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C-finite sequences

Definition

A sequence c(n) ∈ QN is called C-finite if there are constants γ0, . . . , γr−1 ∈ Q
such that

c(n+ r) = γ0c(n) + · · ·+ γr−1c(n+ r − 1) for all n ∈ N.

Examples:

� Fibonacci numbers,

� Pell numbers,

� Perrin numbers.
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Problem

Problem

Does c(n) > 0 hold for all n ∈ N?

� In general, it is not known whether the problem is decidable.

� For examples appearing in practice, it usually is decidable (as we will see).

� Which algorithms can be used to prove positivity?
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Example (A007910)

Consider the rational function
1

(1− 2x)(1 + x2)
=
∑
n≥0

c(n)xn.

The coefficient sequence c(n) is C-finite satisfying

c(n+ 3) = 2c(n)− c(n+ 1) + 2c(n+ 2), c(0) = 1, c(1) = 2, c(2) = 3.

Are all coefficients positive, i.e., c(n) > 0 for all n ∈ N?

Theorem (folklore)

A sequence c(n) is C-finite if and only if the generating function
∑

n≥0 c(n)x
n is

a rational function.
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Gerhold-Kauers method: Example

We have

c(n+ 3) = 2c(n)− c(n+ 1) + 2c(n+ 2), c(0) = 1, c(1) = 2, c(2) = 3.

� We try to show positivity by induction:

(c(n) > 0 ∧ c(n+ 1) > 0 ∧ c(n+ 2) > 0)

=⇒ c(n+ 3) > 0.

� Let’s translate this to formula which can be verified automatically:

∀y0, y1, y2 ∈ R : (y0 > 0 ∧ y1 > 0 ∧ y2 > 0) =⇒ 2y0 − y1 + 2y2 > 0.

Quantifier elimination yields False.
� Neither proves nor disproves that sequence is positive.
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Gerhold-Kauers method: Example

We have

c(n+ 3) = 2c(n)− c(n+ 1) + 2c(n+ 2), c(0) = 1, c(1) = 2, c(2) = 3.

� Let’s iterate the induction formula:

(c(n) > 0 ∧ c(n+ 1) > 0 ∧ c(n+ 2) > 0 ∧ c(n+ 3) > 0)

=⇒ c(n+ 4) > 0.

� The new input for quantifier elimination therefore reads as:

∀y0, y1, y2 ∈ R : (y0 > 0 ∧ y1 > 0 ∧ y2 > 0 ∧ 2y0 − y1 + 2y2 > 0)

=⇒ 4y0 + 3y2 > 0.

Quantifier elimination yields True.
� Checking c(0), . . . , c(3) > 0 proves that c(n) > 0 for all n ∈ N
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Gerhold-Kauers method

� This is known as the Gerhold-Kauers method (Gerhold and Kauers 2005).
� It is not guaranteed to work:

� If the sequence is not positive, the algorithm will find a counterexample.
� If the sequence is positive, the algorithm might not terminate (some conditions

for termination are known: e.g., Kauers and Pillwein 2010).

� It can be used for other sequences as well (e.g., P -recursive sequences).

� There are variations which can be more powerful.
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Closed form

Theorem (folklore)

Let c(n) be C-finite. Then, there is an n0 ∈ N and polynomials p1, . . . , pm ∈ Q[x]

and constants λ1, . . . , λm ∈ Q such that

c(n) =

m∑
i=1

pi(n)λ
n
i for all n ≥ n0.

We call the λi the eigenvalues of the sequence c.

In our example we have

c(n) = 4
5 2

n +
(

1
10 −

1
5 i
)
in +

(
1
10 + 1

5 i
)
(−i)n for all n ∈ N,

so the sequence has the eigenvalues 2, i,−i. Clearly, the sequence will be
positive eventually.
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Analytic method

We want to show positivity of

c(n) = 4
5 2

n +
(

1
10 −

1
5 i
)
in +

(
1
10 + 1

5 i
)
(−i)n︸ ︷︷ ︸

=:r(n)

= 4
5 2

n + r(n).

Clearly
|r(n)| ≤ | 110 −

1
5 i||i|

n + | 110 + 1
5 i||−i|

n = 1√
5
.

