SOLVING SYSTEMS OF EQUATIONS OVER CERTAIN SOLVABLE GROUPS

Philipp Nuspl Institute for Algebra Austrian Science Fund FWF P29931

Problem

Let (G, \cdot) be a finite group.

Definition

Given polynomials t_1, \ldots, t_s over G we want to decide whether

$$\exists x = (x_1, \dots, x_n) \in G^n : t_1(x) = \dots = t_s(x) = 1.$$

- For fixed s the problem is called s-PolSysSat(G).
- For s = 1 the problem is called POLSAT(G).
- Otherwise the problem is called PolSysSat(G).

Assumption: Each polynomial t over G is of the form

$$t = w_1 \cdot w_2 \cdots w_k$$
 where $w_i \in G \cup \{x_1, \dots, x_n\}$.

Motivation

Let $s \geq 2$. Why is s-PoLSYSSAT interesting?

$$\mathsf{PolSat} \overset{D}{<} s\text{-}\mathsf{PolSysSat} \overset{D_4}{<} \mathsf{PolSysSat}$$

with

- $D = (\{0,1\}, \land, \lor)$ (Gorazd and Krzaczkowski 2011),
- \blacksquare D_4 the dihedral group with 8 elements (Aichinger 2019).

Rings

If $P \neq NP$, then for rings R we have

¹ Aichinger 2019

² Burris and Lawrence 1993

³ Horváth 2011

Known Results for Groups

	abelian	nilpotent	solvable	non-solvable
PolSat	Р	P ¹	? 3 4	NPC ¹
$s ext{-PolSysSat}$	Р	P ²	?	NPC ¹
POLSYSSAT	Р	NPC ¹	NPC ¹	NPC ¹

¹ Goldmann and Russell 1999

² Aichinger 2019

³ Horváth 2015

⁴ Horváth and Földvári 2018

Main Theorem

Theorem (Horváth and Szabó 2006)

For groups G of order $\vert G \vert = pq$ with primes p,q we have

$$\mathsf{PolSat}(G) \in \mathsf{P}.$$

We will now prove:

Theorem

For groups G of order |G| = pq with primes p, q we have

$$s$$
-POLSYSSAT $(G) \in P$.

Proof

Let G be finite group with |G| = pq and $p \ge q$ primes.

- If p = q or $q \nmid p 1$, then G is abelian.
- Write $G = \mathbb{Z}_p \rtimes \mathbb{Z}_q$ with $q \mid p-1$ and

$$\psi \colon (\mathbb{Z}_q, +) \to (\mathbb{Z}_p - \{0\}, \cdot) \cong \mathsf{Aut}(\mathbb{Z}_p).$$

■ Product of $(a_1,b_1),(a_2,b_2) \in G$ is given as

$$(a_1,b_1)\cdot(a_2,b_2)=(a_1+\psi(b_1)\cdot a_2,b_1+b_2).$$

■ We want to solve a system over $G = \mathbb{Z}_p \rtimes \mathbb{Z}_q$:

$$t_1 = (a_{1,1}, b_{1,1}) \cdot (a_{1,2}, b_{1,2}) \cdots (a_{1,k_1}, b_{1,k_1}) = (0,0),$$

$$\vdots$$

$$t_s = (a_{s,1}, b_{s,1}) \cdot (a_{s,2}, b_{s,2}) \cdots (a_{s,k_s}, b_{s,k_s}) = (0,0).$$

■ This is equivalent to:

$$a_{1,1} + \psi(b_{1,1})a_{1,2} + \psi(b_{1,1})\psi(b_{1,2})a_{1,3} + \dots + \psi(b_{1,1})\psi(b_{1,2}) \dots \psi(b_{1,k_1-1})a_{1,k_1} = 0,$$

$$\vdots$$

$$a_{s,1} + \psi(b_{s,1})a_{s,2} + \psi(b_{s,1})\psi(b_{s,2})a_{s,3} + \dots + \psi(b_{s,1})\psi(b_{s,2}) \dots \psi(b_{s,k_s-1})a_{s,k_s} = 0,$$

$$b_{1,1} + b_{1,2} + \dots + b_{1,k_1} = 0,$$

$$\vdots$$

$$b_{s,1} + b_{s,2} + \dots + b_{s,k_s} = 0.$$

Second part

- Solving linear system over \mathbb{Z}_q with variables $\{y_1, \dots, y_n\}$: Gaussian elimination.
- Solutions can be written parametrized by some variables z_1, \ldots, z_k over \mathbb{Z}_q , i.e.

$$y_i = \sum_{j=1}^k c_{i,j} z_j + d_i$$
 for all $i = 1, \dots, n$

with $c_{i,j}, d_i \in \mathbb{Z}_q$.

