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C-finite sequences

Let K ⊇ Q be a number field.

Definition

A sequence c(n) ∈ KN is called C-finite if there are constants γ0, . . . , γr−1 ∈ K
such that

γ0c(n) + · · ·+ γr−1c(n+ r − 1) + c(n+ r) = 0 for all n ∈ N.

� The sequence c(n) can be described by finite amount of data, namely by

γ0, . . . , γr−1, c(0), . . . , c(r − 1).

� C-finite sequences form a computable ring under termwise addition and
multiplication.

� Examples: Fibonacci-sequence f(n), Pell numbers, Perrin numbers.
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C2-finite sequences

Definition

A sequence a = a(n) ∈ KN is called C2-finite if there are C-finite sequences
c0(n), . . . , cr(n) ∈ KN with cr(n) 6= 0 for all n ∈ N such that

c0(n)a(n) + · · ·+ cr−1(n)a(n+ r − 1) + cr(n)a(n+ r) = 0 for all n ∈ N.

� The sequence a can again be described completely by finite data.

� C-, D-finite and q-holonomic sequences are C2-finite.

� C2-finite sequences form a ring (Jiménez-Pastor, N., and Pillwein 2021).

� Not clear if the ring is computable.
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Skolem problem

Recognizing whether recurrence is valid and computations in C2-finite sequence
ring are limited by Skolem problem:

Skolem problem

Does a given C-finite sequence have a zero?

It is not known whether the problem is decidable in general.

� Decidable for sequences of order ≤ 4 (Ouaknine and Worrell 2012).

� Decidable if we have a unique dominant root (Halava et al. 2005).

� In practice: For "most" sequences it can be checked fully automatically.
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Simple C2-finite sequences

Definition

A sequence a = a(n) ∈ KN is called simple C2-finite if there are C-finite se-
quences c0(n), . . . , cr−1(n) ∈ KN such that

c0(n)a(n) + · · ·+ cr−1(n)a(n+ r − 1) + a(n+ r) = 0 for all n ∈ N.

� Most C2-finite sequences we encountered are simple C2-finite.

� Catalan numbers are C2-finite (as they are D-finite) but not simple C2-finite,
cf. Cadilhac et al. 2021.

� For every simple C2-finite sequence a(n) we can compute an α ∈ Q such that
|a(n)| ≤ αn2

for all n ≥ 1.
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Example

Lemma

Let c be a C-finite sequence. The sequence
∏n

k=0 c(k) is simple C2-finite.

In particular, a(n) =
∏n

k=0 f(k) is simple C2-finite satisfying

−f(n+ 1)a(n) + a(n+ 1) = 0.

The sequence is called Fibonacci factorial or fibonorials.
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Example: Sparse Subsequences

The sequence f(n2) is C2-finite satisfying

f(2n+ 3)f(n2) + f(4n+ 4)f((n+ 1)2)− f(2n+ 1)f((n+ 2)2) = 0.

However, f(n2) is even simple C2-finite satisfying

−f(6n+ 11)f(n2)

−f(4n+ 6)(−1− 2f(4n+ 4) + 3f(4n+ 6))f((n+ 1)2)

+f(6n+ 9)f((n+ 2)2)

+f((n+ 3)2) = 0.

Theorem

Let c be a C-finite sequence. The sequence c(n2) is simple C2-finite.
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Ring (closure properties)

� Given simple C2-finite sequences a, b with recurrences

c0(n)a(n) + · · ·+ cr−1(n)a(n+ r − 1) + a(n+ r) = 0,

d0(n)b(n) + · · ·+ ds−1(n)b(n+ s− 1) + b(n+ s) = 0.

We want to compute a simple C2-finite recurrence for a+ b and ab.

� Using an ansatz this problem can be reduced to solving linear systems over
C-finite sequence ring.

� For C-finite sequences over Q we know how to do this.

Theorem

The set of simple C2-finite sequences over Q is a computable difference ring.

