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motivation

(
s

m1,m2, · · · ,mr

)
=

∑
(B1,B2)∈B

(
s − r + 1

S(B2)− |B2|

)(
S(B1)

B1

)(
S(B2)

B2

)
,

[1, Theorem 7.2].

The identity showed up when we want to prove the base case
for an algorithm computing the integration of monomials in
the Chow ring of the moduli space of stable marked curves of
genus zero.

For more background knowledge on where and how the
identity showed up, see [1, Section 7].
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basic settings

(
s

m1,m2, · · · ,mr

)
=

∑
(B1,B2)∈B

(
s − r + 1

S(B2)− |B2|

)(
S(B1)

B1

)(
S(B2)

B2

)

Let r ∈ N+ and m1,m2, . . . ,mr be r -many positive-integer
parameters.

Let s :=
∑r

i=1mi .

Denote by X := {x1, x2, . . . , xr} the set of r -many
indeterminates.

Denote by T := {B | B ⊂ X , x1 ∈ B} and by
B := {(B1,B2) | B1 ∈ T ,B2 = X \ B1}.
Basically B is the collection of bipartitions of X , where x1 is
fixed in B1 and B2 is allowed to be the emptyset.
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basic settings

(
s

m1,m2, · · · ,mr

)
=

∑
(B1,B2)∈B

(
s − r + 1

S(B2)− |B2|

)(
S(B1)

B1

)(
S(B2)

B2

)

Denote by X := {x1, x2, . . . , xr} the set of r -many
indeterminates.

Define a function g : X → {m1 − 1,m2, . . . ,mr} by
g(x1) := m1 − 1 and g(xi ) = mi when i 6= 1.

Define a “summation function” S : X → N by
S(B) :=

∑
x∈B g(x).

Denote by
(S(B)

B

)
:= S(B)!∏

x∈B(g(x)!)
.
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An example when r = 3: LHS

(
s

m1,m2, · · · ,mr

)
=

∑
(B1,B2)∈B

(
s − r + 1

S(B2)− |B2|

)(
S(B1)

B1

)(
S(B2)

B2

)

For a deeper understanding, let us come to some examples.

In order to check through the identity with an example, we
only need to fix r ∈ N+ and m1, . . . ,mr r -many positive
integers.

Take r = 3, m1 = 2, m2 = 3, m3 = 3, for instance.

Then s =
∑3

i=1mi = 2 + 3 + 3 = 8. Hence LHS
=
( s
m1,m2,m3

)
=
( 8
2,3,3

)
= 560.
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An example when r = 3: RHS

(
s

m1,m2, · · · ,mr

)
=

∑
(B1,B2)∈B

(
s − r + 1

S(B2)− |B2|

)(
S(B1)

B1

)(
S(B2)

B2

)

B =
{({x1}, {x2, x3}), ({x1, x2}, {x3}), ({x1, x3}, {x2}), ({x1, x2, x3}, ∅)}.
Now we need to go through these four elements of B, starting
from B1 = {x1}, B2 = {x2, x3}.
Then we have S(B1) = m1 − 1 = 2− 1 = 1,

S(B2) = m2 + m3 = 3 + 3 = 6,
(S(B1)

B1

)
= S(B1)!

g(x1)!
= 1

1 = 1, and(S(B2)
B2

)
=
( 6
3,3

)
= 20.( s−r+1

S(B2)−|B2|
)

=
(8−3+1

6−2
)

=
(6
4

)
= 15.

So the corresponding summand for ({x1}, {x2, x3}) is( s−r+1
S(B2)−|B2|

)(S(B1)
B1

)(S(B2)
B2

)
= 15 · 1 · 20 = 300.
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An example when r = 3: RHS

Going through the similar process, we obtian the other three
summands on RHS as:(

6
2

)
·
(

4
1,3

)
= 60,(

6
2

)
·
(

4
1,3

)
= 60, and(

7
1,3,3

)
= 140.

Summing up the four summands: 300 + 60 + 60 + 140 = 560!

Identity verified for this example.



title background deeper understanding proof the identity thanks

notations

We slightly modify the notations, so that they serve well for our
proof — namely we add an index r for many of them, indicating
that we are considering r many sums for the multinomial
coefficient.

m1,m2, · · · ,mr : r -many positive-integer parameters.
sr :=

∑r
i=1mi .

