SOLVING SYSTEMS OF EQUATIONS
OVER CERTAIN SOLVABLE GROUPS
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Problem
Let (G, -) be a finite group.

Given polynomials ¢4, ..., ts over G we want to decide whether

dx=(z1,...,2,) €EG": t1(x) =+ =ts(x) = 1.

B For fixed s the problem is called s-POLSYSSAT(().
B For s = 1 the problem is called POLSAT(().
B Otherwise the problem is called POLSYSSAT(().

Assumption: Each polynomial ¢ over G is of the form

t=w - wy---w, Where w; € GU{xq,...,z,}.
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Motivation

Let s > 2. Why is s-POLSYSSAT interesting?

POLSAT 2 5-POLSYSSAT 24 POLSYSSAT
with

B D = ({0,1},A,V) (Gorazd and Krzaczkowski 2011),
B D, the dihedral group with 8 elements (Aichinger 2019).
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Rings

If P # NP, then for rings R we have
R nilpotent
y \

POLSAT(R) € P s-POLSYSSAT(R) € P

! Aichinger 2019
2 Burris and Lawrence 1993
3 Horvath 2011
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Known Results for Groups

‘ abelian ‘ nilpotent | solvable | non-solvable

POLSAT P p 7234 NPC !
s-POLSYSSAT P p2 ? NPC !
POLSYSSAT P NPC ! NPC ! NPC !

! Goldmann and Russell 1999
2 Aichinger 2019

3 Horvath 2015

* Horvath and Féldvari 2018
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Main Theorem

Theorem (Horvath and Szab6 2006)
For groups G of order |G| = pq with primes p, ¢ we have

POLSAT(G) € P.

We will now prove:

For groups G of order |G| = pq with primes p, ¢ we have

s-POLSYSSAT(G) € P.
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Proof

Let G be finite group with |G| = pg and p > ¢ primes.

B Ifp=gqorqgtp—1,then G is abelian.
B Write G = 7, x Zy with ¢ | p— 1 and

Vi (Zg,+) = (Zp — {0}, ) = Aut(Zp).

B Product of (a1,b1), (az,b2) € G is given as

(a1,b1) - (az,b2) = (a1 + ¥(b1) - az, by + ba).
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B We want to solve a system over G = Z, X Zj:

t1=(a1,1,b11) - (@12,b12) - -~ (@11, 01,6, ) = (0,0),

ts = (as,b bs,l) : (05,27 bs,2) ce (as,ks> bs,ks) = (07 O)

B This is equivalent to:

a1 +¥(i1)arz + b)) v(big)arz+ -+ (bia)w(bie) - (b g —1)a1k =0,

as1 + ¢(bs,1)a572 + w(bs,l)w(bsﬂ)as,i} +--+ ¢(b371)’(/1(b5’2) te w(bs,ksfl)as,ks =0,
b1y +bio+--+bi =0,

bs1 +bso 4 -+ bsp, =0.




Second part

B Solving linear system over Z, with variables {y, ..., y,}: Gaussian
elimination.

B Solutions can be written parametrized by some variables z1, .. ., z;, over Zg,
i.e.

k
yi:ZcZ}jz]‘—i—di foralli=1,...,n
j=1
with Cij, d; € Zq.
B Then
k k
Wly) = | D eigz +di | = (i) []o(z)™.

j=1 j=1

B Use these in the first part of the system. 8/12



First part

We now have a system of polynomials over Z,, in expanded form with

W variables q; ; over Z, and
W variables ¢ (b; ;) over H = Im(¢y)) < (Z, — {0}, ).

Lemma

Let H < (Z, — {0},-) with |[H| > 2. Then there exists a linear polynomial
h(x1,...,2x) € Z[x1, ..., 2] With h(H*) = Z, and k = [log,(p)].

Rewrite

ajj < h (ag,lj), ... ,aE?)

with new variables agl; over H.

We have system of expanded polynomials over Z, with variables over H.
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Equations over Finite Fields

Given: fi,..., fs € Flxy,...,x,] = Zplx1, ..., Ty
Asked: 3z € F": fi(z) =--- = fs(x) = 0.
‘ no restrictions ‘ fi in expanded form (o problem)
POLSAT NPC (reduce 3-CNF) P
s-POLSYSSAT NPC P
POLSYSSAT NPC NPC (reduce POLSAT)
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Systems over Finite Fields

Given:fl,...,fseIF[a:l,..., nl = Lplxy, ..., x
Asked: 3z € F": fi(x) =--- = fs(x ):

B For f € Flzy,...,x,] we have
Vo € F": f(x) = 0 <= f € ldealp,,

B Then we define

B Now we have

Ve e F": f(z) =0<= (T € F": fi(z) =--- = fs(x) =0).

n]-

-----



Systems over Finite Fields

Similarly we can generalize a result from Horvath and Szab6 2006:

Lemma

Let H < (Z, — {0}, -) be a multiplicative subgroup. If the f; € Zy[z1,...,z,] are
given in expanded form we can decide in polynomial time whether

Jx e H": fi(x) =--- = fs(z) =0.
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