7/18



Example

Consider the simple C2-finite sequences

2na(n) + a(n+ 1) = 0, b(n) + b(n+ 1) = 0.

We want to compute a recurrence for c = a+ b.

� Using algorithm from (Jiménez-Pastor, N., and Pillwein 2021):(
−25n+4 + 24n+2 + 23n+3 − 22n+1

)
c(n)

+
(
25n+4 − 23n+3 − 22n+1 + 1

)
c(n+ 2)

+
(
24n+2 − 22n+2 + 1

)
c(n+ 3) = 0.

� Using new algorithm:

(2 · 2n) c(n) + (2 + 6 · 2n) c(n+ 1) + (3 + 4 · 2n) c(n+ 2) + c(n+ 3) = 0.
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Example continued

2na(n) + a(n+ 1) = 0, b(n) + b(n+ 1) = 0.

We want to compute a recurrence for c = a+ b.

� An ansatz of order 3 for c yields the linear system(
1 −2n 2 · 4n

1 −1 1

)x0x1
x2

 =

(
8 · 8n

1

)

for the coefficients x0, x1, x2 ∈ QN of the recurrence of c.
� Ansatz: xi = xi,1 + xi,22

n yields(
1 −2n 2 · 4n 2n −4n 2 · 8n

1 −1 1 2n −2n 2n

)
x̂ =

(
8 · 8n

1

)
where x̂ = (x0,1, x1,1, x2,1, x0,2, x1,2, x2,2) ∈ Q6.
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Example continued

2na(n) + a(n+ 1) = 0, b(n) + b(n+ 1) = 0.

We want to compute a recurrence for c = a+ b.

� We want to solve(
1 −2n 2 · 4n 2n −4n 2 · 8n

1 −1 1 2n −2n 2n

)
x̂ =

(
8 · 8n

1

)
.

� Comparing the coefficients of 1, 2n, 4n, 8n yields the constant system

1 0 0 0 0 0

0 −1 0 1 0 0

0 0 2 0 −1 0

0 0 0 0 0 2

1 −1 1 0 0 0

0 0 0 1 −1 1


x̂ =



0

0

0

8

1

0


.
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Example continued

2na(n) + a(n+ 1) = 0, b(n) + b(n+ 1) = 0.

We want to compute a recurrence for c = a+ b.

� Linear system has solution

x̂ = (0, 2, 3, 2, 6, 4).

This gives rise to the coefficients xi of the recurrence for c:

(2 · 2n) c(n) + (2 + 6 · 2n) c(n+ 1) + (3 + 4 · 2n) c(n+ 2) + c(n+ 3) = 0.

� If we would not get a solution:
� Can increase order of ansatz for c. Then, we solve for x0, x1, x2, x3.
� Or: Can increase ansatz for coefficients xi. Then, we have the ansatz

xi = xi,1 + xi,22
n + xi,44

n.
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More closure properties

Theorem

Simple C2-finite sequences a(n), b(n) are also closed under

� partial sums
∑n

k=0 a(k),

� taking subsequences at arithmetic progressions a(ln+ k) for fixed l, k ∈ N,

� interlacing
(a(0), b(0), a(1), b(1), a(2), b(2), . . . ).
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Generating functions

Suppose we have a sequence a ∈ KN and we consider its generating function
g(x) =

∑
n≥0 a(n)x

n.

� a is C-finite iff g is rational.

� a is D-finite (i.e., satisfies a linear recurrence with polynomial coefficient) iff g
is D-finite (i.e., satisfies a linear differential equation with polynomial
coefficients).

� What kind of equations do the generating functions of (simple) C2-finite
sequences satisfy?

� First ideas were presented in Thanatipanonda and Zhang 2020.
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Sequence to generating function

Theorem

Let a be a C2-finite sequence over K. Let g(x) =
∑

n≥0 a(n)x
n be its generating

function. Then, g(x) satisfies a functional equation of the form
m∑
k=1

pk(x)g
(dk)(λkx) = p(x)

for p, p1, . . . , pm ∈ L[x], d1, . . . , dm ∈ N and λ1, . . . , λm ∈ L for some L ⊇ K.