Xr := {x1, x2, · · · , xr}: a set of r -many indeterminates.
Tr := {B | B ⊂ Xr , x1 ∈ B}.
Br := {(B1,B2) | B1 ∈ Tr ,B2 = Xr \ B1}.
gr : Xr → {m1 − 1,m2, · · · ,mr}, x1 7→ m1 − 1, xi 7→ mi for
i 6= 1. This function is introduced for the sake of the next two
notations, mainly because the value for m1 is reduced by one.
S(B) :=

∑
x∈B gr (x), for B ⊂ Xr . This is just the normal

sum of mi for 1 ≤ i ≤ r , except that m1 is replaced by m1 − 1
as a summand — this is also why we need the function gr .(S(B)

B

)
:= S(B)!∏

x∈B (gr (x)!)
, for B ⊂ Xr .
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notations

Define

Sr := {(P1,P2, · · · ,Pr ) | ∪ri=1Pi = {1, 2, · · · , sr}, |Pi | = mi}.

With this set, we collect all partitions of the set {1, 2, · · · , sr}
into r parts such that the i-th part has cardinality mi .

Let Lr := {2, 3, · · · , r}. These elements are special elements
in {1, 2, · · · , sr}. Later on we will see why or how they are
special, in the definition of the function ϕr . The next two
notations are also there to prepare for the definition of the
function ϕr .

For A ⊂ {1, 2, · · · , r}, define PA := ∪i∈APi . PA is the union
of the parts which have index in A.

For A ⊂ {1, 2, · · · , r}, define XA := {xi | i ∈ A}. XA collect
the indeterminates that have index in A.
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an example on the notations

Given r = 3, the following facts are already clear:

X3 = {x1, x2, x3}.
T3 = {{x1}, {x1, x2}, {x1, x3}, {x1, x2, x3}}. This is the
collection of one part of the bipartition of X3 that contains x1.

B3 =
{({x1}, {x2, x3}), ({x1, x2}, {x3}), ({x1, x3}, {x2}), ({x1, x2,
x3}, ∅)}.
L3 = {2, 3}. The elements 2 and 3 are special.

Take A = {1, 2} ⊂ {1, 2, 3} for instance, then XA = {x1, x2}
— the collection of indeterminate with index in A.
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an example on the notations

In order to figure out those remaining notations, we should know
the values of mi , 1 ≤ i ≤ 3. Let m1 = 2, m2 = 2 and m3 = 1.

s3 =
∑3

i=1mi = 2 + 2 + 1 = 5. Now we know that 2, 3 are
considered special among 1, 2, 3, 4, 5.

g3 : X3 → {1, 2} is defined as g3(x1) = m1 − 1 = 1,
g3(x2) = m2 = 2 and g3(x3) = m3 = 1.

Take B = {x2, x3} ⊂ X3 for instance, then
S(B) = g3(x2) + g3(x3) = m2 + m3 = 3.

Take B = {x2, x3} ⊂ X3 for instance, then(S(B)
B

)
= S(B)!∏

x∈B (g3(x)!)
= 3!

g3(x2)·g3(x3) = 6
m2·m3

= 6
2·1 = 3.

S3 is the set of all partitions (P1,P2,P3) of the set
{1, 2, 3, 4, 5} into three parts P1,P2,P3 such that
|P1| = m1 = 2, |P2| = m2 = 2 and |P3| = m3 = 1.

Take A = {1, 2} ⊂ {1, 2, 3} for instance, then PA = P1 ∪ P2

for some (P1,P2,P3) ∈ S3.
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the function φr

φr : Sr → Tr , (P1, . . . ,Pr ) 7→ B ∈ Tr .

Input: (P1, · · · ,Pr ) ∈ Sr .

Output: B ∈ Tr .

B ← {x1}
A← Lr ∩ P1

While A 6= ∅: B = B ∪ XA A := Lr ∩ PA.

Return B.

Check with the example ϕ3 : S3 → T3, (P1,P2,P3) 7→ B ∈ T3.
(P1,P2,P3) = ({1, 3}, {4, 5}, {2}). We see that L3 = {2, 3}.
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an example on φr

Input: (P1,P2,P3) = ({1, 3}, {4, 5}, {2}).

Initial values: B = {x1}, A = {2, 3} ∩ {1, 3} = {3}.
First loop: Since A = {3} 6= ∅, we have
B = {x1} ∪ X{3} = {x1} ∪ {x3} = {x1, x3}, and then
A = {2, 3} ∩ {2} = {2}.
Second loop: Since A = {2} 6= ∅, we have
B = {x1, x3} ∪ X{2} = {x1, x3} ∪ {x2} = {x1, x2, x3}, and then
A = {2, 3} ∩ {4, 5} = ∅.
Since A = ∅, return B = {x1, x2, x3}.
Output: B = {x1, x2, x3}.
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further analysis using φr

φr : Sr → Tr , (P1, . . . ,Pr ) 7→ B ∈ Tr is a well-defined
surjective function.

Therefore,
⋃

B∈Tr
ϕ−1r (B) = Sr , and

|Sr | =
∑

B∈Tr
|ϕ−1r (B)| =

∑
(B,X\B)∈Br |ϕ

−1
r (B)|.

