}POLSYSSAT$ | Р       | P <sup>2</sup>   | ?                | NPC <sup>1</sup> |
| <b>POLSYSSAT</b>    | Р       | NPC <sup>1</sup> | NPC <sup>1</sup> | NPC <sup>1</sup> |

Results for solvable non-nilpotent groups:  $\mathsf{POLSAT}(G) \in \mathsf{P}$  with

 $\blacksquare$   $G = \mathbb{Z}_{2p^{\alpha}} \rtimes A$  for prime p and abelian group A, <sup>3</sup>

■  $G = P \times A$  for p-group P and abelian group A. <sup>4</sup>

<sup>&</sup>lt;sup>1</sup> Goldmann and Russell 1999

<sup>&</sup>lt;sup>2</sup> Aichinger 2019

<sup>&</sup>lt;sup>3</sup> Horváth 2015

<sup>&</sup>lt;sup>4</sup> Földvári and Horváth 2019

# Equations over $\mathbb{Z}_p \rtimes \mathbb{Z}_q$

#### Theorem (Horváth and Szabó 2006)

For groups G of order  $\vert G \vert = pq$  with primes p,q we have

$$\mathsf{PolSat}(G) \in \mathsf{P}.$$

We will now prove:

#### Theorem

For groups G of order  $\vert G \vert = pq$  with primes p,q we have

$$s$$
-POLSYSSAT $(G) \in P$ .

#### **Proof**

Let G be finite group with |G|=pq and  $p\geq q$  primes.

- If p = q or  $q \nmid p 1$ , then G is abelian.
- Write  $G = \mathbb{Z}_p \rtimes \mathbb{Z}_q$  with  $q \mid p-1$  and

$$\psi \colon (\mathbb{Z}_q, +) \to (\mathbb{Z}_p - \{0\}, \cdot) \cong \operatorname{Aut}(\mathbb{Z}_p).$$

■ Product of  $(a_1, b_1), (a_2, b_2) \in G$  is given as

$$(a_1,b_1)\cdot(a_2,b_2)=(a_1+\psi(b_1)\cdot a_2,b_1+b_2).$$

■ We want to solve a system over  $G = \mathbb{Z}_p \rtimes \mathbb{Z}_q$ :

$$t_1 = (a_{1,1}, b_{1,1}) \cdot (a_{1,2}, b_{1,2}) \cdots (a_{1,k_1}, b_{1,k_1}) = (0,0),$$

$$\vdots$$

$$t_s = (a_{s,1}, b_{s,1}) \cdot (a_{s,2}, b_{s,2}) \cdots (a_{s,k_s}, b_{s,k_s}) = (0,0).$$

■ This is equivalent to:

$$a_{1,1} + \psi(b_{1,1})a_{1,2} + \psi(b_{1,1})\psi(b_{1,2})a_{1,3} + \dots + \psi(b_{1,1})\psi(b_{1,2}) \dots \psi(b_{1,k_1-1})a_{1,k_1} = 0,$$

$$\vdots$$

$$a_{s,1} + \psi(b_{s,1})a_{s,2} + \psi(b_{s,1})\psi(b_{s,2})a_{s,3} + \dots + \psi(b_{s,1})\psi(b_{s,2}) \dots \psi(b_{s,k_s-1})a_{s,k_s} = 0,$$

$$b_{1,1} + b_{1,2} + \dots + b_{1,k_1} = 0,$$

$$\vdots$$

$$b_{s,1} + b_{s,2} + \dots + b_{s,k_s} = 0.$$

#### **Proof continued**

- Second part is linear system over  $\mathbb{Z}_q$ . We can solve it by Gaussian elimination.
- Use these results in first part. Then we have a system of polynomials over  $\mathbb{Z}_p$  in expanded form with
  - $\square$  variables  $a_{i,j}$  over  $\mathbb{Z}_p$  and
  - $\square$  variables  $\psi(b_{i,j})$  over  $H := \operatorname{Im}(\psi) \leq (\mathbb{Z}_p \{0\}, \cdot)$ .
- We know how to solve this in polynomial time.

### Equations over $P \rtimes A$

#### Theorem (Földvári and Horváth 2019)

For groups  $G = P \rtimes A$  where P is a p-group and A is abelian we have

$$\mathsf{PolSat}(G) \in \mathsf{P}.$$

#### Theorem

For groups  $G = P \rtimes A$  where P is a p-group and A is abelian we have

$$s$$
-POLSYSSAT $(G) \in P$ .

#### **Proof outline**

- Multiplication of elements in  $G = P \rtimes A$  can be expressed by polynomials over some field  $\mathbb{F}_a$  (Földvári and Horváth 2019).
  - ☐ Use representation as polycyclic group.
- In polynomial time we can compute these polynomials in expanded form.
- For fixed group one equation over G yields n equations in expanded form over  $\mathbb{F}_q$ .
- Then s equations over G yield  $s \cdot n$  equations in expanded form over  $\mathbb{F}_q$ .

# Equations over $\mathbb{Z}_{2p^{\alpha}} \rtimes A$

#### Corollary

For groups  $G=\mathbb{Z}_{2p^{\alpha}}
times A$  where p is prime,  $\alpha\in\mathbb{N}$  and A is abelian we have

$$s$$
-PolSysSat $(G) \in P$ .

#### Proof:

- If p = 2, then apply previous Theorem.
- lacksquare If p 
  eq 2, then  $\mathbb{Z}_{2p^{\alpha}} = \mathbb{Z}_2 imes \mathbb{Z}_{p^{\alpha}}$  and

$$(\mathbb{Z}_2 \times \mathbb{Z}_{p^{\alpha}}) \rtimes A \cong \mathbb{Z}_2 \times (\mathbb{Z}_{p^{\alpha}} \rtimes A).$$

#### References I

- Aichinger, Erhard (2019). "Solving Systems of Equations in Supernilpotent Algebras". In: 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Vol. 138. Leibniz International Proceedings in Informatics (LIPIcs), 72:1–72:9. ISBN: 978-3-95977-117-7.
- Földvári, Attila and Gábor Horváth (2019). "The Complexity of the Equation Solvability and Equivalence Problems over Finite Groups". In: International Journal of Algebra and Computation.
- Goldmann, Mikael and Alexander Russell (1999). "The complexity of solving equations over finite groups". In: Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity, pp. 80–86.

#### References II

- Gorazd, Tomasz A. and Jacek Krzaczkowski (2011). "The Complexity of Problems Connected with Two-element Algebras". In: Reports on Mathematical Logic 2011. Number 46.
- Horváth, Gábor (2015). "The Complexity of the equivalence and equation solvability problems over meta-abelian groups". In:
- Horváth, Gábor and Csaba A. Szabó (2006). "The Complexity of Checking Identities over Finite Groups". In: IJAC 16.5, pp. 931–940.
- Schaefer, Thomas J. (1978). "The Complexity of Satisfiability Problems". In: STOC. ACM, pp. 216–226.