Let a(n) = f(n2). The generating function g satisfies(
φ3x2 − φ−3

)
g
(
φ2x

)
−
(
ψ3x2 − ψ−3

)
g
(
ψ2x

)
+xg

(
φ4x

)
− xg

(
ψ4x

)
= (ψ − φ)x

where φ := 1+
√
5

2 denotes the golden ratio and ψ := 1−
√
5

2 its conjugate.
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Generating function to sequence

Theorem

Let g(x) =
∑

n≥0 a(n)x
n satisfy a functional equation of the form

m∑
k=1

pk(x)g
(dk)(λkx) = p(x)

for p, p1, . . . , pm ∈ L[x], d1, . . . , dm ∈ N and λ1, . . . , λm ∈ L. Then, the coefficient
sequence (a(n))n∈N satisfies a linear recurrence with C-finite coefficients over L.

� Not all coefficient sequences of such functions are C2-finite.
� E.g., g(x) = g(−x) is of the required form, but not all coefficient sequences of

even functions are C2-finite.
� Let g(x) =

∑
n≥0 a(n)x

n satisfy xg(2x) + g(x) = 1. Then,

2na(n) + a(n+ 1) = 0.
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Generating functions of simple C2-finite sequences

Theorem

The sequence a ∈ QN is simple C2-finite if and only if its generating function
g(x) =

∑
n≥0 a(n)x

n satisfies a functional differential equation of the form
m∑
k=1

αkx
jkg(dk)(λkx) = p(x)

for

1. α1, . . . , αk, λ1, . . . , λk ∈ Q \ {0},
2. j1, . . . , jm, d1, . . . , dm ∈ N,

3. p ∈ Q[x] and

4. let s := maxk=1,...,m(dk − jk), then for all k = 1, . . . ,m with dk − jk = s we have
jk = 0 and λk = 1.
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Cauchy product

� For (simple) C2-finite sequences a, b, is the Cauchy product
(a� b)(n) :=

∑n
i=0 a(i)b(n− i) again (simple) C2-finite?

Question

Let a(n) = 2n
2

and b(n) = 3n
2
. Is the Cauchy product a� b again C2-finite?

Theorem

Let a be (simple) C2-finite and b be C-finite. Then, the Cauchy product a � b is
again (simple) C2-finite.
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Overview

By restricting to simple C2-finite sequences we obtained:

� a computable ring,

� a computable bound on the growth of the terms,

� an equivalent characterization in terms of the generating function.

Open problems:

� Is the ring of C2-finite sequences computable?

� Is it possible to derive more precise asymptotic behavior of (simple) C2-finite
sequences?

18/18



References I

Cadilhac, Michaël et al. (2021). “On Polynomial Recursive Sequences”. In:
Theory of Computing Systems.

Halava, Vesa et al. (2005). Skolem’s Problem: On the Border Between Decidability
and Undecidability. Tech. rep.

Jiménez-Pastor, Antonio, Philipp N., and Veronika Pillwein (2021). “On C2-finite
sequences”. In: Proceedings of ISSAC 2021, Virtual Event Russian Federation,
July 18–23, 2021, pp. 217–224.

Ouaknine, Joël and James Worrell (2012). “Decision Problems for Linear
Recurrence Sequences”. In: Lecture Notes in Computer Science. Springer,
pp. 21–28.

19/18



References II

Thanatipanonda, Thotsaporn Aek and Yi Zhang (2020). Sequences: Polynomial,
C-finite, Holonomic, .... https://arxiv.org/pdf/2004.01370. arXiv:
math/2004.01370.

20/18

https://arxiv.org/pdf/2004.01370
http://arxiv.org/abs/math/2004.01370

	Appendix