Recall the identity (with the modified notations):( sr
m1,m2,··· ,mr

)
=
∑

(B1,B2)∈Br
( sr−r+1
S(B2)−|B2|

)(S(B1)
B1

)(S(B2)
B2

)
.

It remains to show |ϕ−1r (B1)| =
( sr−r+1
S(B2)−|B2|

)(S(B1)
B1

)(S(B2)
B2

)
.

In order to prove it, we need to introduce the following result.
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a proposition

Proposition

If ϕr (P1, · · · ,Pr ) = B1 for some (P1, · · · ,Pr ) ∈ Sr and B1 ∈ Tr ;
denote B2 := Xr \ B1. Then PFB1

∩ Lr = FB1 \ {1}, where
FB := {i | xi ∈ B}. Consequently, we have PFB2

∩ Lr = FB2 and
|PFB2

∩ Lr | = |B2|.

What this proposition says is the following:

Given B1 ∈ Tr such that φr (P1, . . . ,Pr ) = B1, we know that
the special elements in the union of piles defined by B1

(namely PFB1
) form the set FB1 \ {1}.

And the special elements in the union of piles defined by
B2 := Xr \ B1 (namely FB2) form the set FB2 .
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further analysis using the proposition

Let Kr := {1, · · · , sr}.
Given B1 ∈ Tr , we want to find the number of configurations
P := (P1, . . . ,Pr ) such that φr (P) = B1.

We do it in two steps: first decide PFB1
and PFB2

, then find
out the number of configurations inside these two big groups.

We know that the special elements are already determined in
PFB1

for (P1, . . . ,Pr ) ∈ φ−1r (B1).

We only need to choose a proper amount of non-special
elements to put in PFB1

, i.e. elements in Kr \ Lr .
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further analysis using the proposition

We need to choose
|PFB1

|− (|B1|−1) = (S(B1) + 1)−|B1|+ 1 = S(B1)−|B1|+ 2
many elements from |Kr \ Lr | = sr − |Lr | = sr − r + 1 many
elements, and put them in the group of PFB1

.

Since (S(B1)− |B1|+ 2) + (S(B2)− |B2|) =
(S(B1) + S(B2) + 1)− (|B1|+ |B2|) + 1 = sr − r + 1, we can
also say that there are

( sr−r+1
S(B2)−|B2|

)
many ways to arrange the

non-special elements.

This explains the coefficient in the formula:

(Recall what we need to show:)

|ϕ−1r (B1)| =
(

sr−r+1
S(B2)−|B2|

)(
S(B1)
B1

)(
S(B2)
B2

)
.
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what remains to show

Recall our strategy: we do it in two steps: first decide PFB1

and PFB2
, then find out the number of configurations inside

these two big groups.

Considering the definition of ϕr , we see that no matter how
we arrange the elements in PFB2

, the image of ϕr is not
influenced.

Therefore, there are
(S(B2)

B2

)
many configurations for the

elements in PFB2
.

Recall what we need to show:
|ϕ−1r (B1)| =

( sr−r+1
S(B2)−|B2|

)(S(B1)
B1

)(S(B2)
B2

)
.

So, we only need to prove that given B1 ∈ Tr , the number of
configurations for the elements in PFB1

is exactly
(S(B1)

B1

)
.

This can be formulated in the proposition below:
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the last thing to show

Proposition

Recall that sk :=
∑k

i=1mi and that Xk := {x1, · · · , xk}. Then we
have fk(m1,m2, · · · ,mk) =

( sk−1
m1−1,m2,··· ,mk

)
, k ∈ N+, mi ∈ N+,

where fk : (N+)k → N, (m1,m2, · · · ,mk) 7→ |{(P1,P2, · · · ,Pk) ∈
Sk | |Pi | = mi , ϕk(P1,P2, · · · ,Pk) = Xk}|.
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proof of the last proposition

Prove by two layers of induction.

When k = 1, L1 = ∅, for any m1 ∈ N+, we have

|{(P1) ∈ S1 | ϕ1(P1) = {x1}}| = 1 =

(
s1 − 1

m1 − 1

)
since s1 = m1 in this case.

Assume that the proposition holds whenever the number of
parameters is less or equal to k − 1, where k ≥ 2.

When the number of parameters is k , we start the inner
induction on sk .

When sk = k , we know that m1 = m2 = · · · = mk = 1.
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proof of the last proposition

Recall how we define φr , we cannot choose a non-special
element for the first pile P1.

We can choose any element in Lk for P1, say i1; there are
|Lk | = k − 1 many possibilities.

Then we can choose an element in Lk \ {i1} for Pi1 , and so
on. Until we choose the element ik−1 ∈ Lk for Pik−2

.

Then the only remaining part Pik−1
can only be {1}.