■ Then

$$\psi(y_i) = \psi\left(\sum_{j=1}^k c_{i,j}z_j + d_i\right) = \psi(d_i)\prod_{j=1}^k \psi(z_j)^{c_{i,j}}.$$

Use these in the first part of the system.

First part

We now have a system of polynomials over \mathbb{Z}_p in expanded form with

- \blacksquare variables $a_{i,j}$ over \mathbb{Z}_p and
- variables $\psi(b_{i,j})$ over $H := \operatorname{Im}(\psi) \leq (\mathbb{Z}_p \{0\}, \cdot)$.

Lemma

Let $H \leq (\mathbb{Z}_p - \{0\}, \cdot)$ with $|H| \geq 2$. Then there exists a linear polynomial $h(x_1, \dots, x_k) \in \mathbb{Z}[x_1, \dots, x_k]$ with $h(H^k) = \mathbb{Z}_p$ and $k = \lceil \log_2(p) \rceil$.

Rewrite

$$a_{i,j} \longleftrightarrow h\left(a_{i,j}^{(1)}, \dots, a_{i,j}^{(k)}\right)$$

with new variables $a_{i,j}^{(l)}$ over H.

We have system of expanded polynomials over \mathbb{Z}_p with variables over H.

Equations over Finite Fields

Given: $f_1, \ldots, f_s \in \mathbb{F}[x_1, \ldots, x_n] \coloneqq \mathbb{Z}_p[x_1, \ldots, x_n]$.

Asked: $\exists x \in \mathbb{F}^n : f_1(x) = \cdots = f_s(x) = 0.$

	no restrictions	f_i in expanded form (σ problem)	
PolSat	NPC (reduce 3-CNF)	P	
$s ext{-PolSysSat}$	NPC	Р	
POLSYSSAT	NPC	NPC (reduce PoLSAT)	

Systems over Finite Fields

Given: $f_1, \ldots, f_s \in \mathbb{F}[x_1, \ldots, x_n] := \mathbb{Z}_p[x_1, \ldots, x_n].$

Asked: $\exists x \in \mathbb{F}^n : f_1(x) = \cdots = f_s(x) = 0.$

 \blacksquare For $f \in \mathbb{F}[x_1, \dots, x_n]$ we have

$$\forall x \in \mathbb{F}^n \colon f(x) = 0 \Longleftrightarrow f \in \mathsf{Ideal}_{\mathbb{F}[x_1, \dots, x_n]} \left(x_1^p - x_1, \dots, x_n^p - x_n \right).$$

Then we define

$$f(x_1,...,x_n) := \prod_{i=1}^{s} (1 - f_i(x_1,...,x_n)^{p-1}).$$

Now we have

$$\forall x \in \mathbb{F}^n \colon f(x) = 0 \Longleftrightarrow \neg \left(\exists x \in \mathbb{F}^n \colon f_1(x) = \dots = f_s(x) = 0 \right).$$

Systems over Finite Fields

Similarly we can generalize a result from Horváth and Szabó 2006:

Lemma

Let $H \leq (\mathbb{Z}_p - \{0\}, \cdot)$ be a multiplicative subgroup. If the $f_i \in \mathbb{Z}_p[x_1, \dots, x_n]$ are given in expanded form we can decide in polynomial time whether

$$\exists x \in H^n \colon f_1(x) = \dots = f_s(x) = 0.$$

References I

- Aichinger, Erhard (2019). "Solving systems of equations in supernilpotent algebras". In: arXiv:1901.07862.
- Burris, Stanley and John Lawrence (1993). "The Equivalence Problem for Finite Rings". In: Journal of Symbolic Computation 15.1, pp. 67 –71. ISSN: 0747-7171.
- Goldmann, Mikael and Alexander Russell (1999). "The Complexity of Solving Equations over Finite Groups.". In: IEEE Conference on Computational Complexity. IEEE Computer Society, pp. 80–86.
- Gorazd, Tomasz A. and Jacek Krzaczkowski (2011). "The complexity of problems connected with two-element algebras". In: Reports on Mathematical Logic 46, pp. 91–108.

References II

- Horváth, Gábor (2011). "The complexity of the equivalence and equation solvability problems over nilpotent rings and groups". In: Algebra universalis 66.4, pp. 391–403.
- (2015). "The complexity of the equivalence and equation solvability problems over meta-Abelian groups". In: Journal of Algebra 433.
- Horváth, Gábor and Attila Földvári (2018). "The complexity of the equation solvability and equivalence problems over finite groups". In: manuscript.
- Horváth, Gábor and Csaba A. Szabó (2006). "The Complexity of Checking Identities over Finite Groups". In: IJAC 16.5, pp. 931–940.