Hence,
c(n) = 4

5 2
n + r(n) ≥ 4

5 2
n − |r(n)| = 4

5 2
n − 1√

5
> 0

for all n ∈ N, so c(n) is positive.
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Analytic method

� This method always works if there is a unique dominant eigenvalue, i.e., we
have

|λ1| > |λ2| ≥ · · · ≥ |λm|.

� Can easily be implemented using arbitrary precision arithmetic or algebraic
number arithmetic.

� Analytic method can be extened for sequences with at most 5 dominant
eigenvalues (Ouaknine and Worrell 2014).

� For sequences with more than 5 dominant eigenvalues, it is not known
whether checking positivity is decidable.
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Example 2 (A000969)

Consider the sequence

0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, . . .
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Example 2 (A000969)

Consider the sequence

0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, . . .

1
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Example 2 (A000969)

Consider the sequence

0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, . . .

1, 3
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Example 2 (A000969)

Consider the sequence

0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, . . .

1, 3, 7
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Example 2 (A000969)

Consider the sequence

0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, . . .

1, 3, 7, 12
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Example 2 (A000969)

Consider the sequence

0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, . . .

1, 3, 7, 12, 18
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Example 2 (A000969)

Consider the sequence

0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, . . .

1, 3, 7, 12, 18, 26, 35, 45, 57, 70, 84, 100, 117, . . .
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Example 2 (A000969)

Consider the sequence

0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, . . .

1, 3, 7, 12, 18, 26, 35, 45, 57, 70, 84, 100, 117, . . .

This sequence is C-finite satisfying

c(n+ 5) = c(n)− 2c(n+ 1) + c(n+ 2)− c(n+ 3) + 2c(n+ 4).
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Decomposition

We have

c(n+ 5) = c(n)− 2c(n+ 1) + c(n+ 2)− c(n+ 3) + 2c(n+ 4).

� The sequence has the eigenvalues 1, −1±
√
3 i

2 , the latter being roots of unity.

� Neither the Gerhold-Kauers method nor the analytic method works.

� The subsequences c(3n), c(3n+ 1), c(3n+ 2) all have a unique dominant root
and we can therefore easily show positivity of all three.

� This gives rise to the positivity of c.

� There is no guarantee that such a decomposition can be found, but usually it
works.
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Experiments

� We implemented these algorithms (and more) in SageMath and Mathematica.

� Tested them on 1000 positive C-finite sequences from the OEIS with orders
order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > 15

73 134 117 139 120 80 87 36 47 27 31 14 17 10 10 58

� For how many could the SageMath implementation prove positivity with a 60
seconds timeout?

method Gerhold-Kauers Analytic Decomposition
# successfully proven 384 566 984

� Given more time, each of the 1000 sequences could be proven to be positive.
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Package: SageMath

Our SageMath package rec_sequences provides several methods to prove
positivity of C-finite sequences1:

sage: from rec_sequences.CFiniteSequenceRing import *
sage: C = CFiniteSequenceRing(QQ)
sage: c1 = C([2,-1,2,-1], [1,2,3])
sage: c1 > 0
True
sage: c2 = C([1,-2,1,-1,2,-1], [1,3,7,12,18])
sage: c2 > 0
True

1It is available at https://github.com/PhilippNuspl/rec_sequences.
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Package: Mathematica

For Mathematica our package PositiveSequence can be used to prove positivity
of C-finite sequences2:

In[1]:= << RISC`PositiveSequence`

In[2]:= c1 = RE[{{0, 2,−1, 2,−1}, {1, 2, 3}}, c[n]];

In[3]:= PositiveSequence[c1]

Out[3]= True

In[4]:= c2 = RE[{{0, 1,−2, 1,−1, 2,−1}, {1, 3, 7, 12, 18}}, c[n]];

In[5]:= PositiveSequence[c2]

Out[5]= True

2It is available at https://www.risc.jku.at/research/combinat/software/PositiveSequence/.
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Conclusions

What have we done?

� Compared several well known and new methods for automatically proving
positivity of C-finite sequences.

� Basic methods already cover most sequences encountered in practice.
� Provide implementations in SageMath and Mathematica.

What is left?

� Other, more sophisticated methods are known:
� Are they more efficient?
� Do they cover more sequences that appear in practice?

� Methods for P -recursive sequences, i.e., sequences satisfying a linear
recurrence with polynomial coefficients.
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