In total there are (k − 1)! many configurations.

Hence we have
fk(m1,m2, · · · ,mk) = (k − 1)! =

( k−1
1,··· ,1

)
=
( k−1
0,1,··· ,1

)
, which

equals to
( sk
m1−1,m2,··· ,mk

)
.
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proof of the last proposition

Assume that the proposition holds whenever the sum of these
parameters is less or equal to sk − 1, where we can assume
sk − 1 ≥ k , i.e., sk ≥ k + 1.

We focus on the position of the element 1 among the piles Pi .

Since 1 /∈ Lk , it does not influence the image of ϕk on any
configuration.

So in the case when mi ≥ 2 for all 1 ≤ i ≤ k , there are
k-many cases for the distribution of 1:

fk(m1,m2, · · · ,mk) = fk(m1 − 1,m2, · · · ,mk) + fk(m1,m2 −
1, · · · ,mk) + · · ·+ fk(m1,m2, · · · ,mk − 1).
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proof of the last proposition

Now we can apply the induction hypothesis on the sum of the
parameters:

fk(m1,m2, · · · ,mk) =( sk−2
m1−2,m2,··· ,mk

)
+
( sk−2
m1−1,m2−1,··· ,mk

)
+ · · ·+

( sk−2
m1−1,m2,··· ,mk−1

)
.

By a known property of multinomial coefficients, we know
that the RHS equals

( sk−1
m1−1,m2,··· ,mk

)
.

Hence we get fk(m1,m2, · · · ,mk) =
( sk−1
m1−1,m2,··· ,mk

)
.

In the case when mi = 1 for some i 6= 1, the problem can be
reduced to counting the number of corresponding
configurations of Pj for j 6= i , since 1 /∈ Lk :

fk(m1, · · · ,mk) =
fk(m1−1, · · · ,mk)+ · · ·+ fk(m1, · · · ,mi−1−1,mi , · · · ,mk)+
fk−1(m1, · · · ,mi−1,mi+1, · · · ,mk) + fk(m1, · · · ,mi ,mi+1 −
1, · · · ,mk) + · · ·+ fk(m1, · · · ,mi−1,mi ,mi+1, · · · ,mk − 1).
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proof of the last proposition

By the outer induction on k , we have:
fk−1(m1, · · · ,mi−1,mi+1, · · · ,mk) =( (sk−mi )−1
m1−1,··· ,mi−1,mi+1,··· ,mk

)
=
( (sk−1)−1
m1−1,··· ,mi−1,mi+1,··· ,mk

)
=( sk−2

m1−1,··· ,mi−1,0,mi+1,··· ,mk

)
=
( sk−2
m1−1,··· ,mi−1,mi−1,mi+1,··· ,mk

)
.

Substituting it back to the above formula fk(m1, · · · ,mk) =
fk(m1−1, · · · ,mk)+ · · ·+ fk(m1, · · · ,mi−1−1,mi , · · · ,mk)+
fk−1(m1, · · · ,mi−1,mi+1, · · · ,mk) + fk(m1, · · · ,mi ,mi+1 −
1, · · · ,mk) + · · ·+ fk(m1, · · · ,mi−1,mi ,mi+1, · · · ,mk − 1),

we get fk(m1,m2, · · · ,mk) =
( sk−1
m1−1,m2,··· ,mk

)
.

With the same idea, it is not hard to prove that the statement
holds however many parameters except for m1 equal(s) one.
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proof of the last proposition

If m1 = 1, from the definition of the function fk and ϕk , we
know that 1 /∈ P1.

Hence considering the distribution of the element 1, the
recurrence formula becomes: fk(m1,m2, · · · ,mk) =
fk(m1,m2 − 1, · · · ,mk) + · · ·+ fk(m1,m2, · · · ,mk − 1).

Then by induction hypothesis on the sum of the parameters,
we obtain:

fk(m1,m2, · · · ,mk) =
( sk−2
m1−1,m2−1,··· ,mk

)
+ · · ·+( sk−2

m1−1,m2,··· ,mk−1
)

=
( sk−2
0,m2−1,··· ,mk

)
+ · · ·+

( sk−2
0,m2,··· ,mk−1

)
=( sk−2

m2−1,··· ,mk

)
+ · · ·+

( sk−2
m2,··· ,mk−1

)
=
( sk−1
m2,··· ,mk

)
=
( sk−1
0,m2,··· ,mk

)
=( sk−1

m1−1,m2,··· ,mk

)
.

With this, we conclude the proof of the identity.
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the identity

(
s

m1,m2, · · · ,mr

)
=

∑
(B1,B2)∈B

(
s − r + 1

S(B2)− |B2|

)(
S(B1)

B1

)(
S(B2)

B2

)
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Thank You
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